User menu

Comparison of the experimental, semi-experimental and ab initio equilibrium structures of acetylene: influence of relativistic effects and of the diagonal Born-Oppenheimer corrections.

Bibliographic reference Liévin, J. ; Demaison, Jean ; Fayt, André ; Puzzarini, C. ; Herman, Michel. Comparison of the experimental, semi-experimental and ab initio equilibrium structures of acetylene: influence of relativistic effects and of the diagonal Born-Oppenheimer corrections.. In: Journal of Chemical Physics, Vol. 134, no. 6, p. 064119 (2011)
Permanent URL
  1. Pässler P., “Acetylene” in Ullmann's Encyclopedia of Industrial Chemistry (2008)
  2. Didriche Keevin, Herman Michel, A four-atom molecule at the forefront of spectroscopy, intramolecular dynamics and astrochemistry: Acetylene, 10.1016/j.cplett.2010.07.031
  3. Herzberg G., Patat F., Spinks J. W. T., Rotationsschwingungsspektren im photographischen Ultrarot von Molek�len, die das Wasserstoffisotop der Masse 2 enthalten : I. Das C2HD=Spektrum und der C-C= und C-H=Abstand im Acetylen, 10.1007/bf01341540
  4. Purvis George D., Bartlett Rodney J., A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples, 10.1063/1.443164
  5. Raghavachari Krishnan, Trucks Gary W., Pople John A., Head-Gordon Martin, A fifth-order perturbation comparison of electron correlation theories, 10.1016/s0009-2614(89)87395-6
  6. Hampel Claudia, Peterson Kirk A., Werner Hans-Joachim, A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods, 10.1016/0009-2614(92)86093-w
  7. Deegan Miles J.O., Knowles Peter J., Perturbative corrections to account for triple excitations in closed and open shell coupled cluster theories, 10.1016/0009-2614(94)00815-9
  8. Knowles Peter J., Werner Hans-Joachim, An efficient second-order MC SCF method for long configuration expansions, 10.1016/0009-2614(85)80025-7
  9. Dunning Thom H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, 10.1063/1.456153
  10. Kendall Rick A., Dunning Thom H., Harrison Robert J., Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions, 10.1063/1.462569
  11. Martin Jan M.L, On the effect of core correlation on the geometry and harmonic frequencies of small polyatomic molecules, 10.1016/0009-2614(95)00747-r
  12. Peterson Kirk A., Dunning Thom H., Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited, 10.1063/1.1520138
  13. Heckert Miriam, KÁllay ‡ MihÁly, Gauss † Jürgen, Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations, 10.1080/00268970500083416
  14. Heckert Miriam, Kállay Mihály, Tew David P., Klopper Wim, Gauss Jürgen, Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory, 10.1063/1.2217732
  15. Heß Bernd A, Chandra P, Relativistic ab initio CI study of the X1Σ+ and A1Σ+ states of the AgH molecule, 10.1088/0031-8949/36/3/006
  16. de Jong W. A, Harrison R. J., Dixon D. A., Parallel Douglas–Kroll energy and gradients in NWChem: Estimating scalar relativistic effects using Douglas–Kroll contracted basis sets, 10.1063/1.1329891
  17. Handy Nicholas C., Yamaguchi Yukio, Schaefer Henry F., The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects, 10.1063/1.450020
  18. KUTZELNIGG WERNER, The adiabatic approximation I. The physical background of the Born-Handy ansatz, 10.1080/00268979709482675
  19. Cencek Wojciech, Kutzelnigg Werner, Accurate adiabatic correction for the hydrogen molecule using the Born-Handy formula, 10.1016/s0009-2614(97)00017-1
  20. Valeev Edward F., Sherrill C. David, The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation, 10.1063/1.1540626
  21. Mitrushenkov Alexander O., Fano Guido, Ortolani Fabio, Linguerri Roberto, Palmieri Paolo, Quantum chemistry using the density matrix renormalization group, 10.1063/1.1389475
  22. Coursey J. S., Atomic Weights and Isotopic Compositions (2002)
  23. Eckert Frank, Pulay Peter, Werner Hans-Joachim, Ab initio geometry optimization for large molecules, 10.1002/(sici)1096-987x(199709)18:12<1473::aid-jcc5>;2-g
  24. Handy Nicholas C., Lee Aaron M., The adiabatic approximation, 10.1016/0009-2614(96)00171-6
  25. Cazzoli Gabriele, Puzzarini Cristina, Fusina Luciano, Tamassia Filippo, Rotational spectra of deuterated acetylenes: DCCH, D13CCH and DC13CH, 10.1016/j.jms.2007.10.011
  26. Hartford S.L., Allen Wm.C., Norris C.L., Pearson E.F., Flygare W.H., The molecular Zeeman effect in HCP, HCN, and HCCBr and a comparison with similar molecules, 10.1016/0009-2614(73)80407-5
  27. Puzzarini Cristina, Heckert Miriam, Gauss Jürgen, The accuracy of rotational constants predicted by high-level quantum-chemical calculations. I. molecules containing first-row atoms, 10.1063/1.2912941
  28. Rousseeuw Peter J., Leroy Annick M., Robust Regression and Outlier Detection : Rousseeuw/Robust Regression & Outlier Detection, ISBN:9780471725381, 10.1002/0471725382
  29. Huhanantti M., Hietanen J., Anttila R., Kauppinen J., The infra-red spectrum of C2D2in the region of the bending fundamentalv5, 10.1080/00268977900103271
  30. Fusina Luciano, Tamassia Filippo, Di Lonardo Gianfranco, Baldan Alessandro, The infrared spectrum of13C2HD between 100 and 2100 cm−1: a global fit for the bending states up toυ4+υ5= 3, 10.1080/00268970903164110
  31. Amyay Badr, Robert Séverine, Herman Michel, Fayt André, Raghavendra Balakrishna, Moudens Audrey, Thiévin Jonathan, Rowe Bertrand, Georges Robert, Vibration-rotation pattern in acetylene. II. Introduction of Coriolis coupling in the global model and analysis of emission spectra of hot acetylene around 3 μm, 10.1063/1.3200928
  32. Robert** S., Herman M., Auwera*** J. Vander, Lonardo G. Di, Fusina L., Blanquet G., Lepere**** M., Fayt A., The bending vibrations in 12C2H2: global vibration–rotation analysis, 10.1080/00268970601099261
  33. Demaison J., Experimental, semi-experimental andab initioequilibrium structures, 10.1080/00268970701765811
  34. Amyay B., Herman M., Fayt A., Fusina L., Predoi-Cross A., High resolution FTIR investigation of 12C2H2 in the FIR spectral range using synchrotron radiation, 10.1016/j.cplett.2010.03.053
  35. Fayt A., Robert S., Di Lonardo G., Fusina L., Tamassia F., Herman M., Vibration-rotation energy pattern in acetylene: C13HC12H up to 6750cm−1, 10.1063/1.2464101
  36. Robert S., Amyay B., Fayt A., Di Lonardo G., Fusina L., Tamassia F., Herman M., Vibration−Rotation Energy Pattern in Acetylene:13CH12CH up to 10 120 cm−1†, 10.1021/jp904000q
  37. Puzzarini C., de Lara-Castells M. P., Tarroni R., Palmieri P., Domaison J., Accurate ab initio prediction of the rovibrational energy levels and equilibrium geometry of carbonyl selenide (OCSe), 10.1039/a904547c
  38. Botschwina P., Seeger S., Horn M., Flügge J., Oswald M., Mladenowić M., Höper U., Oswald R., Schick E., Quantum-Chemical calculations on molecules of astrochemical interest, 10.1063/1.46614
  39. Botschwina P., Tommek M., Sebald P., Bogey M., Demuynck C., Destombes J. L., Walters A., The equilibrium geometry of HNSi, 10.1063/1.461351
  40. Botschwina Peter, Oswald Melanie, Sebald Peter, The equilibrium geometry of HOSi+, 10.1016/0022-2852(92)90525-s
  41. Lee Timothy J., Martin Jan M. L., Taylor Peter R., An accurate ab initio quartic force field and vibrational frequencies for CH4 and isotopomers, 10.1063/1.469398
  42. Cassam-Chenaï P., Liévin J., The VMFCI method: A flexible tool for solving the molecular vibration problem, 10.1002/jcc.20374
  43. Herman M., Campargue A., El Idrissi M. I., Vander Auwera J., Vibrational Spectroscopic Database on Acetylene, X̃ 1Σg+ (12C2H2, 12C2D2, and 13C2H2), 10.1063/1.1531651
  44. Bermejo D., Di Lonardo G., Doménech J.L., Fusina L., High-Resolution Raman Spectra of ν2 and Associated Hot Bands of 12C2D2, 10.1006/jmsp.2001.8416
  45. Ghersetti Sergio, Pliva J., Narahari Rao K., Dideuteroacetylene bands in the 2–2.5 and 5–10 micron regions, 10.1016/0022-2852(71)90093-2
  46. Kyker Granvil C., The range of a data set: A quick estimator of the standard deviation, 10.1119/1.13502
  47. Hamilton L. C., Regression with Graphics (1992)
  48. Kraitchman J., Determination of Molecular Structure from Microwave Spectroscopic Data, 10.1119/1.1933338
  49. Overend J., Thompson H. W., Vibration-Rotation Bands of Monodeuteroacetylene and the Molecular Dimensions, 10.1098/rspa.1956.0035
  50. Lafferty Walter J., Plyler Earie K., Tidwell Eugene D., Infrared Spectrum of Acetylene‐d1, 10.1063/1.1733415
  51. Graner Georges, Détermination des structures moléculaires à partir des constantes rotationnelles, 10.1016/0371-1951(63)80231-3
  52. Lafferty Walter J., Thibault Robert J., High resolution infrared spectra of C212H2, C12C13H2, and C213H2, 10.1016/0022-2852(64)90101-8
  53. Fast H, Welsh H.L, High-resolution Raman spectra of acetylene, acetylene-d1, and acetylene-d2, 10.1016/0022-2852(72)90133-6
  54. Baldacci A., Ghersetti S., Hurlock S.C., Narahari Rao K., Infrared bands of 12C2HD, 10.1016/0022-2852(76)90047-3
  55. Strey G., Mills I.M., Anharmonic force field of acetylene, 10.1016/0022-2852(76)90046-1
  56. Martin Jan M. L., Lee Timothy J., Taylor Peter R., A purely ab initio spectroscopic quality quartic force field for acetylene, 10.1063/1.475429
  57. Pawłowski Filip, Jørgensen Poul, Olsen Jeppe, Hegelund Flemming, Helgaker Trygve, Gauss Jürgen, Bak Keld L., Stanton John F., Molecular equilibrium structures from experimental rotational constants and calculated vibration–rotation interaction constants, 10.1063/1.1459782
  58. Boyé-Péronne Séverine, Gauyacq Dolores, Liévin Jacques, Vinylidene-acetylene cation isomerization investigated by large scale ab initio calculations, 10.1063/1.2187002
  59. Jolly A., Benilan Y., Cané E., Fusina L., Tamassia F., Fayt A., Robert S., Herman M., Measured integrated band intensities and simulated line-by-line spectra for 12C2HD between 25 and 2.5μm, and new global vibration–rotation parameters for the bending vibrations, 10.1016/j.jqsrt.2008.08.004
  60. Authier N., Bagland N., Lefloch A., The 1992 Evaluation of Mass-Independent Dunham Parameters for the Ground State of CO, 10.1006/jmsp.1993.1205
  62. Maki A.G., Mellau G.Ch., Klee S., Winnewisser M., Quapp W., High-Temperature Infrared Measurements in the Region of the Bending Fundamental of H12C14N, H12C15N, and H13C14N, 10.1006/jmsp.2000.8113
  63. Okabayashi Toshiaki, Tanimoto Mitsutoshi, Millimeter and submillimeter wave spectroscopy of HNC and DNC in the vibrationally excited states, 10.1063/1.465135
  64. Gray D.L., Robiette A.G., The anharmonic force field and equilibrium structure of methane, 10.1080/00268977900101401