Hautier, Geoffroy
[UCL]
Anubhav Jain
Shyue Ping Ong
The development of new technological materials has historically been a difficult and time-consuming task. The traditional role of computation in materials design has been to better understand existing materials. However, an emerging paradigm for accelerated materials discovery is to design new compounds in silico using firstprinciples calculations, and then perform experiments on the computationally designed candidates. In this paper, we provide a review of ab initio computational materials design, focusing on instances in which a computational approach has been successfully applied to propose new materials of technological interest in the laboratory. Our examples include applications in renewable energy, electronic, magnetic and multiferroic materials, and catalysis, demonstrating that computationally guided materials design is a broadly applicable technique. We then discuss some of the common features and limitations of successful theoretical predictions across fields, examining the different ways in which first-principles calculations can guide the final experimental result. Finally, we present a future outlook in which we expect that new models of computational search, such as high-throughput studies, will play a greater role in guiding materials advancements.
- Eagar TW (1995) Technol Rev 98(2)
- Hohenberg P., Kohn W., Inhomogeneous Electron Gas, 10.1103/physrev.136.b864
- ABINIT. http://www.abinit.org/ . Accessed 15 March 2012
- Vienna Ab Initio Simulation Package (VASP). http://www.vasp.at/ . Accessed 15 March 2012
- Quantum Espresso. http://www.quantum-espresso.org/ . Accessed 15 March 2012
- Hafner J., Atomic-scale computational materials science, 10.1016/s1359-6454(99)00288-8
- Hafner Jürgen, Wolverton Christopher, Ceder Gerbrand, Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research, 10.1557/mrs2006.174
- Martin Richard M., Electronic Structure : Basic Theory and Practical Methods, ISBN:9780511805769, 10.1017/cbo9780511805769
- Burke K (2003) The ABC of DFT. http://dft.uci.edu/sites/default/files/g1.pdf . Accessed 15 March 2012
- Argaman Nathan, Makov Guy, Density functional theory: An introduction, 10.1119/1.19375
- Carter E. A., Challenges in Modeling Materials Properties Without Experimental Input, 10.1126/science.1158009
- Kohn W., Sham L. J., Self-Consistent Equations Including Exchange and Correlation Effects, 10.1103/physrev.140.a1133
- Perdew John P., Burke Kieron, Ernzerhof Matthias, Generalized Gradient Approximation Made Simple, 10.1103/physrevlett.77.3865
- Perdew John P., Parr Robert G., Levy Mel, Balduz Jose L., Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy, 10.1103/physrevlett.49.1691
- Jonsson H, Mills G, Jacobsen KW (1998) In: Nudged elastic band method for finding minimum energy paths of transitions. World Scientific Publishing Co. Pte. Ltd., Singapore
- Mills Greg, Jónsson Hannes, Quantum and thermal effects inH2dissociative adsorption: Evaluation of free energy barriers in multidimensional quantum systems, 10.1103/physrevlett.72.1124
- Anisimov Vladimir I, Aryasetiawan F, Lichtenstein A I, First-principles calculations of the electronic structure and spectra of strongly correlated systems: theLDA+Umethod, 10.1088/0953-8984/9/4/002
- Zhou Fei, Cococcioni Matteo, Kang Kisuk, Ceder Gerbrand, The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni, 10.1016/j.elecom.2004.09.007
- Cococcioni Matteo, de Gironcoli Stefano, Linear response approach to the calculation of the effective interaction parameters in theLDA+Umethod, 10.1103/physrevb.71.035105
- Wang Lei, Maxisch Thomas, Ceder Gerbrand, Oxidation energies of transition metal oxides within theGGA+Uframework, 10.1103/physrevb.73.195107
- Wang L., Maxisch T., Ceder G., A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials, 10.1021/cm0620943
- Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)], 10.1063/1.2204597
- Heyd Jochen, Scuseria Gustavo E., Ernzerhof Matthias, Hybrid functionals based on a screened Coulomb potential, 10.1063/1.1564060
- Heyd Jochen, Scuseria Gustavo E., Efficient hybrid density functional calculations in solids: Assessment of the Heyd–Scuseria–Ernzerhof screened Coulomb hybrid functional, 10.1063/1.1760074
- Chevrier V. L., Ong S. P., Armiento R., Chan M. K. Y., Ceder G., Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds, 10.1103/physrevb.82.075122
- Wang C. S., Pickett W. E., Density-Functional Theory of Excitation Spectra of Semiconductors: Application to Si, 10.1103/physrevlett.51.597
- Sham L. J., Schlüter M., Density-Functional Theory of the Energy Gap, 10.1103/physrevlett.51.1888
- Cohen Aron J., Mori-Sánchez Paula, Yang Weitao, Fractional charge perspective on the band gap in density-functional theory, 10.1103/physrevb.77.115123
- Chan M. K. Y., Ceder G., Efficient Band Gap Prediction for Solids, 10.1103/physrevlett.105.196403
- Hedin Lars, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, 10.1103/physrev.139.a796
- Aryasetiawan F, Gunnarsson O, TheGWmethod, 10.1088/0034-4885/61/3/002
- Runge Erich, Gross E. K. U., Density-Functional Theory for Time-Dependent Systems, 10.1103/physrevlett.52.997
- Tran Fabien, Blaha Peter, Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential, 10.1103/physrevlett.102.226401
- Kuisma M., Ojanen J., Enkovaara J., Rantala T. T., Kohn-Sham potential with discontinuity for band gap materials, 10.1103/physrevb.82.115106
- Gritsenko Oleg, van Leeuwen Robert, van Lenthe Erik, Baerends Evert Jan, Self-consistent approximation to the Kohn-Sham exchange potential, 10.1103/physreva.51.1944
- Maddox J (1998) Nature 335:201
- Schön J. Christian, Doll Klaus, Jansen Martin, Predicting solid compounds via global exploration of the energy landscape of solids on theab initiolevel without recourse to experimental information, 10.1002/pssb.200945246
- Woodley Scott M., Catlow Richard, Crystal structure prediction from first principles, 10.1038/nmat2321
- O’Keeffe M (2010) Phys Chem Chem Phys: PCCP 12: 8580. doi: 10.1039/C004039H
- Lany Stephan, Semiconductor thermochemistry in density functional calculations, 10.1103/physrevb.78.245207
- Jain Anubhav, Hautier Geoffroy, Moore Charles J., Ping Ong Shyue, Fischer Christopher C., Mueller Tim, Persson Kristin A., Ceder Gerbrand, A high-throughput infrastructure for density functional theory calculations, 10.1016/j.commatsci.2011.02.023
- Jain Anubhav, Hautier Geoffroy, Ong Shyue Ping, Moore Charles J., Fischer Christopher C., Persson Kristin A., Ceder Gerbrand, Formation enthalpies by mixing GGA and GGA+Ucalculations, 10.1103/physrevb.84.045115
- Hautier Geoffroy, Ong Shyue Ping, Jain Anubhav, Moore Charles J., Ceder Gerbrand, Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability, 10.1103/physrevb.85.155208
- Oganov Artem R., Valle Mario, How to quantify energy landscapes of solids, 10.1063/1.3079326
- Ducastelle F (1991) In: Order and phase stability in alloys, (Cohesion and Structure) , vol 3. North Holland, Amsterdam
- Ceder G., A derivation of the Ising model for the computation of phase diagrams, 10.1016/0927-0256(93)90005-8
- Sanati M., Wang L. G., Zunger Alex, Adaptive Crystal Structures: CuAu and NiPt, 10.1103/physrevlett.90.045502
- Blum Volker, Zunger Alex, Structural complexity in binary bcc ground states: The case of bcc Mo-Ta, 10.1103/physrevb.69.020103
- Hart GLW (2009) Phys Rev B 80(1):1
- Van der Ven Anton, First-Principles Evidence for Stage Ordering in Li[sub x]CoO[sub 2], 10.1149/1.1838610
- Wales David J., Doye Jonathan P. K., Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms, 10.1021/jp970984n
- Wales D. J., Global Optimization of Clusters, Crystals, and Biomolecules, 10.1126/science.285.5432.1368
- Bush T. S., Catlow C. R. A., Battle P. D., Evolutionary programming techniques for predicting inorganic crystal structures, 10.1039/jm9950501269
- Abraham N. L., Probert M. I. J., A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction, 10.1103/physrevb.73.224104
- Oganov Artem R., Glass Colin W., Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, 10.1063/1.2210932
- Trimarchi Giancarlo, Zunger Alex, Global space-group optimization problem: Finding the stablest crystal structure without constraints, 10.1103/physrevb.75.104113
- Oganov Artem R, Glass Colin W, Evolutionary crystal structure prediction as a tool in materials design, 10.1088/0953-8984/20/6/064210
- Zhang Xiuwen, Zunger Alex, Trimarchi Giancarlo, Structure prediction and targeted synthesis: A new NanN2 diazenide crystalline structure, 10.1063/1.3488440
- Oganov Artem R., Chen Jiuhua, Gatti Carlo, Ma Yanzhang, Ma Yanming, Glass Colin W., Liu Zhenxian, Yu Tony, Kurakevych Oleksandr O., Solozhenko Vladimir L., Ionic high-pressure form of elemental boron, 10.1038/nature07736
- Kolmogorov A. N., Shah S., Margine E. R., Bialon A. F., Hammerschmidt T., Drautz R., New Superconducting and Semiconducting Fe-B Compounds Predicted with anAb InitioEvolutionary Search, 10.1103/physrevlett.105.217003
- Ono S., Kikegawa T., Ohishi Y., High-pressure transition of CaCO3, 10.2138/am.2007.2649
- Liebold-Ribeiro Yvonne, Fischer Dieter, Jansen Martin, Experimental Substantiation of the “Energy Landscape Concept” for Solids: Synthesis of a New Modification of LiBr, 10.1002/anie.200800333
- Johnson David C., Solid-state chemistry: New order for lithium bromide, 10.1038/454174a
- Ceder G., Morgan D., Fischer C., Tibbetts K., Curtarolo S., Data-Mining-Driven Quantum Mechanics for the Prediction of Structure, 10.1557/mrs2006.224
- Curtarolo Stefano, Morgan Dane, Persson Kristin, Rodgers John, Ceder Gerbrand, Predicting Crystal Structures with Data Mining of Quantum Calculations, 10.1103/physrevlett.91.135503
- Fischer Christopher C., Tibbetts Kevin J., Morgan Dane, Ceder Gerbrand, Predicting crystal structure by merging data mining with quantum mechanics, 10.1038/nmat1691
- Hautier Geoffroy, Fischer Chris, Ehrlacher Virginie, Jain Anubhav, Ceder Gerbrand, Data Mined Ionic Substitutions for the Discovery of New Compounds, 10.1021/ic102031h
- Kolmogorov Aleksey N., Curtarolo Stefano, Theoretical study of metal borides stability, 10.1103/physrevb.74.224507
- Kolmogorov Aleksey N., Curtarolo Stefano, Prediction of different crystal structure phases in metal borides: A lithium monoboride analog toMgB2, 10.1103/physrevb.73.180501
- Levy O, Chepulskii RV, Hart GLW, Curtarolo S (2009) J Am Chem Soc 29: 163
- Hautier Geoffroy, Fischer Christopher C., Jain Anubhav, Mueller Tim, Ceder Gerbrand, Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory, 10.1021/cm100795d
- http://ceder.mit.edu/ternaryoxides . Accessed 15 March 2012
- Fix Thomas, Sahonta S.-Lata, Garcia Vincent, MacManus-Driscoll Judith L., Blamire Mark G., Structural and Dielectric Properties of SnTiO3, a Putative Ferroelectric, 10.1021/cg200333q
- Uratani Yoshitaka, Shishidou Tatsuya, Oguchi Tamio, First-Principles Study of Lead-Free Piezoelectric SnTiO3, 10.1143/jjap.47.7735
- Matar S.F., Baraille I., Subramanian M.A., First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material, 10.1016/j.chemphys.2008.11.002
- http://han.ess.sunysb.edu/~USPEX/ . Accessed 15 March 2012
- http://www.maise-guide.org/ . Accessed 15 March 2012
- http://www.materialsproject.org/apps/structure_predictor . Accessed 15 March 2012
- Wadia Cyrus, Alivisatos A. Paul, Kammen Daniel M., Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment, 10.1021/es8019534
- Wadia Cyrus, Albertus Paul, Srinivasan Venkat, Resource constraints on the battery energy storage potential for grid and transportation applications, 10.1016/j.jpowsour.2010.08.056
- Jaramillo Paulina, Samaras Constantine, Wakeley Heather, Meisterling Kyle, Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways, 10.1016/j.enpol.2009.03.001
- ISuppli IHS (2011) IHS iSuppli Rechargeable Battery Special Report. Tech. rep.
- Aydinol M. K., Kohan A. F., Ceder G., Cho K., Joannopoulos J., Ab initiostudy of lithium intercalation in metal oxides and metal dichalcogenides, 10.1103/physrevb.56.1354
- Maxisch Thomas, Zhou Fei, Ceder Gerbrand, Ab initiostudy of the migration of small polarons in olivineLixFePO4and their association with lithium ions and vacancies, 10.1103/physrevb.73.104301
- Morgan D., Van der Ven A., Ceder G., Li Conductivity in Li[sub x]MPO[sub 4] (M = Mn, Fe, Co, Ni) Olivine Materials, 10.1149/1.1633511
- Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 4:1
- Ceder G, Hautier G, Jain A, Ong S (2011) MRS Bull 36(03):185
- Meng Ying Shirley, Arroyo-de Dompablo M. Elena, First principles computational materials design for energy storage materials in lithium ion batteries, 10.1039/b901825e
- Ceder Gerbrand, Opportunities and challenges for first-principles materials design and applications to Li battery materials, 10.1557/mrs2010.681
- Ceder G., Chiang Y.-M., Sadoway D. R., Aydinol M. K., Jang Y.-I., Huang B., 10.1038/33647
- Kang K., Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries, 10.1126/science.1122152
- Chen H, Hautier G, Jain A, Moore C, Kang B, Doe R, Wu L, Zhu Y, Tang Y, Ceder G (2012, submitted)
- Legagneur V, LiMBO3 (M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties, 10.1016/s0167-2738(00)00813-4
- Kim Jae Chul, Moore Charles J., Kang Byoungwoo, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Synthesis and Electrochemical Properties of Monoclinic LiMnBO[sub 3] as a Li Intercalation Material, 10.1149/1.3536532
- Ceder G, Kim JC, Kang B, Moore CJ, Hautier G (2011) International Patent Application PCT/US2011/035432
- Ceder G, Jain A, Hautier G, Kim JC, Kang BW (2010) US Patent Application 12/857262
- Kuang Quan, Xu Jiantie, Zhao Yanming, Chen Xiaolong, Chen Liquan, Layered monodiphosphate Li9V3(P2O7)3(PO4)2: A novel cathode material for lithium-ion batteries, 10.1016/j.electacta.2010.11.051
- Kuang Q, Lin Z, Zhao Y, Chen X, Chen L (2011) J Mater Chem 3:2
- Jain Anubhav, Hautier Geoffroy, Moore Charles, Kang Byoungwoo, Lee Jinhyuk, Chen Hailong, Twu Nancy, Ceder Gerbrand, A Computational Investigation of Li9M3(P2O7)3(PO4)2 (M = V, Mo) as Cathodes for Li Ion Batteries, 10.1149/2.080205jes
- Hautier Geoffroy, Jain Anubhav, Chen Hailong, Moore Charles, Ong Shyue Ping, Ceder Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations, 10.1039/c1jm12216a
- Ceder G, Chen H, Doe RE, Hautier G, Jain A, Kang B (2011) International patent application pct/us2011/025684
- Crabtree G.W., Dresselhaus M.S., The Hydrogen Fuel Alternative, 10.1557/mrs2008.84
- Wolverton C, Siegel Donald J, Akbarzadeh A R, Ozoliņš V, Discovery of novel hydrogen storage materials: an atomic scale computational approach, 10.1088/0953-8984/20/6/064228
- Ozolins V, Akbarzadeh A R, Gunaydin H, Michel K, Wolverton C, Majzoub E H, First-principles computational discovery of materials for hydrogen storage, 10.1088/1742-6596/180/1/012076
- Alapati Sudhakar V., Johnson J. Karl, Sholl David S., Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations, 10.1021/jp060482m
- Lu Jun, Fang Zhigang Zak, Choi Young Joon, Sohn Hong Yong, Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications, 10.1021/jp0733724
- Luo Weifang, (LiNH2–MgH2): a viable hydrogen storage system, 10.1016/j.jallcom.2004.03.119
- Osborn William, Markmaitree Tippawan, Shaw Leon L., Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio, 10.1016/j.jpowsour.2007.07.037
- Liu Y, Zhong K, Gao M, Wang J, Pan H, Wang Q (2008) System 2(6):3521
- Lu Jun, Choi Young Joon, Fang Zhigang Zak, Sohn Hong Yong, Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2–MgH2 (1:1) mixture, 10.1016/j.jpowsour.2009.10.032
- Tritt Terry M., Böttner Harald, Chen Lidong, Thermoelectrics: Direct Solar Thermal Energy Conversion, 10.1557/mrs2008.73
- Tritt Terry M., Subramanian M. A., Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View, 10.1557/mrs2006.44
- Chen G., Dresselhaus M. S., Dresselhaus G., Fleurial J.-P., Caillat T., Recent developments in thermoelectric materials, 10.1179/095066003225010182
- Madsen Georg K. H., Automated Search for New Thermoelectric Materials: The Case of LiZnSb, 10.1021/ja062526a
- Bergerhoff G., Hundt R., Sievers R., Brown I. D., The inorganic crystal structure data base, 10.1021/ci00038a003
- Inorganic Crystal Structure Database. http://www.fiz-karlsruhe.de/icsd.html . Accessed 15 March 2012
- Toberer Eric S., May Andrew F., Scanlon Cidney J., Snyder G. Jeffery, Thermoelectric properties of p-type LiZnSb: Assessment of ab initio calculations, 10.1063/1.3091267
- Van de Walle Chris G., Neugebauer Jörg, First-principles calculations for defects and impurities: Applications to III-nitrides, 10.1063/1.1682673
- Lany Stephan, Zunger Alex, Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs, 10.1103/physrevb.78.235104
- Madsen GKH, Bentien A, Johnsen S, Iversen BB (2005) In: Proceedings of the 24th International Conference on Thermoelectrics, vol. 8328. IEEE, New York
- Petrovic C., Lee Y., Vogt T., Lazarov N., Bud’ko S., Canfield P., Kondo insulator description of spin state transition in FeSb2, 10.1103/physrevb.72.045103
- Bentien A., Madsen G. K. H., Johnsen S., Iversen B. B., Experimental and theoretical investigations of strongly correlatedFeSb2−xSnx, 10.1103/physrevb.74.205105
- Bentien A., Johnsen S., Madsen G. K. H., Iversen B. B., Steglich F., Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2, 10.1209/0295-5075/80/17008
- Comstock R. L., 10.1023/a:1019642215245
- Spaldin Nicola A., Magnetic Materials : Fundamentals and Applications, ISBN:9780511781599, 10.1017/cbo9780511781599
- Dronskowski Richard, Korczak Karol, Lueken Heiko, Jung Walter, Chemically Tuning between Ferromagnetism and Antiferromagnetism by Combining Theory and Synthesis in Iron/Manganese Rhodium Borides, 10.1002/1521-3773(20020715)41:14<2528::aid-anie2528>3.0.co;2-6
- von Appen J�rg, Dronskowski Richard, Predicting New Ferromagnetic Nitrides from Electronic Structure Theory: IrFe3N and RhFe3N, 10.1002/anie.200462247
- Houben Andreas, Müller Paul, von Appen Jörg, Lueken Heiko, Niewa Rainer, Dronskowski Richard, Synthesis, Crystal Structure, and Magnetic Properties of the Semihard Itinerant Ferromagnet RhFe3N, 10.1002/anie.200502579
- Houben Andreas, Šepelák Vladimir, Becker Klaus-Dieter, Dronskowski Richard, Itinerant Ferromagnet RhFe3N: Advanced Synthesis and57Fe Mössbauer Analysis, 10.1021/cm803004v
- Burkert Till, Nordström Lars, Eriksson Olle, Heinonen Olle, Giant Magnetic Anisotropy in Tetragonal FeCo Alloys, 10.1103/physrevlett.93.027203
- Winkelmann Aimo, Przybylski Marek, Luo Feng, Shi Yisheng, Barthel Jochen, Perpendicular Magnetic Anisotropy Induced by Tetragonal Distortion of FeCo Alloy Films Grown on Pd(001), 10.1103/physrevlett.96.257205
- Andersson Gabriella, Burkert Till, Warnicke Peter, Björck Matts, Sanyal Biplab, Chacon Cyril, Zlotea Claudia, Nordström Lars, Nordblad Per, Eriksson Olle, Perpendicular Magnetocrystalline Anisotropy in Tetragonally Distorted Fe-Co Alloys, 10.1103/physrevlett.96.037205
- Neise C., Schönecker S., Richter M., Koepernik K., Eschrig H., The effect of chemical disorder on the magnetic anisotropy of strained Fe-Co films, 10.1002/pssb.201147100
- Julliere M., Tunneling between ferromagnetic films, 10.1016/0375-9601(75)90174-7
- Mathon J., Umerski A., Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction, 10.1103/physrevb.63.220403
- Butler W. H., Zhang X.-G., Schulthess T. C., MacLaren J. M., Spin-dependent tunneling conductance ofFe|MgO|Fesandwiches, 10.1103/physrevb.63.054416
- Bowen M., Cros V., Petroff F., Fert A., Martı́nez Boubeta C., Costa-Krämer J. L., Anguita J. V., Cebollada A., Briones F., de Teresa J. M., Morellón L., Ibarra M. R., Güell F., Peiró F., Cornet A., Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001), 10.1063/1.1404125
- Yuasa Shinji, Nagahama Taro, Fukushima Akio, Suzuki Yoshishige, Ando Koji, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, 10.1038/nmat1257
- Parkin Stuart S. P., Kaiser Christian, Panchula Alex, Rice Philip M., Hughes Brian, Samant Mahesh, Yang See-Hun, Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers, 10.1038/nmat1256
- Spaldin N. A., MATERIALS SCIENCE: The Renaissance of Magnetoelectric Multiferroics, 10.1126/science.1113357
- Eerenstein W., Mathur N. D., Scott J. F., Multiferroic and magnetoelectric materials, 10.1038/nature05023
- Hill Nicola A., Why Are There so Few Magnetic Ferroelectrics?, 10.1021/jp000114x
- Ederer Claude, Spaldin Nicola A., Recent progress in first-principles studies of magnetoelectric multiferroics, 10.1016/j.cossms.2006.03.001
- Hill Nicola A., Rabe Karin M., First-principles investigation of ferromagnetism and ferroelectricity in bismuth manganite, 10.1103/physrevb.59.8759
- Moreira dos Santos A., Parashar S., Raju A.R., Zhao Y.S., Cheetham A.K., Rao C.N.R., Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3, 10.1016/s0038-1098(02)00087-x
- Kimura T., Kawamoto S., Yamada I., Azuma M., Takano M., Tokura Y., Magnetocapacitance effect in multiferroicBiMnO3, 10.1103/physrevb.67.180401
- Cheong Sang-Wook, Mostovoy Maxim, Multiferroics: a magnetic twist for ferroelectricity, 10.1038/nmat1804
- Rushchanskii K. Z., Kamba S., Goian V., Vaněk P., Savinov M., Prokleška J., Nuzhnyy D., Knížek K., Laufek F., Eckel S., Lamoreaux S. K., Sushkov A. O., Ležaić M., Spaldin N. A., A multiferroic material to search for the permanent electric dipole moment of the electron, 10.1038/nmat2799
- Mintmire J. W., Dunlap B. I., White C. T., Are fullerene tubules metallic?, 10.1103/physrevlett.68.631
- Saito R., Fujita M., Dresselhaus G., Dresselhaus M. S, Electronic structure of chiral graphene tubules, 10.1063/1.107080
- Wilder Jeroen W. G., Venema Liesbeth C., Rinzler Andrew G., Smalley Richard E., Dekker Cees, 10.1038/34139
- Rubio Angel, Corkill Jennifer L., Cohen Marvin L., Theory of graphitic boron nitride nanotubes, 10.1103/physrevb.49.5081
- Blase X, Rubio A, Louie S. G, Cohen M. L, Stability and Band Gap Constancy of Boron Nitride Nanotubes, 10.1209/0295-5075/28/5/007
- Chopra N. G., Luyken R. J., Cherrey K., Crespi V. H., Cohen M. L., Louie S. G., Zettl A., Boron Nitride Nanotubes, 10.1126/science.269.5226.966
- Fuentes G. G., Borowiak-Palen Ewa, Pichler T., Liu X., Graff A., Behr G., Kalenczuk R. J., Knupfer M., Fink J., Electronic structure of multiwall boron nitride nanotubes, 10.1103/physrevb.67.035429
- Czerw R., Webster S., Carroll D. L., Vieira S. M. C., Birkett P. R., Rego C. A., Roth S., Tunneling microscopy and spectroscopy of multiwalled boron nitride nanotubes, 10.1063/1.1601308
- Arenal R., Stéphan O., Kociak M., Taverna D., Loiseau A., Colliex C., Electron Energy Loss Spectroscopy Measurement of the Optical Gaps on Individual Boron Nitride Single-Walled and Multiwalled Nanotubes, 10.1103/physrevlett.95.127601
- Khoo K. H., Mazzoni M. S. C., Louie Steven G., Tuning the electronic properties of boron nitride nanotubes with transverse electric fields: A giant dc Stark effect, 10.1103/physrevb.69.201401
- Ishigami Masa, Sau Jay Deep, Aloni Shaul, Cohen Marvin L., Zettl A., Observation of the Giant Stark Effect in Boron-Nitride Nanotubes, 10.1103/physrevlett.94.056804
- Greeley Jeff, Nørskov Jens K., Mavrikakis Manos, ELECTRONICSTRUCTURE ANDCATALYSIS ONMETALSURFACES, 10.1146/annurev.physchem.53.100301.131630
- Norskov J. K., Abild-Pedersen F., Studt F., Bligaard T., Density functional theory in surface chemistry and catalysis, 10.1073/pnas.1006652108
- Deutschmann O, Knözinger H, Kochloefl K, Turek T (2011) In: Ullmann’s Encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
- Rootsaert W. J. M., Sachtler W. M. H., Interaction of Formic Acid Vapour with Tungsten, 10.1524/zpch.1960.26.1_2.016
- Studt F., Abild-Pedersen F., Bligaard T., Sorensen R. Z., Christensen C. H., Norskov J. K., Identification of Non-Precious Metal Alloy Catalysts for Selective Hydrogenation of Acetylene, 10.1126/science.1156660
- Besenbacher F., Design of a Surface Alloy Catalyst for Steam Reforming, 10.1126/science.279.5358.1913
- Kratzer P., Hammer B., No/rskov J. K., A theoretical study of CH4 dissociation on pure and gold‐alloyed Ni(111) surfaces, 10.1063/1.472399
- Nilekar Anand Udaykumar, Alayoglu Selim, Eichhorn Bryan, Mavrikakis Manos, Preferential CO Oxidation in Hydrogen: Reactivity of Core−Shell Nanoparticles, 10.1021/ja101108w
- Chaudhuri Santanu, Muckerman James T, First-Principles Study of Ti-Catalyzed Hydrogen Chemisorption on an Al Surface: A Critical First Step for Reversible Hydrogen Storage in NaAlH4, 10.1021/jp050558z
- Chopra Irinder S., Chaudhuri Santanu, Veyan Jean François, Chabal Yves J., Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen, 10.1038/nmat3123
- Greeley Jeff, Jaramillo Thomas F., Bonde Jacob, Chorkendorff Ib, Nørskov Jens K., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution, 10.1038/nmat1752
- Greeley Jeff, Nørskov Jens K., Large-scale, density functional theory-based screening of alloys for hydrogen evolution, 10.1016/j.susc.2007.01.037
- Cohen Marvin L., Predicting properties and new materials, 10.1016/0038-1098(94)90857-5
- Zunger Alex, Theoretical predictions of electronic materials and their properties, 10.1016/s1359-0286(98)80062-4
- Ceder G., COMPUTATIONAL MATERIALS SCIENCE: Predicting Properties from Scratch, 10.1126/science.280.5366.1099
- Nagamatsu Jun, Nakagawa Norimasa, Muranaka Takahiro, Zenitani Yuji, Akimitsu Jun, Superconductivity at 39 K in magnesium diboride, 10.1038/35065039
- Greeley Jeff, Nørskov Jens K., Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction, 10.1021/jp808945y
- Hautier Geoffroy, Jain Anubhav, Ong Shyue Ping, Kang Byoungwoo, Moore Charles, Doe Robert, Ceder Gerbrand, Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughputab InitioCalculations, 10.1021/cm200949v
- Munter T R, Landis D D, Abild-Pedersen F, Jones G, Wang S, Bligaard T, Virtual materials design using databases of calculated materials properties, 10.1088/1749-4699/2/1/015006
- Setyawan Wahyu, Curtarolo Stefano, High-throughput electronic band structure calculations: Challenges and tools, 10.1016/j.commatsci.2010.05.010
- Hummelshøj J. S., Landis D. D., Voss J., Jiang T., Tekin A., Bork N., Dułak M., Mortensen J. J., Adamska L., Andersin J., Baran J. D., Barmparis G. D., Bell F., Bezanilla A. L., Bjork J., Björketun M. E., Bleken F., Buchter F., Bürkle M., Burton P. D., Buus B. B., Calborean A., Calle-Vallejo F., Casolo S., Chandler B. D., Chi D. H., Czekaj I, Datta S., Datye A., DeLaRiva A., Despoja V, Dobrin S., Engelund M., Ferrighi L., Frondelius P., Fu Q., Fuentes A., Fürst J., García-Fuente A., Gavnholt J., Goeke R., Gudmundsdottir S., Hammond K. D., Hansen H. A., Hibbitts D., Hobi E., Howalt J. G., Hruby S. L., Huth A., Isaeva L., Jelic J., Jensen I. J. T., Kacprzak K. A., Kelkkanen A., Kelsey D., Kesanakurthi D. S., Kleis J., Klüpfel P. J., Konstantinov I, Korytar R., Koskinen P., Krishna C., Kunkes E., Larsen A. H., Lastra J. M. G., Lin H., Lopez-Acevedo O., Mantega M., Martínez J. I., Mesa I. N., Mowbray D. J., Mýrdal J. S. G., Natanzon Y., Nistor A., Olsen T., Park H., Pedroza L. S., Petzold V, Plaisance C., Rasmussen J. A., Ren H., Rizzi M., Ronco A. S., Rostgaard C., Saadi S., Salguero L. A., Santos E. J. G., Schoenhalz A. L., Shen J., Smedemand M., Stausholm-Møller O. J., Stibius M., Strange M., Su H. B., Temel B., Toftelund A., Tripkovic V, Vanin M., Viswanathan V, Vojvodic A., Wang S., Wellendorff J., Thygesen K. S., Rossmeisl J., Bligaard T., Jacobsen K. W., Nørskov J. K., Vegge T., Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project, 10.1063/1.3148892
- Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495
- Mueller Tim, Hautier Geoffroy, Jain Anubhav, Ceder Gerbrand, Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing, 10.1021/cm200753g
- Olivares-Amaya Roberto, Amador-Bedolla Carlos, Hachmann Johannes, Atahan-Evrenk Sule, Sánchez-Carrera Roel S., Vogt Leslie, Aspuru-Guzik Alán, Accelerated computational discovery of high-performance materials for organic photovoltaics by means of cheminformatics, 10.1039/c1ee02056k
- Wang S, Wang Z, Setyawan W, Mingo N, Curtarolo S (2011) Phys Rev X 1(2):1
- Ortiz C., Eriksson O., Klintenberg M., Data mining and accelerated electronic structure theory as a tool in the search for new functional materials, 10.1016/j.commatsci.2008.07.016
- Setyawan Wahyu, Gaume Romain M., Lam Stephanie, Feigelson Robert S., Curtarolo Stefano, High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials, 10.1021/co200012w
- Castelli IE, Olsen T, Datta S, Landis DD, Dahl Sr, Thygesen KS, Jacobsen KW (2012) Energy Environ Sci 5: 5814. doi: 10.1039/C1EE02717D
- http://www.materialsproject.org . Accessed 15 March 2012
- http://www.aflowlib.org . Accessed 15 March 2012
- http://gurka.fysik.uu.se/ESP/ . Accessed 15 March 2012
Bibliographic reference |
Hautier, Geoffroy ; Anubhav Jain ; Shyue Ping Ong. From the computer to the laboratory: materials discovery and design using first-principles calculations. In: Journal of Materials Science, Vol. 47, no. 21, p. 7317-7340 (2012) |
Permanent URL |
http://hdl.handle.net/2078.1/133021 |