User menu

On adaptive estimation for locally stationary wavelet processes and its applications

Bibliographic reference Van Bellegem, Sébastien ; von Sachs, Rainer. On adaptive estimation for locally stationary wavelet processes and its applications. In: International Journal of Wavelets, Multiresolution and Information Processing, Vol. 2, no. 4, p. 545-565 (2004)
Permanent URL
  1. Benjamini Y., J. Roy. Statist. Soc. Ser. B, 57, 289
  2. Brown L. D., Ann. Statist., 24, 2524
  3. Dahlhaus R., Ann. Statist., 25, 1
  4. Fryzlewicz Piotr, Van Bellegem Sébastien, von Sachs Rainer, Forecasting non-stationary time series by wavelet process modelling, 10.1007/bf02523391
  5. Hallin Marc, Mixed autoregressive-moving average multivariate processes with time-dependent coefficients, 10.1016/0047-259x(78)90034-9
  6. Kawasaki Syu-ji, Shibata Ritei, Weak stationarity of a time series with wavelet representation, 10.1007/bf03167380
  7. Lepskii O. V., On a Problem of Adaptive Estimation in Gaussian White Noise, 10.1137/1135065
  8. Lepski O., Ann. Statist., 25, 2512
  9. Mallat S., Ann. Statist., 26, 1
  10. Mélard Guy, Schutter Annie Herteleer-de, CONTRIBUTIONS TO EVOLUTIONARY SPECTRAL THEORY, 10.1111/j.1467-9892.1989.tb00014.x
  11. Mercuric D., Ann. Statist., 32, 577
  12. Nason G. P., Sachs R. v., Wavelets in time-series analysis, 10.1098/rsta.1999.0445
  13. Nason G. P., von Sachs R., Kroisandt G., Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum, 10.1111/1467-9868.00231
  14. Nason G. P., Sankhya, Series B, 63, 199
  15. Oh Hee-Seok, Ammann Caspar M., Naveau Philippe, Nychka Doug, Otto-Bliesner Bette L., Multi-resolution time series analysis applied to solar irradiance and climate reconstructions, 10.1016/s1364-6826(02)00291-2
  16. von Sachs Rainer, Neumann Michael H., A Wavelet-Based Test for Stationarity, 10.1111/1467-9892.00200
  17. Spokoiny V., Ann. Statist., 26, 1356