User menu

Multiscale mesh generation on the sphere

Bibliographic reference Lambrechts, Jonathan ; Comblen, Richard ; Legat, Vincent ; Geuzaine, Christophe ; Remacle, Jean-François. Multiscale mesh generation on the sphere. In: Ocean Dynamics, Vol. 58, no.5-6, p. 461-473 (2008)
Permanent URL
  1. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY (1998) An optimal algorithm for approximate nearest neighbor searching. J ACM 45:891–923. mount/ANN/
  2. Beall MW, Shephard MS (1997) A general topology-based mesh data structure. Int J Numer Methods Eng 40(9):1573–1596
  3. Danilov S, Kivman G, Schröter J (2005) Evaluation of an eddy-permitting finite-element ocean model in the north atlantic. Ocean Model 10:35–49
  4. Dwyer RA (1986) A simple divide-and-conquer algorithm for computing delaunay triangulations in o(n log log n) expected time. In: Proceedings of the second annual symposium on computational geometry, Yorktown Heights, 2–4 June 1986, pp 276–284
  5. George P-L, Frey P (2000) Mesh generation. Hermes, Lyon
  6. Gorman G, Piggott M, Pain C (2007) Shoreline approximation for unstructured mesh generation. Comput Geosci 33:666–677
  7. Gorman G, Piggott M, Pain C, de Oliveira R, Umpleby A, Goddard A (2006) Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity. Ocean Model 12:436–452
  8. Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier A-M, Webb D (2000) Developments in ocean climate modeling. Ocean Model 2:123–192
  9. Hagen SC, Westerink JJ, Kolar RL, Horstmann O (2001) Two-dimensional, unstructured mesh generation for tidal models. Int J Numer Methods Fluids 35:669–686 (printed version in Richard’s office)
  10. Haimes R (2000) CAPRI: computational analysis programming interface (a solid modeling based infra-structure for engineering analysis and design). Tech. rep., Massachusetts Institute of Technology
  11. Henry RF, Walters RA (1993) Geometrically based, automatic generator for irregular triangular networks. Commun Numer Methods Eng 9:555–566
  12. Lambrechts J, Hanert E, Deleersnijder E, Bernard P-E, Legat V, Wolanski J-FRE (2008) A high-resolution model of the whole great barrier reef hydrodynamics. Estuar Coast Shelf Sci 79(1):143–151. doi: 10.1016/j.ecss.2008.03.016
  13. Le Provost C., Genco M. L., Lyard F., Vincent P., Canceil P., Spectroscopy of the world ocean tides from a finite element hydrodynamic model, 10.1029/94jc01381
  14. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46
  15. Legrand S, Legat V, Deleersnijder E (2000) Delaunay mesh generation for an unstructured-grid ocean circulation model. Ocean Model 2:17–28
  16. Lietaer O, Fichefet T, Legat V (2008) The effects of resolving the Canadian Arctic Archipelago in a finite element sea ice model. Ocean Model 24:140–152. doi: 10.1016/j.ocemod.2008.06.002
  17. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415
  18. National Geographic Data Center (2006) ETOPO1 global relief model. .
  19. Piggott M, Gorman G, Pain C (2007) Multi-scale ocean modelling with adaptive unstructured grids. CLIVAR Exch Ocean Model Dev Assess 12(42):21–23 ( )
  20. Rebay S., Efficient Unstructured Mesh Generation by Means of Delaunay Triangulation and Bowyer-Watson Algorithm, 10.1006/jcph.1993.1097
  21. Weatherill NP (1990) The integrity of geometrical boundaries in the two-dimensional delaunay triangulation. Commun Appl Numer Methods 6(2):101–109
  22. Wessel P, Smith WHF (1996) A global self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res 101(B4):8741–8743.
  23. White L, Deleersnijder E, Legat V (2008) A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven elongated basin. Ocean Model 22:26–47