Linster, Carole L
[UCL]
Van Schaftingen, Emile
[UCL]
Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.
- Padayatty Sebastian J., Katz Arie, Wang Yaohui, Eck Peter, Kwon Oran, Lee Je-Hyuk, Chen Shenglin, Corpe Christopher, Dutta Anand, Dutta Sudhir K, Levine Mark, Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention, 10.1080/07315724.2003.10719272
- Buettner G.R., The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate, 10.1006/abbi.1993.1074
- Buettner Garry R., Jurkiewicz Beth Anne, Catalytic Metals, Ascorbate and Free Radicals: Combinations to Avoid, 10.2307/3579271
- Prigge S. T., Mains R. E., Eipper B. A., Amzel* ** L. M., New insights into copper monooxygenases and peptide amidation: structure, mechanism and function : , 10.1007/pl00000763
- Englard S, Seifter S, The Biochemical Functions of Ascorbic Acid, 10.1146/annurev.nu.06.070186.002053
- Hirota Kiichi, Semenza Gregg L., Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases, 10.1016/j.bbrc.2005.08.193
- Wilson John X., REGULATION OF VITAMIN C TRANSPORT, 10.1146/annurev.nutr.25.050304.092647
- Takanaga Hitomi, Mackenzie Bryan, Hediger Matthias A., Sodium-dependent ascorbic acid transporter family SLC23, 10.1007/s00424-003-1104-1
- Liang Wei-Jun, Johnson Daniel, Jarvis Simon M., Vitamin C transport systems of mammalian cells, 10.1080/09687680110033774
- Sotiriou Sotiria, Gispert Suzana, Cheng Jun, Wang Yaohui, Chen Amy, Hoogstraten-Miller Shelley, Miller Georgina F., Kwon Oran, Levine Mark, Guttentag Susan H., Nussbaum Robert L., Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival, 10.1038/0502-514
- Moreau R., Dabrowski K., Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus): An agnathan fish with gulonolactone oxidase activity, 10.1073/pnas.95.17.10279
- Moreau, Free Radic Biol Med, 25, 989 (1998)
- BIRNEY ELMER C., JENNESS ROBERT, AYAZ KATHLEEN M., Inability of bats to synthesise L-ascorbic acid, 10.1038/260626a0
- Chatterjee I. B., Evolution and the Biosynthesis of Ascorbic Acid, 10.1126/science.182.4118.1271
- Smirnoff Nicholas, Conklin Patricia L, Loewus Frank A, BIOSYNTHESIS OFASCORBICACID INPLANTS: A Renaissance, 10.1146/annurev.arplant.52.1.437
- Smirnoff Nicholas, l-Ascorbic acid biosynthesis, Vitamins & Hormones (2001) ISBN:9780127098616 p.241-266, 10.1016/s0083-6729(01)61008-2
- Longenecker, J Biol Chem, 135, 497 (1940)
- Hollmann Siegfried, Touster Oscar, Alterations in tissue levels of uridine diphosphate glucose dehydrogenase, uridine diphosphate glucuronic acid pyrophosphatase and glucuronyl transferase induced by substances influencing the production of ascorbic acid, 10.1016/0006-3002(62)90048-3
- Horio, J Nutr, 112, 416 (1982)
- Burns, J Biol Chem, 207, 679 (1954)
- Burns, J Biol Chem, 227, 785 (1957)
- Evans Carole, Conney A.H., Trousof Natalie, Burns J.J., Metabolism of D-galactose to D-glucuronic acid, L-gulonic acid and L-ascorbic acid in normal and barbital-treated rats, 10.1016/0006-3002(60)90362-0
- Burns, J Biol Chem, 223, 897 (1956)
- HORIO Fumihiko, KIMURA Mayumi, YOSHIDA Akira, Effect of several xenobiotics on the activities of enzymes affecting ascorbic acid synthesis in rats., 10.3177/jnsv.29.233
- Horio, J Nutr, 123, 2075 (1993)
- Iyanagi, J Biol Chem, 264, 21302 (1989)
- Iyanagi, J Biol Chem, 266, 24048 (1991)
- Linster Carole L., Van Schaftingen Emile, Rapid Stimulation of Free Glucuronate Formation by Non-glucuronidable Xenobiotics in Isolated Rat Hepatocytes, 10.1074/jbc.m306593200
- Ginsburg V., Weissbach A., Maxwell E.S., Formation of glucuronic acid from uridinediphosphate glucuronic acid, 10.1016/0006-3002(58)90538-9
- PUHAKAINEN Eino, HANNINEN Osmo, Pyrophosphatase and Glucuronosyltransferase in Microsomal UDPglucuronic-Acid Metabolism in the Rat Liver, 10.1111/j.1432-1033.1976.tb10007.x
- Pogell, J Biol Chem, 236, 293 (1961)
- Linster Carole L., Schaftingen Emile, Glucuronate, the precursor of vitamin C, is directly formed from UDP-glucuronate in liver, 10.1111/j.1742-4658.2006.05172.x
- Bossuyt X, Blanckaert N, Mechanism of stimulation of microsomal UDP-glucuronosyltransferase by UDP-N-acetylglucosamine, 10.1042/bj3050321
- Evans W. H., Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface, 10.1038/250391a0
- Touster O., ISOLATION OF RAT LIVER PLASMA MEMBRANES: Use of Nucleotide Pyrophosphatase and Phosphodiesterase I as Marker Enzymes, 10.1083/jcb.47.3.604
- Hochman, J Biol Chem, 259, 5521 (1984)
- MANO YOSHITAKE, SUZUKI KANTARO, YAMADA KAZUO, SHIMAZONO NORIO, Enzymic Studies on TPN L-Hexonate Dehydrogenase from Rat Liver, 10.1093/oxfordjournals.jbchem.a127352
- Jez Joseph M., Penning Trevor M., The aldo-keto reductase (AKR) superfamily: an update, 10.1016/s0009-2797(00)00295-7
- Bohren, J Biol Chem, 264, 9547 (1989)
- Griffin Brenda W., Functional and structural relationships among aldose reductase, l-hexonate dehydrogenase (aldehyde reductase), and recently identified homologous proteins, 10.1016/0141-0229(92)90107-y
- Srivastava Satish K., Ansari Naseem H., Hair Gregory A., Das Ballabh, Aldose and aldehyde reductases in human tissues, 10.1016/0304-4165(84)90399-4
- Petrash J.Mark, Srivastava Satish K., Purification and properties of human liver aldehyde reductases, 10.1016/0167-4838(82)90402-2
- Bhatnagar Aruni, Liu Siqi, Das Ballabh, Ansari Naseem H., Srivastava Satish K., Inhibition kinetics of human kidney aldose and aldehyde reductases by aldose reductase inhibitors, 10.1016/0006-2952(90)90292-s
- Collard François, Collet Jean-François, Gerin Isabelle, Veiga-da-Cunha Maria, Van Schaftingen Emile, Identification of the cDNA encoding human 6-phosphogluconolactonase, the enzyme catalyzing the second step of the pentose phosphate pathway, 10.1016/s0014-5793(99)01247-8
- Winkelman, J Biol Chem, 233, 794 (1958)
- Bublitz Clark, Lehninger Albert L., The role of aldonolactonase in the conversion of L-gulonate to L-ascorbate, 10.1016/0006-3002(61)90289-x
- Kondo Y., Inai Y., Sato Y., Handa S., Kubo S., Shimokado K., Goto S., Nishikimi M., Maruyama N., Ishigami A., Senescence marker protein 30 functions as gluconolactonase in L-ascorbic acid biosynthesis, and its knockout mice are prone to scurvy, 10.1073/pnas.0511225103
- Kanagasundaram Varuni, Scopes Robert, Isolation and characterization of the gene encoding gluconolactonase from Zymomonas mobilis, 10.1016/0167-4781(92)90120-o
- Yamaguchi, Int J Mol Med, 15, 371 (2005)
- Fujita Toshiko, Uchida Kazumi, Maruyama Naoki, Purification of senescence marker protein-30 (SMP30) and tis androgen-independent decrease with age in the rat liver, 10.1016/0304-4165(92)90108-7
- Mori Takanori, Ishigami Akihito, Seyama Kuniaki, Onai Reiko, Kubo Sachiho, Shimizu Kazue, Maruyama Naoki, Fukuchi Yoshinosuke, Senescence marker protein-30 knockout mouse as a novel murine model of senile lung, 10.1111/j.1440-1827.2003.01603.x
- STIRPE F, COMPORTI M, REGULATION OF ASCORBIC ACID AND OF XYLULOSE SYNTHESIS IN RAT-LIVER EXTRACTS. THE EFFECT OF STARVATION ON THE ENZYMES OF THE GLUCURONIC ACID PATHWAY, 10.1042/bj0950354
- Chatterjee I. B., Chatterjee G. C., Ghosh N. C., Ghosh J. J., Guha B. C., Biological synthesis of l-ascorbic acid in animal tissues: conversion of l-gulonolactone into l-ascorbic acid, 10.1042/bj0740193
- Chatterjee I. B., Chatterjee G. C., Ghosh N. C., Ghosh J. J., Guha B. C., Biological synthesis of l-ascorbic acid in animal tissues: conversion of d-glucuronolactone and l-gulonolactone into l-ascorbic acid, 10.1042/bj0760279
- Kiuchi Kazutoshi, Nishikimi Morimitsu, Yagi Kunio, Purification and characterization of L-gulonolactone oxidase from chicken kidney microsomes, 10.1021/bi00263a035
- Nishikimi Morimitsu, Tolbert Bert M., Udenfriend Sidney, Purification and characterization of l-gulono-γ-lactone oxidase from rat and goat liver, 10.1016/0003-9861(76)90530-0
- Eliceiri, J Biol Chem, 244, 2641 (1969)
- Ôba, Kazuko, Ishikawa Seiko, Nishikawa Masumi, Mizuno Hiroko, Yamamoto Tomoko, Purification and Properties of L-Galactono- γ-Lactone Dehydrogenase, a Key Enzyme for Ascorbic Acid Biosynthesis, from Sweet Potato Roots, 10.1093/oxfordjournals.jbchem.a124697
- Østergaard Jens, Persiau Geert, Davey Mark W., Bauw Guy, Van Montagu Marc, Isolation of a cDNA Coding forl-Galactono-γ-Lactone Dehydrogenase, an Enzyme involved in the Biosynthesis of Ascorbic Acid in Plants : PURIFICATION, CHARACTERIZATION, cDNA CLONING, AND EXPRESSION IN YEAST, 10.1074/jbc.272.48.30009
- Siendones Emilio, González-Reyes José A., Santos-Ocaña Carlos, Navas Plácido, Córdoba Francisco, Biosynthesis of Ascorbic Acid in Kidney Bean.l-Galactono-γ-Lactone Dehydrogenase Is an Intrinsic Protein Located at the Mitochondrial Inner Membrane, 10.1104/pp.120.3.907
- Koshizaka, J Biol Chem, 263, 1619 (1988)
- Kenney William C., Edmondson Dale E., Singer Thomas P., Nakagawa Hidehiko, Asano Akira, Sato Ryo, Identification of the covalently bound flavin of L-gulono-γ-lactone oxidase, 10.1016/0006-291x(76)90780-4
- Puskás Ferenc, Braun László, Csala Miklós, Kardon Tamás, Marcolongo Paola, Benedetti Angelo, Mandl József, Bánhegyi Gábor, Gulonolactone oxidase activity-dependent intravesicular glutathione oxidation in rat liver microsomes, 10.1016/s0014-5793(98)00678-4
- Emanuelsson Olof, Nielsen Henrik, Brunak Søren, von Heijne Gunnar, Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence, 10.1006/jmbi.2000.3903
- BURNS J. J., PEYSER P., MOLTZ A., Missing Step in Guinea Pigs Required for the Biosynthesis of L-Ascorbic Acid, 10.1126/science.124.3232.1148-a
- Nishikimi, J Biol Chem, 269, 13685 (1994)
- Nishikimi, J Biol Chem, 267, 21967 (1992)
- Ohta Yuriko, Nishikimi Morimitsu, Random nucleotide substitutions in primate nonfunctional gene for l-gulono-γ-lactone oxidase, the missing enzyme in l-ascorbic acid biosynthesis1The nucleotide sequences reported in this paper have been submitted to GenBank under accession Nos. AB025719, AB025786, and AB025787.1, 10.1016/s0304-4165(99)00123-3
- Bánhegyi Gábor, Csala Miklós, Braun László, Garzó Tamás, Mandl József, Ascorbate synthesis-dependent glutathione consumption in mouse liver, 10.1016/0014-5793(96)00077-4
- Kawai, J Biol Chem, 267, 21973 (1992)
- Mizushima Y., Harauchi T., Yoshizaki T., Makino S., A rat mutant unable to synthesize vitamin C, 10.1007/bf01952551
- Hasan Lara, V�geli Peter, Stoll Peter, KramerStranzinger ?pela ?pilar Gerald, Neuenschwander Stefan, Intragenic deletion in the gene encoding L-gulonolactone oxidase causes vitamin C deficiency in pigs, 10.1007/s00335-003-2324-6
- Maeda N., Hagihara H., Nakata Y., Hiller S., Wilder J., Reddick R., Aortic wall damage in mice unable to synthesize ascorbic acid, 10.1073/pnas.97.2.841
- Hiatt, The Metabolic and Molecular Bases of Inherited Disease, Vol. I, 1589 (2001)
- Smiley, J Biol Chem, 236, 357 (1961)
- Ishikura S., Structural and Functional Characterization of Rabbit and Human l-Gulonate 3-Dehydrogenase, 10.1093/jb/mvi033
- Winkelman James, Ashwell Gilbert, Enzymic formation of l-xylulose from β-keto-l-gulonic acid, 10.1016/0006-3002(61)90914-3
- Nakagawa Junichi, Ishikura Syuhei, Asami Jun, Isaji Tomoya, Usami Noriyuki, Hara Akira, Sakurai Takanobu, Tsuritani Katsuki, Oda Koji, Takahashi Masayoshi, Yoshimoto Makoto, Otsuka Noboru, Kitamura Kunihiro, Molecular Characterization of Mammalian Dicarbonyl/l-Xylulose Reductase and Its Localization in Kidney, 10.1074/jbc.m110703200
- Marini Isabella, Bucchioni Luca, Borella Paola, Corso Antonella Del, Mura Umberto, Sorbitol Dehydrogenase from Bovine Lens: Purification and Properties, 10.1006/abbi.1997.9882
- Dills W.L., Parsons P.D., Westgate C.L., Komplin N.J.A., Assay, Purification, and Properties of Bovine Liver D-Xylulokinase, 10.1006/prep.1994.1039
- Tamari M., Daigo Y., Ishikawa S., Nakamura Y., Genomic structure of a novel human gene (XYLB) on chromosome 3p22→p21.3 encoding a xylulokinase-like protein, 10.1159/000015076
- Margolis J. I., CHRONIC PENTOSURIA AND MIGRAINE : , 10.1097/00000441-192903000-00005
- Wang Y. M., van Eys J., The Enzymatic Defect in Essential Pentosuria, 10.1056/nejm197004162821604
- Lane A. B., On the nature of l-xylulose reductase deficiency in essential pentosuria, 10.1007/bf00499113
- Braun László, Mile Valéria, Schaff Zsuzsa, Csala Miklós, Kardon Tamás, Mandl József, Bánhegyi Gábor, Induction and peroxisomal appearance of gulonolactone oxidase upon clofibrate treatment in mouse liver, 10.1016/s0014-5793(99)01184-9
- Martensson J., Meister A., Glutathione deficiency increases hepatic ascorbic acid synthesis in adult mice., 10.1073/pnas.89.23.11566
- Chan Tom S, Wilson John X, O’Brien Peter J, Glycogenolysis is directed towards ascorbate synthesis by glutathione conjugation, 10.1016/j.bbrc.2004.03.022
- Braun László, Csala Miklós, Poussu Anssi, Garzó Tamás, Mandl József, Bánhegyi Gábor, Glutathione depletion induces glycogenolysis dependent ascorbate synthesis in isolated murine hepatocytes, 10.1016/0014-5793(96)00548-0
- Iyanagi Takashi, Yamazaki Isao, One-electron-transfer reactions in biochemical systems III. One-electron reduction of quinones by microsomal flavin enzymes, 10.1016/0005-2728(69)90133-9
- Ito Akio, Hayashi Shin-ichi, Yoshida Touho, Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver, 10.1016/0006-291x(81)91300-0
- Takano Tsunehiro, Ogawa Keizo, Sato Mamoru, Bando Sachiko, Yubisui Toshitsugu, Preliminary X-ray data of NADH-cytochrome b5 reductase from human erythrocytes, 10.1016/0022-2836(87)90195-1
- Shirabe Komei, Yubisui Toshitsugu, Takeshita Masazumi, Expression of human erythrocyte NADH-cytochrome b5 reductase as an α-thrombin-cleavable fused protein in Escherichia coli, 10.1016/0167-4781(80)90007-x
- Percy Melanie J., McFerran Neil V., Lappin Terry R.J., Disorders of oxidised haemoglobin, 10.1016/j.blre.2004.02.001
- Borgese N, Pietrini G, Distribution of the integral membrane protein NADH-cytochromeb5reductase in rat liver cells, studied with a quantitative radioimmunoblotting assay, 10.1042/bj2390393
- Borgese Nica, D'Arrigo Antonello, De Silvestris Marcella, Pietrini Grazia, NADH-cytochromeb5reductase and cytochromeb5isoforms as models for the study of post-translational targeting to the endoplasmic reticulum, 10.1016/0014-5793(93)81416-w
- Shirabe, Am J Hum Genet, 57, 302 (1995)
- Bando Masayasu, Inoue Takashi, Oka Mikako, Nakamura Kayako, Kawai Kenji, Obazawa Hajime, Kobayashi Shizuko, Takehana Makoto, Isolation of ascorbate free radical reductase from rabbit lens soluble fraction, 10.1016/j.exer.2004.08.011
- May James M., Cobb Charles E., Mendiratta Shalu, Hill Kristina E., Burk Raymond F., Reduction of the Ascorbyl Free Radical to Ascorbate by Thioredoxin Reductase, 10.1074/jbc.273.36.23039
- Njus David, Kelley Patrick M., The secretory-vesicle ascorbate-regenerating system: A chain of concerted H+/e−-transfer reactions, 10.1016/0005-2728(93)90108-r
- Njus, J Biol Chem, 258, 27 (1983)
- Fleming, Am J Clin Nutr, 54, 1173S (1991)
- Diliberto Emanuel J., Dean Grace, Carter Charles, Allen Pamela L., Tissue, Subcellular, and Submitochondrial Distributions of Semidehydroascorbate Reductase: Possible Role of Semidehydroascorbate Reductase in Cofactor Regeneration, 10.1111/j.1471-4159.1982.tb03982.x
- NJUS DAVID, KELLEY PATRICK M., HARNADEK GORDON J., PACQUING YVONNE VIVAR, Mechanism of Ascorbic Acid Regeneration Mediated by Cytochrome b561, 10.1111/j.1749-6632.1987.tb27188.x
- Perin, EMBO J, 7, 2697 (1988)
- Bashtovyy Denys, B�rczi Alajos, Asard Han, P�li Tibor, Structure prediction for the di-heme cytochrome b 561 protein family, 10.1007/s00709-002-0065-0
- Bérczi Alajos, Su Dan, Lakshminarasimhan Mahadevan, Vargas Amy, Asard Han, Heterologous expression and site-directed mutagenesis of an ascorbate-reducible cytochrome b561, 10.1016/j.abb.2005.09.006
- Takigami Tadakazu, Takeuchi Fusako, Nakagawa Masashi, Hase Toshiharu, Tsubaki Motonari, Stopped-Flow Analyses on the Reaction of Ascorbate with Cytochromeb561Purified from Bovine Chromaffin Vesicle Membranes†, 10.1021/bi0267588
- May James M., Qu Zhi-chao, Cobb Charles E., Extracellular Reduction of the Ascorbate Free Radical by Human Erythrocytes, 10.1006/bbrc.1999.1906
- Van Duijn, J Biol Chem, 275, 27720 (2000)
- Van Duijn M. M., Buijs J. T., Van der Zee J., Van den Broek P. J. A., The ascorbate:ascorbate free radical oxidoreductase from the erythrocyte membrane is not cytochromeb 561, 10.1007/bf01289418
- Navas P., Estévez A., Burón M.I., Villalba J.M., Crane F.L., Cell surface glycoconjugates control the activity of the NADH-ascorbate free radical reductase of rat liver plasma membrane, 10.1016/0006-291x(88)90243-4
- Alcain Francisco J., Buron M. Isabel, Villalba Jose M., Navas Placido, Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system, 10.1016/0304-4165(91)90146-8
- May, FASEB J, 13, 995 (1999)
- Schweinzer Esther, Waeg Georg, Esterbauer Hermann, Goldenberg Hans, No enzymatic activities are necessary for the stabilization of ascorbic acid by K-562 cells, 10.1016/0014-5793(93)81691-r
- Rodr�guez-Aguilera J. C., Navas P., Extracellular ascorbate stabilization: Enzymatic or chemical process?, 10.1007/bf00762778
- Villalba J. M., Canalejo A., Rodr�guez-Aguilera J. C., Bur�n M. I., Morr� D. James, Navas P., NADH-ascorbate free radical and -ferricyanide reductase activities represent different levels of plasma membrane electron transport, 10.1007/bf00762467
- Villalba J. M., Navarro F., Cordoba F., Serrano A., Arroyo A., Crane F. L., Navas P., Coenzyme Q reductase from liver plasma membrane: purification and role in trans-plasma-membrane electron transport., 10.1073/pnas.92.11.4887
- Navarro F., Villalba J.M., Crane F.L., Mackellar W.C., Navas P., A Phospholipid-Dependent NADH-Coenzyme Q Reductase from Liver Plasma Membrane, 10.1006/bbrc.1995.1947
- Arroyo Antonio, Rodríguez-Aguilera Juan C., Santos-Ocaña Carlos, Villalba José Manuel, Navas Plácido, Stabilization of Extracellular Ascorbate Mediated by Coenzyme Q Transmembrane Electron Transport, Quinones and Quinone Enzymes, Part A (2004) ISBN:9780121827823 p.207-217, 10.1016/s0076-6879(04)78017-9
- Van Duijn Martijn M., Van der Zee Jolanda, VanSteveninck John, Van den Broek Peter J. A., Ascorbate Stimulates Ferricyanide Reduction in HL-60 Cells through a Mechanism Distinct from the NADH-dependent Plasma Membrane Reductase, 10.1074/jbc.273.22.13415
- Winkler Barry S., Orselli Stephen M., Rex Tonia S., The redox couple between glutathione and ascorbic acid: A chemical and physiological perspective, 10.1016/0891-5849(94)90019-1
- Bode, Clin Chem, 36, 1807 (1990)
- Wells, J Biol Chem, 265, 15361 (1990)
- Wells William W., Xu Dian Peng, Dehydroascorbate reduction, 10.1007/bf00762777
- Bánhegyi Gábor, Csala Miklós, Szarka András, Varsányi Marianne, Benedetti Angelo, Mandl József, Role of ascorbate in oxidative protein folding, 10.1002/biof.5520170105
- Fernando M. Rohan, Satake Makoto, Monnier Vincent M., Lou Marjorie F., Thioltranferase Mediated Ascorbate Recycling in Human Lens Epithelial Cells, 10.1167/iovs.03-0545
- Xu Dian Peng, Washburn Michael P., Sun Guo Ping, Wells William W., Purification and Characterization of a Glutathione Dependent Dehydroascorbate Reductase from Human Erythrocytes, 10.1006/bbrc.1996.0555
- Maellaro E, Del Bello B, Sugherini L, Santucci A, Comporti M, Casini A F, Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver, 10.1042/bj3010471
- Paolicchi Aldo, Pezzini Angelina, Saviozzi Michela, Piaggi Simona, Andreuccetti Michele, Chieli Elisabetta, Malvaldi Gino, Casini Alessandro F., Localization of a GSH-Dependent Dehydroascorbate Reductase in Rat Tissues and Subcellular Fractions, 10.1006/abbi.1996.0419
- Ishikawa Takahiro, Casini Alessandro F., Nishikimi Morimitsu, Molecular Cloning and Functional Expression of Rat Liver Glutathione-dependent Dehydroascorbate Reductase, 10.1074/jbc.273.44.28708
- Whitbread Astrid K., Masoumi Amir, Tetlow Natasha, Schmuck Erica, Coggan Marjorie, Board Philip G., Characterization of the Omega Class of Glutathione Transferases, Methods in Enzymology (2005) ISBN:9780121828066 p.78-99, 10.1016/s0076-6879(05)01005-0
- Board Philip G., Coggan Marjorie, Chelvanayagam Gareth, Easteal Simon, Jermiin Lars S., Schulte Gayle K., Danley Dennis E., Hoth Lise R., Griffor Matthew C., Kamath Ajith V., Rosner Michele H., Chrunyk Boris A., Perregaux David E., Gabel Christopher A., Geoghegan Kieran F., Pandit Jayvardhan, Identification, Characterization, and Crystal Structure of the Omega Class Glutathione Transferases, 10.1074/jbc.m001706200
- Schmuck Erica M., Board Philip G., Whitbread Astrid K., Tetlow Natasha, Cavanaugh Juleen A., Blackburn Anneke C., Masoumi Amir, Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer??s and Parkinson??s diseases : , 10.1097/01.fpc.0000165725.81559.e3
- Del Bello B, Maellaro E, Sugherini L, Santucci A, Comporti M, Casini A F, Purification of NADPH-dependent dehydroascorbate reductase from rat liver and its identification with 3α-hydroxysteroid dehydrogenase, 10.1042/bj3040385
- May James M., Mendiratta Shalu, Hill Kristina E., Burk Raymond F., Reduction of Dehydroascorbate to Ascorbate by the Selenoenzyme Thioredoxin Reductase, 10.1074/jbc.272.36.22607
- Coassin Mariagrazia, Tomasi Aldo, Vannini Vanio, Ursini Fulvio, Enzymatic recycling of oxidized ascorbate in pig heart: One-electron vs two-electron pathway, 10.1016/0003-9861(91)90566-2
- Martensson J., Meister A., Mrtensson J., Glutathione deficiency decreases tissue ascorbate levels in newborn rats: ascorbate spares glutathione and protects., 10.1073/pnas.88.11.4656
- Meister, J Biol Chem, 269, 9397 (1994)
- Simpson Gregory L.W, Ortwerth B.J, The non-oxidative degradation of ascorbic acid at physiological conditions, 10.1016/s0925-4439(00)00009-0
- Deutsch John C., Oxygen-Accepting Antioxidants Which Arise during Ascorbate Oxidation, 10.1006/abio.1998.2940
- Hellman, J Biol Chem, 230, 923 (1958)
- Massey, J Nutr, 135, 1673 (2005)
- KAGAWA YASUO, TAKIGUCHI HISASHI, Enzymatic Studies on Ascorbic Add Catabolism in Animals, 10.1093/oxfordjournals.jbchem.a127521
- Koshiishi Ichiro, Mamura Yoshie, Imanari Toshio, Bicarbonate promotes a cleavage of lactone ring of dehydroascorbate, 10.1016/s0304-4165(97)00106-2
- Kagawa Yasuo, Takiguchi Hisashi, Shimazono Norio, Enzymic delactonization of dehydro-l-ascorbate in animal tissues, 10.1016/0006-3002(61)90196-2
- Yamada Kazuo, Ishikawa Shinji, Shimazono Norio, On the microsomal and soluble lactonases, 10.1016/0006-3002(59)90576-1
- Yamaguchi, Int J Mol Med, 10, 377 (2002)
- Uchiyama, Int J Mol Med, 14, 451 (2004)
- Braun László, Puskás Ferenc, Csala Miklós, Gyórffy Erika, Garzó Tamás, Mandl József, Bánhegyi Gábor, Gluconeogenesis from ascorbic acid: ascorbate recycling in isolated murine hepatocytes, 10.1016/0014-5793(96)00654-0
- Yew W. S., Gerlt J. A., Utilization of L-Ascorbate by Escherichia coli K-12: Assignments of Functions to Products of the yjf-sga and yia-sgb Operons, 10.1128/jb.184.1.302-306.2002
- Zhang Z., Aboulwafa M., Smith M. H., Saier M. H., The Ascorbate Transporter of Escherichia coli, 10.1128/jb.185.7.2243-2250.2003
- Campos E., Aguilar J., Baldoma L., Badia J., The Gene yjfQ Encodes the Repressor of the yjfR-X Regulon (ula), Which Is Involved in L-Ascorbate Metabolism in Escherichia coli, 10.1128/jb.184.21.6065-6068.2002
- Campos E., Baldoma L., Aguilar J., Badia J., Regulation of Expression of the Divergent ulaG and ulaABCDEF Operons Involved in L-Ascorbate Dissimilation in Escherichia coli, 10.1128/jb.186.6.1720-1728.2004
- Forouhar Farhad, Lee Insun, Benach Jordi, Kulkarni Kaushal, Xiao Rong, Acton Thomas B., Montelione Gaetano T., Tong Liang, A Novel NAD-binding Protein Revealed by the Crystal Structure of 2,3-Diketo-l-gulonate Reductase (YiaK), 10.1074/jbc.m313580200
Bibliographic reference |
Linster, Carole L ; Van Schaftingen, Emile. Vitamin C. Biosynthesis, recycling and degradation in mammals.. In: The FEBS journal, Vol. 274, no. 1, p. 1-22 (2007) |
Permanent URL |
http://hdl.handle.net/2078.1/10829 |