User menu

Accès à distance ? S'identifier sur le proxy UCLouvain

From the computer to the laboratory: materials discovery and design using first-principles calculations

  1. Eagar TW (1995) Technol Rev 98(2)
  2. Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
  3. ABINIT. http://www.abinit.org/ . Accessed 15 March 2012
  4. Vienna Ab Initio Simulation Package (VASP). http://www.vasp.at/ . Accessed 15 March 2012
  5. Quantum Espresso. http://www.quantum-espresso.org/ . Accessed 15 March 2012
  6. Hafner J., Atomic-scale computational materials science, 10.1016/s1359-6454(99)00288-8
  7. Hafner Jürgen, Wolverton Christopher, Ceder Gerbrand, Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research, 10.1557/mrs2006.174
  8. Martin Richard M., Electronic Structure : Basic Theory and Practical Methods, ISBN:9780511805769, 10.1017/cbo9780511805769
  9. Burke K (2003) The ABC of DFT. http://dft.uci.edu/sites/default/files/g1.pdf . Accessed 15 March 2012
  10. Argaman Nathan, Makov Guy, Density functional theory: An introduction, 10.1119/1.19375
  11. Carter E. A., Challenges in Modeling Materials Properties Without Experimental Input, 10.1126/science.1158009
  12. Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
  13. Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
  14. Perdew John P., Parr Robert G., Levy Mel, Balduz Jose L., Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy, 10.1103/physrevlett.49.1691
  15. Jonsson H, Mills G, Jacobsen KW (1998) In: Nudged elastic band method for finding minimum energy paths of transitions. World Scientific Publishing Co. Pte. Ltd., Singapore
  16. Mills Greg, Jónsson Hannes, Quantum and thermal effects inH2dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, 10.1103/physrevlett.72.1124
  17. Anisimov Vladimir I, Aryasetiawan F, Lichtenstein A I, First-principles calculations of the electronic structure and spectra of strongly correlated systems: theLDA+Umethod, 10.1088/0953-8984/9/4/002
  18. Zhou Fei, Cococcioni Matteo, Kang Kisuk, Ceder Gerbrand, The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni, 10.1016/j.elecom.2004.09.007
  19. Cococcioni Matteo, de Gironcoli Stefano, Linear response approach to the calculation of the effective interaction parameters in theLDA+Umethod, 10.1103/physrevb.71.035105
  20. Wang Lei, Maxisch Thomas, Ceder Gerbrand, Oxidation energies of transition metal oxides within theGGA+Uframework, 10.1103/physrevb.73.195107
  21. Wang L., Maxisch T., Ceder G., A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials, 10.1021/cm0620943
  22. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)], 10.1063/1.2204597
  23. Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
  24. Heyd Jochen, Scuseria Gustavo E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional, 10.1063/1.1760074
  25. Chevrier V. L., Ong S. P., Armiento R., Chan M. K. Y., Ceder G., Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds, 10.1103/physrevb.82.075122
  26. Wang C. S., Pickett W. E., Density-Functional Theory of Excitation Spectra of Semiconductors: Application to Si, 10.1103/physrevlett.51.597
  27. Sham L. J., Schlüter M., Density-Functional Theory of the Energy Gap, 10.1103/physrevlett.51.1888
  28. Cohen Aron J., Mori-Sánchez Paula, Yang Weitao, Fractional charge perspective on the band gap in density-functional theory, 10.1103/physrevb.77.115123
  29. Chan M. K. Y., Ceder G., Efficient Band Gap Prediction for Solids, 10.1103/physrevlett.105.196403
  30. Hedin Lars, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, 10.1103/physrev.139.a796
  31. Aryasetiawan F, Gunnarsson O, TheGWmethod, 10.1088/0034-4885/61/3/002
  32. Runge Erich, Gross E. K. U., Density-Functional Theory for Time-Dependent Systems, 10.1103/physrevlett.52.997
  33. Tran Fabien, Blaha Peter, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, 10.1103/physrevlett.102.226401
  34. Kuisma M., Ojanen J., Enkovaara J., Rantala T. T., Kohn-Sham potential with discontinuity for band gap materials, 10.1103/physrevb.82.115106
  35. Gritsenko Oleg, van Leeuwen Robert, van Lenthe Erik, Baerends Evert Jan, Self-consistent approximation to the Kohn-Sham exchange potential, 10.1103/physreva.51.1944
  36. Maddox J (1998) Nature 335:201
  37. Schön J. Christian, Doll Klaus, Jansen Martin, Predicting solid compounds via global exploration of the energy landscape of solids on theab initiolevel without recourse to experimental information, 10.1002/pssb.200945246
  38. Woodley Scott M., Catlow Richard, Crystal structure prediction from first principles, 10.1038/nmat2321
  39. O’Keeffe M (2010) Phys Chem Chem Phys: PCCP 12: 8580. doi: 10.1039/C004039H
  40. Lany Stephan, Semiconductor thermochemistry in density functional calculations, 10.1103/physrevb.78.245207
  41. Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
  42. Jain Anubhav, Hautier Geoffroy, Ong Shyue Ping, Moore Charles J., Fischer Christopher C., Persson Kristin A., Ceder Gerbrand, Formation enthalpies by mixing GGA and GGA+Ucalculations, 10.1103/physrevb.84.045115
  43. Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
  44. Oganov Artem R., Valle Mario, How to quantify energy landscapes of solids, 10.1063/1.3079326
  45. Ducastelle F (1991) In: Order and phase stability in alloys, (Cohesion and Structure) , vol 3. North Holland, Amsterdam
  46. Ceder G., A derivation of the Ising model for the computation of phase diagrams, 10.1016/0927-0256(93)90005-8
  47. Sanati M., Wang L. G., Zunger Alex, Adaptive Crystal Structures: CuAu and NiPt, 10.1103/physrevlett.90.045502
  48. Blum Volker, Zunger Alex, Structural complexity in binary bcc ground states: The case of bcc Mo-Ta, 10.1103/physrevb.69.020103
  49. Hart GLW (2009) Phys Rev B 80(1):1
  50. Van der Ven Anton, First-Principles Evidence for Stage Ordering in Li[sub x]CoO[sub 2], 10.1149/1.1838610
  51. Wales David J., Doye Jonathan P. K., Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, 10.1021/jp970984n
  52. Wales D. J., Global Optimization of Clusters, Crystals, and Biomolecules, 10.1126/science.285.5432.1368
  53. Bush T. S., Catlow C. R. A., Battle P. D., Evolutionary programming techniques for predicting inorganic crystal structures, 10.1039/jm9950501269
  54. Abraham N. L., Probert M. I. J., A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction, 10.1103/physrevb.73.224104
  55. Oganov Artem R., Glass Colin W., Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, 10.1063/1.2210932
  56. Trimarchi Giancarlo, Zunger Alex, Global space-group optimization problem: Finding the stablest crystal structure without constraints, 10.1103/physrevb.75.104113
  57. Oganov Artem R, Glass Colin W, Evolutionary crystal structure prediction as a tool in materials design, 10.1088/0953-8984/20/6/064210
  58. Zhang Xiuwen, Zunger Alex, Trimarchi Giancarlo, Structure prediction and targeted synthesis: A new NanN2 diazenide crystalline structure, 10.1063/1.3488440
  59. Oganov Artem R., Chen Jiuhua, Gatti Carlo, Ma Yanzhang, Ma Yanming, Glass Colin W., Liu Zhenxian, Yu Tony, Kurakevych Oleksandr O., Solozhenko Vladimir L., Ionic high-pressure form of elemental boron, 10.1038/nature07736
  60. Kolmogorov A. N., Shah S., Margine E. R., Bialon A. F., Hammerschmidt T., Drautz R., New Superconducting and Semiconducting Fe-B Compounds Predicted with anAb InitioEvolutionary Search, 10.1103/physrevlett.105.217003
  61. Ono S., Kikegawa T., Ohishi Y., High-pressure transition of CaCO3, 10.2138/am.2007.2649
  62. Liebold-Ribeiro Yvonne, Fischer Dieter, Jansen Martin, Experimental Substantiation of the “Energy Landscape Concept” for Solids: Synthesis of a New Modification of LiBr, 10.1002/anie.200800333
  63. Johnson David C., Solid-state chemistry: New order for lithium bromide, 10.1038/454174a
  64. Ceder G., Morgan D., Fischer C., Tibbetts K., Curtarolo S., Data-Mining-Driven Quantum Mechanics for the Prediction of Structure, 10.1557/mrs2006.224
  65. Curtarolo Stefano, Morgan Dane, Persson Kristin, Rodgers John, Ceder Gerbrand, Predicting Crystal Structures with Data Mining of Quantum Calculations, 10.1103/physrevlett.91.135503
  66. Fischer Christopher C., Tibbetts Kevin J., Morgan Dane, Ceder Gerbrand, Predicting crystal structure by merging data mining with quantum mechanics, 10.1038/nmat1691
  67. Hautier Geoffroy, Fischer Chris, Ehrlacher Virginie, Jain Anubhav, Ceder Gerbrand, Data Mined Ionic Substitutions for the Discovery of New Compounds, 10.1021/ic102031h
  68. Kolmogorov Aleksey N., Curtarolo Stefano, Theoretical study of metal borides stability, 10.1103/physrevb.74.224507
  69. Kolmogorov Aleksey N., Curtarolo Stefano, Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2, 10.1103/physrevb.73.180501
  70. Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2009) J Am Chem Soc 29: 163
  71. Hautier Geoffroy, Fischer Christopher C., Jain Anubhav, Mueller Tim, Ceder Gerbrand, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory, 10.1021/cm100795d
  72. http://ceder.mit.edu/ternaryoxides . Accessed 15 March 2012
  73. Fix Thomas, Sahonta S.-Lata, Garcia Vincent, MacManus-Driscoll Judith L., Blamire Mark G., Structural and Dielectric Properties of SnTiO3, a Putative Ferroelectric, 10.1021/cg200333q
  74. Uratani Yoshitaka, Shishidou Tatsuya, Oguchi Tamio, First-Principles Study of Lead-Free Piezoelectric SnTiO3, 10.1143/jjap.47.7735
  75. Matar S.F., Baraille I., Subramanian M.A., First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material, 10.1016/j.chemphys.2008.11.002
  76. http://han.ess.sunysb.edu/~USPEX/ . Accessed 15 March 2012
  77. http://www.maise-guide.org/ . Accessed 15 March 2012
  78. http://www.materialsproject.org/apps/structure_predictor . Accessed 15 March 2012
  79. Wadia Cyrus, Alivisatos A. Paul, Kammen Daniel M., Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment, 10.1021/es8019534
  80. Wadia Cyrus, Albertus Paul, Srinivasan Venkat, Resource constraints on the battery energy storage potential for grid and transportation applications, 10.1016/j.jpowsour.2010.08.056
  81. Jaramillo Paulina, Samaras Constantine, Wakeley Heather, Meisterling Kyle, Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways, 10.1016/j.enpol.2009.03.001
  82. ISuppli IHS (2011) IHS iSuppli Rechargeable Battery Special Report. Tech. rep.
  83. Aydinol M. K., Kohan A. F., Ceder G., Cho K., Joannopoulos J., Ab initiostudy of lithium intercalation in metal oxides and metal dichalcogenides, 10.1103/physrevb.56.1354
  84. Maxisch Thomas, Zhou Fei, Ceder Gerbrand, Ab initiostudy of the migration of small polarons in olivineLixFePO4and their association with lithium ions and vacancies, 10.1103/physrevb.73.104301
  85. Morgan D., Van der Ven A., Ceder G., Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials, 10.1149/1.1633511
  86. Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 4:1
  87. Ceder G, Hautier G, Jain A, Ong S (2011) MRS Bull 36(03):185
  88. Meng Ying Shirley, Arroyo-de Dompablo M. Elena, First principles computational materials design for energy storage materials in lithium ion batteries, 10.1039/b901825e
  89. Ceder Gerbrand, Opportunities and challenges for first-principles materials design and applications to Li battery materials, 10.1557/mrs2010.681
  90. Ceder G., Chiang Y.-M., Sadoway D. R., Aydinol M. K., Jang Y.-I., Huang B., 10.1038/33647
  91. Kang K., Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries, 10.1126/science.1122152
  92. Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012, submitted)
  93. Legagneur V, LiMBO3 (M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties, 10.1016/s0167-2738(00)00813-4
  94. Kim Jae Chul, Moore Charles J., Kang Byoungwoo, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Synthesis and Electrochemical Properties of Monoclinic LiMnBO[sub 3] as a Li Intercalation Material, 10.1149/1.3536532
  95. Ceder G, Kim JC, Kang B, Moore CJ, Hautier G (2011) International Patent Application PCT/US2011/035432
  96. Ceder G, Jain A, Hautier G, Kim JC, Kang BW (2010) US Patent Application 12/857262
  97. Kuang Quan, Xu Jiantie, Zhao Yanming, Chen Xiaolong, Chen Liquan, Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries, 10.1016/j.electacta.2010.11.051
  98. Kuang Q, Lin Z, Zhao Y, Chen X, Chen L (2011) J Mater Chem 3:2
  99. Jain Anubhav, Hautier Geoffroy, Moore Charles, Kang Byoungwoo, Lee Jinhyuk, Chen Hailong, Twu Nancy, Ceder Gerbrand, A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries, 10.1149/2.080205jes
  100. Hautier Geoffroy, Jain Anubhav, Chen Hailong, Moore Charles, Ong Shyue Ping, Ceder Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, 10.1039/c1jm12216a
  101. Ceder G, Chen H, Doe RE, Hautier G, Jain A, Kang B (2011) International patent application pct/us2011/025684
  102. Crabtree G.W., Dresselhaus M.S., The Hydrogen Fuel Alternative, 10.1557/mrs2008.84
  103. Wolverton C, Siegel Donald J, Akbarzadeh A R, Ozoliņš V, Discovery of novel hydrogen storage materials: an atomic scale computational approach, 10.1088/0953-8984/20/6/064228
  104. Ozolins V, Akbarzadeh A R, Gunaydin H, Michel K, Wolverton C, Majzoub E H, First-principles computational discovery of materials for hydrogen storage, 10.1088/1742-6596/180/1/012076
  105. Alapati Sudhakar V., Johnson J. Karl, Sholl David S., Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations, 10.1021/jp060482m
  106. Lu Jun, Fang Zhigang Zak, Choi Young Joon, Sohn Hong Yong, Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications, 10.1021/jp0733724
  107. Luo Weifang, (LiNH2–MgH2): a viable hydrogen storage system, 10.1016/j.jallcom.2004.03.119
  108. Osborn William, Markmaitree Tippawan, Shaw Leon L., Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio, 10.1016/j.jpowsour.2007.07.037
  109. Liu Y, Zhong K, Gao M, Wang J, Pan H, Wang Q (2008) System 2(6):3521
  110. Lu Jun, Choi Young Joon, Fang Zhigang Zak, Sohn Hong Yong, Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture, 10.1016/j.jpowsour.2009.10.032
  111. Tritt Terry M., Böttner Harald, Chen Lidong, Thermoelectrics: Direct Solar Thermal Energy Conversion, 10.1557/mrs2008.73
  112. Tritt Terry M., Subramanian M. A., Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, 10.1557/mrs2006.44
  113. Chen G., Dresselhaus M. S., Dresselhaus G., Fleurial J.-P., Caillat T., Recent developments in thermoelectric materials, 10.1179/095066003225010182
  114. Madsen Georg K. H., Automated Search for New Thermoelectric Materials: The Case of LiZnSb, 10.1021/ja062526a
  115. Bergerhoff G., Hundt R., Sievers R., Brown I. D., The inorganic crystal structure data base, 10.1021/ci00038a003
  116. Inorganic Crystal Structure Database. http://www.fiz-karlsruhe.de/icsd.html . Accessed 15 March 2012
  117. Toberer Eric S., May Andrew F., Scanlon Cidney J., Snyder G. Jeffery, Thermoelectric properties of p-type LiZnSb: Assessment of ab initio calculations, 10.1063/1.3091267
  118. Van de Walle Chris G., Neugebauer Jörg, First-principles calculations for defects and impurities: Applications to III-nitrides, 10.1063/1.1682673
  119. Lany Stephan, Zunger Alex, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs, 10.1103/physrevb.78.235104
  120. Madsen GKH, Bentien A, Johnsen S, Iversen BB (2005) In: Proceedings of the 24th International Conference on Thermoelectrics, vol. 8328. IEEE, New York
  121. Petrovic C., Lee Y., Vogt T., Lazarov N., Bud’ko S., Canfield P., Kondo insulator description of spin state transition in FeSb2, 10.1103/physrevb.72.045103
  122. Bentien A., Madsen G. K. H., Johnsen S., Iversen B. B., Experimental and theoretical investigations of strongly correlatedFeSb2−xSnx, 10.1103/physrevb.74.205105
  123. Bentien A., Johnsen S., Madsen G. K. H., Iversen B. B., Steglich F., Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2, 10.1209/0295-5075/80/17008
  124. Comstock R. L., 10.1023/a:1019642215245
  125. Spaldin Nicola A., Magnetic Materials : Fundamentals and Applications, ISBN:9780511781599, 10.1017/cbo9780511781599
  126. Dronskowski Richard, Korczak Karol, Lueken Heiko, Jung Walter, Chemically Tuning between Ferromagnetism and Antiferromagnetism by Combining Theory and Synthesis in Iron/Manganese Rhodium Borides, 10.1002/1521-3773(20020715)41:14<2528::aid-anie2528>3.0.co;2-6
  127. von Appen J�rg, Dronskowski Richard, Predicting New Ferromagnetic Nitrides from Electronic Structure Theory: IrFe3N and RhFe3N, 10.1002/anie.200462247
  128. Houben Andreas, Müller Paul, von Appen Jörg, Lueken Heiko, Niewa Rainer, Dronskowski Richard, Synthesis, Crystal Structure, and Magnetic Properties of the Semihard Itinerant Ferromagnet RhFe3N, 10.1002/anie.200502579
  129. Houben Andreas, Šepelák Vladimir, Becker Klaus-Dieter, Dronskowski Richard, Itinerant Ferromagnet RhFe3N: Advanced Synthesis and57Fe Mössbauer Analysis, 10.1021/cm803004v
  130. Burkert Till, Nordström Lars, Eriksson Olle, Heinonen Olle, Giant Magnetic Anisotropy in Tetragonal FeCo Alloys, 10.1103/physrevlett.93.027203
  131. Winkelmann Aimo, Przybylski Marek, Luo Feng, Shi Yisheng, Barthel Jochen, Perpendicular Magnetic Anisotropy Induced by Tetragonal Distortion of FeCo Alloy Films Grown on Pd(001), 10.1103/physrevlett.96.257205
  132. Andersson Gabriella, Burkert Till, Warnicke Peter, Björck Matts, Sanyal Biplab, Chacon Cyril, Zlotea Claudia, Nordström Lars, Nordblad Per, Eriksson Olle, Perpendicular Magnetocrystalline Anisotropy in Tetragonally Distorted Fe-Co Alloys, 10.1103/physrevlett.96.037205
  133. Neise C., Schönecker S., Richter M., Koepernik K., Eschrig H., The effect of chemical disorder on the magnetic anisotropy of strained Fe-Co films, 10.1002/pssb.201147100
  134. Julliere M., Tunneling between ferromagnetic films, 10.1016/0375-9601(75)90174-7
  135. Mathon J., Umerski A., Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction, 10.1103/physrevb.63.220403
  136. Butler W. H., Zhang X.-G., Schulthess T. C., MacLaren J. M., Spin-dependent tunneling conductance ofFe|MgO|Fesandwiches, 10.1103/physrevb.63.054416
  137. Bowen M., Cros V., Petroff F., Fert A., Martı́nez Boubeta C., Costa-Krämer J. L., Anguita J. V., Cebollada A., Briones F., de Teresa J. M., Morellón L., Ibarra M. R., Güell F., Peiró F., Cornet A., Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001), 10.1063/1.1404125
  138. Yuasa Shinji, Nagahama Taro, Fukushima Akio, Suzuki Yoshishige, Ando Koji, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, 10.1038/nmat1257
  139. Parkin Stuart S. P., Kaiser Christian, Panchula Alex, Rice Philip M., Hughes Brian, Samant Mahesh, Yang See-Hun, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, 10.1038/nmat1256
  140. Spaldin N. A., MATERIALS SCIENCE: The Renaissance of Magnetoelectric Multiferroics, 10.1126/science.1113357
  141. Eerenstein W., Mathur N. D., Scott J. F., Multiferroic and magnetoelectric materials, 10.1038/nature05023
  142. Hill Nicola A., Why Are There so Few Magnetic Ferroelectrics?, 10.1021/jp000114x
  143. Ederer Claude, Spaldin Nicola A., Recent progress in first-principles studies of magnetoelectric multiferroics, 10.1016/j.cossms.2006.03.001
  144. Hill Nicola A., Rabe Karin M., First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite, 10.1103/physrevb.59.8759
  145. Moreira dos Santos A., Parashar S., Raju A.R., Zhao Y.S., Cheetham A.K., Rao C.N.R., Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3, 10.1016/s0038-1098(02)00087-x
  146. Kimura T., Kawamoto S., Yamada I., Azuma M., Takano M., Tokura Y., Magnetocapacitance effect in multiferroicBiMnO3, 10.1103/physrevb.67.180401
  147. Cheong Sang-Wook, Mostovoy Maxim, Multiferroics: a magnetic twist for ferroelectricity, 10.1038/nmat1804
  148. Rushchanskii K. Z., Kamba S., Goian V., Vaněk P., Savinov M., Prokleška J., Nuzhnyy D., Knížek K., Laufek F., Eckel S., Lamoreaux S. K., Sushkov A. O., Ležaić M., Spaldin N. A., A multiferroic material to search for the permanent electric dipole moment of the electron, 10.1038/nmat2799
  149. Mintmire J. W., Dunlap B. I., White C. T., Are fullerene tubules metallic?, 10.1103/physrevlett.68.631
  150. Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S, Electronic structure of chiral graphene tubules, 10.1063/1.107080
  151. Wilder Jeroen W. G., Venema Liesbeth C., Rinzler Andrew G., Smalley Richard E., Dekker Cees, 10.1038/34139
  152. Rubio Angel, Corkill Jennifer L., Cohen Marvin L., Theory of graphitic boron nitride nanotubes, 10.1103/physrevb.49.5081
  153. Blase X, Rubio A, Louie S. G, Cohen M. L, Stability and Band Gap Constancy of Boron Nitride Nanotubes, 10.1209/0295-5075/28/5/007
  154. Chopra N. G., Luyken R. J., Cherrey K., Crespi V. H., Cohen M. L., Louie S. G., Zettl A., Boron Nitride Nanotubes, 10.1126/science.269.5226.966
  155. Fuentes G. G., Borowiak-Palen Ewa, Pichler T., Liu X., Graff A., Behr G., Kalenczuk R. J., Knupfer M., Fink J., Electronic structure of multiwall boron nitride nanotubes, 10.1103/physrevb.67.035429
  156. Czerw R., Webster S., Carroll D. L., Vieira S. M. C., Birkett P. R., Rego C. A., Roth S., Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes, 10.1063/1.1601308
  157. Arenal R., Stéphan O., Kociak M., Taverna D., Loiseau A., Colliex C., Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes, 10.1103/physrevlett.95.127601
  158. Khoo K. H., Mazzoni M. S. C., Louie Steven G., Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect, 10.1103/physrevb.69.201401
  159. Ishigami Masa, Sau Jay Deep, Aloni Shaul, Cohen Marvin L., Zettl A., Observation of the Giant Stark Effect in Boron-Nitride Nanotubes, 10.1103/physrevlett.94.056804
  160. Greeley Jeff, Nørskov Jens K., Mavrikakis Manos, ELECTRONICSTRUCTURE ANDCATALYSIS ONMETALSURFACES, 10.1146/annurev.physchem.53.100301.131630
  161. Norskov J. K., Abild-Pedersen F., Studt F., Bligaard T., Density functional theory in surface chemistry and catalysis, 10.1073/pnas.1006652108
  162. Deutschmann O, Knözinger H, Kochloefl K, Turek T (2011) In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
  163. Rootsaert W. J. M., Sachtler W. M. H., Interaction of Formic Acid Vapour with Tungsten, 10.1524/zpch.1960.26.1_2.016
  164. Studt F., Abild-Pedersen F., Bligaard T., Sorensen R. Z., Christensen C. H., Norskov J. K., Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene, 10.1126/science.1156660
  165. Besenbacher F., Design of a Surface Alloy Catalyst for Steam Reforming, 10.1126/science.279.5358.1913
  166. Kratzer P., Hammer B., No/rskov J. K., A theoretical study of CH4 dissociation on pure and gold‐alloyed Ni(111) surfaces, 10.1063/1.472399
  167. Nilekar Anand Udaykumar, Alayoglu Selim, Eichhorn Bryan, Mavrikakis Manos, Preferential CO Oxidation in Hydrogen: Reactivity of Core−Shell Nanoparticles, 10.1021/ja101108w
  168. Chaudhuri Santanu, Muckerman James T, First-Principles Study of Ti-Catalyzed Hydrogen Chemisorption on an Al Surface:  A Critical First Step for Reversible Hydrogen Storage in NaAlH4, 10.1021/jp050558z
  169. Chopra Irinder S., Chaudhuri Santanu, Veyan Jean François, Chabal Yves J., Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen, 10.1038/nmat3123
  170. Greeley Jeff, Jaramillo Thomas F., Bonde Jacob, Chorkendorff Ib, Nørskov Jens K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, 10.1038/nmat1752
  171. Greeley Jeff, Nørskov Jens K., Large-scale, density functional theory-based screening of alloys for hydrogen evolution, 10.1016/j.susc.2007.01.037
  172. Cohen Marvin L., Predicting properties and new materials, 10.1016/0038-1098(94)90857-5
  173. Zunger Alex, Theoretical predictions of electronic materials and their properties, 10.1016/s1359-0286(98)80062-4
  174. Ceder G., COMPUTATIONAL MATERIALS SCIENCE: Predicting Properties from Scratch, 10.1126/science.280.5366.1099
  175. Nagamatsu Jun, Nakagawa Norimasa, Muranaka Takahiro, Zenitani Yuji, Akimitsu Jun, Superconductivity at 39 K in magnesium diboride, 10.1038/35065039
  176. Greeley Jeff, Nørskov Jens K., Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction, 10.1021/jp808945y
  177. Hautier Geoffroy, Jain Anubhav, Ong Shyue Ping, Kang Byoungwoo, Moore Charles, Doe Robert, Ceder Gerbrand, Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughputab InitioCalculations, 10.1021/cm200949v
  178. Munter T R, Landis D D, Abild-Pedersen F, Jones G, Wang S, Bligaard T, Virtual materials design using databases of calculated materials properties, 10.1088/1749-4699/2/1/015006
  179. Setyawan Wahyu, Curtarolo Stefano, High-throughput electronic band structure calculations: Challenges and tools, 10.1016/j.commatsci.2010.05.010
  180. Hummelshøj J. S., Landis D. D., Voss J., Jiang T., Tekin A., Bork N., Dułak M., Mortensen J. J., Adamska L., Andersin J., Baran J. D., Barmparis G. D., Bell F., Bezanilla A. L., Bjork J., Björketun M. E., Bleken F., Buchter F., Bürkle M., Burton P. D., Buus B. B., Calborean A., Calle-Vallejo F., Casolo S., Chandler B. D., Chi D. H., Czekaj I, Datta S., Datye A., DeLaRiva A., Despoja V, Dobrin S., Engelund M., Ferrighi L., Frondelius P., Fu Q., Fuentes A., Fürst J., García-Fuente A., Gavnholt J., Goeke R., Gudmundsdottir S., Hammond K. D., Hansen H. A., Hibbitts D., Hobi E., Howalt J. G., Hruby S. L., Huth A., Isaeva L., Jelic J., Jensen I. J. T., Kacprzak K. A., Kelkkanen A., Kelsey D., Kesanakurthi D. S., Kleis J., Klüpfel P. J., Konstantinov I, Korytar R., Koskinen P., Krishna C., Kunkes E., Larsen A. H., Lastra J. M. G., Lin H., Lopez-Acevedo O., Mantega M., Martínez J. I., Mesa I. N., Mowbray D. J., Mýrdal J. S. G., Natanzon Y., Nistor A., Olsen T., Park H., Pedroza L. S., Petzold V, Plaisance C., Rasmussen J. A., Ren H., Rizzi M., Ronco A. S., Rostgaard C., Saadi S., Salguero L. A., Santos E. J. G., Schoenhalz A. L., Shen J., Smedemand M., Stausholm-Møller O. J., Stibius M., Strange M., Su H. B., Temel B., Toftelund A., Tripkovic V, Vanin M., Viswanathan V, Vojvodic A., Wang S., Wellendorff J., Thygesen K. S., Rossmeisl J., Bligaard T., Jacobsen K. W., Nørskov J. K., Vegge T., Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project, 10.1063/1.3148892
  181. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495
  182. Mueller Tim, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing, 10.1021/cm200753g
  183. Olivares-Amaya Roberto, Amador-Bedolla Carlos, Hachmann Johannes, Atahan-Evrenk Sule, Sánchez-Carrera Roel S., Vogt Leslie, Aspuru-Guzik Alán, Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics, 10.1039/c1ee02056k
  184. Wang S, Wang Z, Setyawan W, Mingo N, Curtarolo S (2011) Phys Rev X 1(2):1
  185. Ortiz C., Eriksson O., Klintenberg M., Data mining and accelerated electronic structure theory as a tool in the search for new functional materials, 10.1016/j.commatsci.2008.07.016
  186. Setyawan Wahyu, Gaume Romain M., Lam Stephanie, Feigelson Robert S., Curtarolo Stefano, High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials, 10.1021/co200012w
  187. Castelli IE, Olsen T, Datta S, Landis DD, Dahl Sr, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5: 5814. doi: 10.1039/C1EE02717D
  188. http://www.materialsproject.org . Accessed 15 March 2012
  189. http://www.aflowlib.org . Accessed 15 March 2012
  190. http://gurka.fysik.uu.se/ESP/ . Accessed 15 March 2012
Bibliographic reference Hautier, Geoffroy ; Anubhav Jain ; Shyue Ping Ong. From the computer to the laboratory: materials discovery and design using first-principles calculations. In: Journal of Materials Science, Vol. 47, no. 21, p. 7317-7340 (2012)
Permanent URL http://hdl.handle.net/2078.1/133021