User menu

Risk classification in life insurance: Methodology and case study

Bibliographic reference Gschlössl, Susanne ; Schoenmaekers, Pascal ; Denuit, Michel. Risk classification in life insurance: Methodology and case study. In: European Actuarial Journal, Vol. 1, no. 1, p. 23-41 (2011)
Permanent URL
  1. Brown Robert L., McDaid Joanne, Factors Affecting Retirement Mortality, 10.1080/10920277.2003.10596083
  2. Cossette Hélène, Delwarde Antoine, Denuit Michel, Guillot Frédérick, Marceau Étienne, Pension Plan Valuation and Mortality Projection : A Case Study with Mortality Data, 10.1080/10920277.2007.10597445
  3. DAV (2008) Herleitung der Sterbetafel DAV 2008 T für Lebensversicherungen mit Todesfallcharakter. DAV-Unterarbeitsgruppe Todesfallrisiko. Blätter der DGVFM 30(1):189–224
  4. England PD, Haberman S (1993) A new approach to modeling excess mortality. J Actuar Pract 1:85–117
  5. Fahrmeir Ludwig, Tutz Gerhard, Multivariate Statistical Modelling Based on Generalized Linear Models, ISBN:9781441929006, 10.1007/978-1-4757-3454-6
  6. Gerber Hans U., Life Insurance Mathematics, ISBN:9783642082856, 10.1007/978-3-662-03460-6
  7. Haberman S., Renshaw A.E., Generalised linear models and excess mortality from peptic ulcers, 10.1016/0167-6687(90)90012-3
  8. Haberman Steven, Renshaw Arthur E., Generalized Linear Models and Actuarial Science, 10.2307/2988543
  9. de Jong Piet, Heller Gillian Z., Generalized Linear Models for Insurance Data, ISBN:9780511755408, 10.1017/cbo9780511755408
  10. Laird Nan, Olivier Donald, Covariance Analysis of Censored Survival Data Using Log-Linear Analysis Techniques, 10.2307/2287816
  11. Loader C (1999) Local regression and likelihood. Statistics and computing series. Springer, New York
  12. Loader C (2010) locfit : local regression, likelihood and density estimation. R package version 1.5-6.
  13. McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on statistics and applied probability, vol 37, 2nd edn. Chapman & Hall/CRC Press, Boca Raton
  14. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. .
  15. Regenauer A (2001) Kein Interesse am gläsernen Patient. Deutsches Ärzteblatt 98(10):A593–A596
  16. Renshaw Arthur E., Modelling excess mortality using GLIM, 10.1017/s0020268100042682
  17. Renshaw A. E., Actuarial graduation practice and generalised linear and non-linear models, 10.1017/s0020268100019454
  18. Renshaw A.E., Haberman S., Dual modelling and select mortality, 10.1016/s0167-6687(96)00016-9
  19. Renshaw A. E., Haberman S., Hatzopoulos P., On the Duality of Assumptions Underpinning the Construction of Life Tables , 10.2143/ast.27.1.542064
  20. Sijbrands Eric J. G., Tornij Erik, Homsma Sietske J., Mortality Risk Prediction by an Insurance Company and Long-Term Follow-Up of 62,000 Men, 10.1371/journal.pone.0005457
  21. Vinsonhaler Charles, Ravishanker Nalini, Vadiveloo Jeyaraj, Rasoanaivo Guy, Multivariate Analysis of Pension Plan Mortality Data, 10.1080/10920277.2001.10595989
  22. von Gaudecker Hans-Martin, Scholz Rembrandt D., Differential mortality by lifetime earnings in Germany, 10.4054/demres.2007.17.4
  23. Wood SN (2006) Generalized additive models—an introduction with R. Texts in statistical science series. Chapman & Hall/CRC Press, Boca Raton
  24. Wood SN (2011) mgcv : GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL. R package version 1.7-5.