User menu

Computing the lowest equilibrium pose of a cable-suspended rigid body

Bibliographic reference Collard, Jean-François ; Cardou, Philippe. Computing the lowest equilibrium pose of a cable-suspended rigid body. In: Optimization and Engineering : international multidisciplinary journal to promote optimization theory and applications in engineering sciences, Vol. 14, no. 3, p. 457-476 (Sept. 2013)
Permanent URL
  1. Angeles Jorge, Fundamentals of Robotic Mechanical Systems, ISBN:9780387294124, 10.1007/978-0-387-34580-2
  2. Balakrishnan V., Boyd S., Balemi S., Branch and bound algorithm for computing the minimum stability degree of parameter-dependent linear systems, 10.1002/rnc.4590010404
  3. Boyd Stephen, Vandenberghe Lieven, Convex Optimization, ISBN:9780511804441, 10.1017/cbo9780511804441
  4. Carricato M., Merlet J.-P., Geometrico-Static Analysis of Under-Constrained Cable-Driven Parallel Robots, Advances in Robot Kinematics: Motion in Man and Machine (2010) ISBN:9789048192618 p.309-319, 10.1007/978-90-481-9262-5_33
  5. Carricato M, Merlet JP (2011) Direct geometrico-static problem of under-constrained cable-driven parallel robots with three cables. In: IEEE international conference on robotics and automation, Shanghai, China, pp 3011–3017
  6. Fink J, Michael N, Kim S, Kumar V (2009) Planning and control for cooperative manipulation and transportation with aerial robots. In: International symposium on robotics research.
  7. Ghasemi Ali, Eghtesad Mohammad, Farid Mehrdad, Neural Network Solution for Forward Kinematics Problem of Cable Robots, 10.1007/s10846-010-9421-z
  8. Grant Michael C., Boyd Stephen P., Graph Implementations for Nonsmooth Convex Programs, Lecture Notes in Control and Information Sciences ISBN:9781848001541 p.95-110, 10.1007/978-1-84800-155-8_7
  9. Grant M, Boyd S (2010) CVX: Matlab software for disciplined convex programming, version 1.21.
  10. Husty M.L., An algorithm for solving the direct kinematics of general Stewart-Gough platforms, 10.1016/0094-114x(95)00091-c
  11. Jiang Q, Kumar V (2010) The direct kinematics of objects suspended from cables. In: ASME international design engineering technical conferences, Montreal, QC, Canada.
  12. Kawamura S, Choe W, Tanaka S, Pandian SR (1995) Development of an ultrahigh speed robot falcon using wire driven system. In: IEEE international conference on robotics and automation, pp 215–220
  13. Land A. H., Doig A. G., An Automatic Method of Solving Discrete Programming Problems, 10.2307/1910129
  14. Luo Zhi-quan, Ma Wing-kin, So Anthony, Ye Yinyu, Zhang Shuzhong, Semidefinite Relaxation of Quadratic Optimization Problems, 10.1109/msp.2010.936019
  15. Michael N, Kim S, Fink J, Kumar V (2009) Kinematics and statics of cooperative multi-robot aerial manipulation with cables. In: ASME international design engineering technical conferences, San Diego, CA
  16. Perreault Simon, Gosselin Clément M., Cable-Driven Parallel Mechanisms: Application to a Locomotion Interface, 10.1115/1.2965607
  17. Shectman J. Parker, Sahinidis Nikolaos V., 10.1023/a:1008241411395
  18. Sherali Hanif D., Tuncbilek Cihan H., A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique, 10.1007/bf00121304
  19. Vandenberghe Lieven, Boyd Stephen, Semidefinite Programming, 10.1137/1038003
  20. Wampler Charles W., Forward displacement analysis of general six-in-parallel sps (Stewart) platform manipulators using soma coordinates, 10.1016/0094-114x(95)00068-a