User menu

Morphological similarities between DBM and a microeconomic model of sprawl

Bibliographic reference Caruso, Geoffrey ; Vuidel, Gilles ; Cavailhès, Jean ; Frankhauser, Pierre ; Peeters, Dominique ; et. al. Morphological similarities between DBM and a microeconomic model of sprawl. In: Journal of Geographical Systems : geographical information, analysis, theory and decision, Vol. 13, no. 1, p. 31-48 (2011)
Permanent URL
  1. Anderson Soren T., West Sarah E., Open space, residential property values, and spatial context, 10.1016/j.regsciurbeco.2006.03.007
  2. Andersson Claes, Lindgren Kristian, Rasmussen Steen, White Roger, Urban growth simulation from “first principles”, 10.1103/physreve.66.026204
  3. Batty M, Generating Urban Forms from Diffusive Growth, 10.1068/a230511
  4. Batty M, Longley P A, The Fractal Simulation of Urban Structure, 10.1068/a181143
  5. Batty M, Longley P (1994) Fractal cities. Academic Press, London, p 394
  6. Benguigui L, A Fractal Analysis of the Public Transportation System of Paris, 10.1068/a271147
  7. Benguigui L., A new aggregation model. Application to town growth, 10.1016/0378-4371(95)00145-w
  8. Benguigui L., Aggregation models for town growth, 10.1080/014186398258672
  9. Benguigui Lucien, Czamanski Daniel, Marinov Maria, City Growth as a Leap-frogging Process: An Application to the Tel-Aviv Metropolis, 10.1080/00420980120084877
  10. Bogoyavlenskiy Vladislav A., Chernova Natasha A., Diffusion-limited aggregation: A relationship between surface thermodynamics and crystal morphology, 10.1103/physreve.61.1629
  11. Caruso Geoffrey, Peeters Dominique, Cavailhès Jean, Rounsevell Mark, Spatial configurations in a periurban city. A cellular automata-based microeconomic model, 10.1016/j.regsciurbeco.2007.01.005
  12. Cavailhès J, Brossard T, Foltête J-C, Hilal M, Joly D, Tourneux F-P, Tritz C, Wavresky P (2006) Seeing and being seen: a gis-based hedonic price valuation of landscape. Working paper of INRA-CESAER, CNRS-ThéMA, Dijon, Besançon (France)
  13. Cavailhès Jean, Frankhauser Pierre, Peeters Dominique, Thomas Isabelle, Where Alonso Meets Sierpinski: An Urban Economic Model of a Fractal Metropolitan Area, 10.1068/a36126
  14. Cheshire Paul, Sheppard Stephen, On the Price of Land and the Value of Amenities, 10.2307/2554906
  15. CHIKUSHI J., HIROTA O., Simulation of root development based on the dielectric breakdown model, 10.1080/02626669809492152
  16. Couclelis H, Cellular Worlds: A Framework for Modeling Micro—Macro Dynamics, 10.1068/a170585
  17. Frankhauser Pierre, Aspects fractals des structures urbaines, 10.3406/spgeo.1990.2943
  18. Galster George, Hanson Royce, Ratcliffe Michael R., Wolman Harold, Coleman Stephen, Freihage Jason, Wrestling Sprawl to the Ground: Defining and measuring an elusive concept, 10.1080/10511482.2001.9521426
  19. Irwin Elena G., The Effects of Open Space on Residential Property Values, 10.2307/3146847
  20. Li Boquan, Wang Jing, Wang Bing, Liu Wenhan, Wu Ziqin, Computer Simulations of Bacterial-Colony Formation, 10.1209/0295-5075/30/4/009
  21. Lu Yongmei, Tang Junmei, Fractal Dimension of a Transportation Network and its Relationship with Urban Growth: A Study of the Dallas-Fort Worth Area, 10.1068/b3163
  22. Makse Hernán A., Andrade José S., Batty Michael, Havlin Shlomo, Stanley H. Eugene, Modeling urban growth patterns with correlated percolation, 10.1103/physreve.58.7054
  23. Makse Hernán A., Havlin Shlomo, Stanley H. Eugene, Modelling urban growth patterns, 10.1038/377608a0
  24. Mathiesen Joachim, Jensen Mogens H., Bakke Jan Øystein Haavig, Dimensions, maximal growth sites, and optimization in the dielectric breakdown model, 10.1103/physreve.77.066203
  25. Niemeyer L., Pietronero L., Wiesmann H. J., Fractal Dimension of Dielectric Breakdown, 10.1103/physrevlett.52.1033
  26. Peruani F., Solovey G., Irurzun I. M., Mola E. E., Marzocca A., Vicente J. L., Dielectric breakdown model for composite materials, 10.1103/physreve.67.066121
  27. Phipps Michel, Dynamical Behavior of Cellular Automata under the Constraint of Neighborhood Coherence, 10.1111/j.1538-4632.1989.tb00889.x
  28. Pietronero L., Wiesmann H. J., Stochastic model for dielectric breakdown, 10.1007/bf01012949
  29. Sánchez A., Guinea F., Sander L. M., Hakim V., Louis E., Growth and forms of Laplacian aggregates, 10.1103/physreve.48.1296
  30. Schelling Thomas C., Dynamic models of segregation†, 10.1080/0022250x.1971.9989794
  31. Vliet Jasper van, White Roger, Dragicevic Suzana, Modeling urban growth using a variable grid cellular automaton, 10.1016/j.compenvurbsys.2008.06.006
  32. White R, Engelen G, Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns, 10.1068/a251175
  33. White R, Engelen G (1994) Cellular dynamics and GIS: modelling spatial complexity. Geogr Syst 1(2):237–253
  34. Witten T. A., Sander L. M., Diffusion-Limited Aggregation, a Kinetic Critical Phenomenon, 10.1103/physrevlett.47.1400