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Abstract

The premise of variability-intensive systems, specifically in software product
line engineering, is the ability to produce a large family of different systems
efficiently. However, in the case of safety critical systems, only a tiny fraction
of the possible systems are generally offered to customers. One reason for this
is that current quality assurance techniques used in the development of these
systems, such as model checking, are designed for systems with no variability.
In consequence, they are costly to apply to the whole system family.

More specifically, when differences between systems are expressed in terms
of features, the number of possible systems in a family is exponential in the
number of features. Two major challenges for quality assurance techniques are
thus scalable models and efficient algorithms. We address these challenges for
a specific quality assurance technique: model checking.

The proposed model checking approach is based on Featured Transition Sys-
tems (FTS), a novel formalism introduced in this thesis. FTS are a compact
mathematical model for representing the behaviours of a variability-intensive
system. Basically, they are transition systems in which the presence of a transi-
tion depends on the features of the system. We define and study model checking
algorithms that allow to verify FTS against temporal properties. They either
prove that all systems of the family satisfy the property, or identify those that
do not. Properties can be specified in feature LTL and feature CTL, extensions
of the well known linear and branching time temporal logics.

In addition to the mathematical foundation, we discuss two implementa-
tions of FTS that can be used by non-experts. A first uses a symbolic repre-
sentation of the state space and is implemented as part of the NuSMV model
checker. The second, SNIP, uses a semi-symbolic on-the-fly algorithm. SNIP
comes with an intuitive specification language based on Promela. Finally, we
propose theoretical and empirical evaluations of our results. The baseline for
our empirical evaluation is the application of classical model checking algo-
rithms to each system of the family. Experiments conducted with both model
checkers show that our algorithms can achieve order-of-magnitude speedups.





Résumé

L’ingénierie des lignes de produits logiciels est un paradigme d’ingénierie du
logiciel dont le but est de permettre le développement efficace de grandes
familles de logiciels. Cependant, dans le cas des systèmes critiques, peu de mem-
bres d’une famille de produits sont généralement vendus aux clients. En effet,
les techniques d’assurance qualité utilisées dans le développement de ce type
de systèmes, telles que le model checking, ne peuvent traiter que des systèmes
sans variabilité. En conséquence, il est très coûteux d’appliquer ces techniques
à tous les systèmes d’une même famille.

Si les différences entres les systèmes sont exprimées en terme de features,
le nombre de systèmes possibles est exponentiel en fonction du nombre de
features. Deux défis importants pour les techniques d’assurance qualité sont
donc le développement de modèles et d’algorithmes qui passent à l’échelle.
Nous traitons ces défis pour une technique spécifique: le model checking.

La technique de model checking proposée est basée sur les Featured Tran-
sition Systems (FTS), un nouveau formalisme introduit dans cette thèse. Les
FTS sont un modèle mathématique pour représenter le comportement d’une
famille de systèmes de façon compacte. Un FTS est essentiellement un système
de transitions dans lequel la présence d’une transition dépend des features.
Nous proposons et étudions des algorithmes permettant de vérifier des pro-
priétés temporelles sur des FTS. Ces algorithmes peuvent prouver que tous les
systèmes d’une famille satisfont une propriété donnée, ou bien ils identifient
ceux qui ne le font pas. Pour spécifier les propriétés, nous proposons feature
LTL and feature CTL, des extensions des deux logiques temporelles classiques.

En plus des fondements mathématiques, nous décrivons deux implémenta-
tions des FTS utilisables par des non-experts. La première utilise une représen-
tation symbolique de l’espace d’états et a été implémentée au sein du model
checker NuSMV. La deuxième, appelée SNIP, utilise un algorithme semi-sym-
bolique à la volée. Le langage de modélisation de SNIP est basé sur le langage
Promela. Enfin, nous discutons une évaluation théorique et empirique de nos ré-
sultats. Le cas de base utilisé pour l’évaluation empirique est l’application d’un
algorithme de model checking classique à chaque produit. Les expériences con-
duites avec les deux outils montrent que nos algorithmes peuvent atteindre des
gains en vitesse de plusieurs ordres de grandeur par rapport au cas de base.
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Preface

“ Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are—by
definition—not smart enough to debug it. ”Brian Kernighan

Variability becomes more and more commonplace in today’s software, be it in
the form of configuration options or as an integral part of the development
process, e.g., in Software Product Lines (SPLs) [Parnas, 1976, Clements and
Northrop, 2001, Pohl et al., 2005]. Configuration options make it possible to
adapt software to customers’ needs and thereby to cover a wider market seg-
ment. In the case of Software Product Line Engineering (SPLE), multiple
software systems (called products) are developed at once in order to benefit
from economies of scale by systematically reusing common parts. Efficient
management of the differences between the products of an SPL, i.e. its vari-
ability, is crucial. This type of system, in which variability plays an important
role, is termed variability-intensive. Building variability-intensive systems has
inherent advantages, such as productivity gains, shorter times to market and
greater market coverage [Clements and Northrop, 2001,Pohl et al., 2005].

Unfortunately, the complexity created by variability and reuse also leads to
problems [Leveson andWeiss, 2004]. Most software engineering techniques have
to be adapted to cope with variability. In particular, techniques that analyse
development artefacts, e.g., testing or static analysis, are only able to deal with
one instance of the artefact (files with program code in the case of testing or
static analysis) at a time. In the current state of SPLE, most analyses are thus
carried out when building a product, i.e., during application engineering [Pohl
et al., 2005]. Only few are conducted during domain engineering, i.e., when
building the assets from which products are derived.

Many variability-intensive systems are safety critical. Embedded systems,
for instance, are often developed as product lines [Ebert and Jones, 2009]. Ver-
ification, as a form of quality assurance, is important in this context. Often,
due to quality considerations, only a fraction of the products that could be
produced can be offered to customers. Existing verification techniques were
mostly developed for single systems. Using those techniques to verify all prod-
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ucts is very costly, since the number of possible products is exponential in the
number of options or parameter values.

The verification process itself encompasses a wide range of activities. In the
case of variability-intensive systems, there is a clear need to automate this task
as much as possible due to the number of products that have to be considered.
Furthermore, as critical systems tend to be distributed (e.g., electronic control
units in modern cars), an important class of problems are related to the con-
trol flow, i.e., absence of deadlocks, race conditions and similar errors. Model
checking [Clarke and Emerson, 1982,Queille and Sifakis, 1982] has proven to
be a powerful technique for uncovering such errors. Model checking is one of
the verification techniques that are currently restricted to the realm of single
systems. It will be the focus of this thesis.

Problem statement

The model checking problem consists in deciding whether an abstract descrip-
tion of the system behaviour satisfies some specification. Specifications are usu-
ally expressed in a temporal logic. A model checking approach thus comprises
three elements: a modelling language, a specification language and verification
algorithms that check satisfaction. The two principal challenges to applying
model checking to variability-intensive systems are the modelling language and
the verification algorithms. These are most affected by variability.

Variability in SPLs is typically expressed in terms of features. Features
are first-class abstractions that shape the reasoning of the engineers and other
stakeholders [Classen et al., 2008a]. As such they can be used to express vari-
ability in any variability-intensive system. A set of features specifies a product
of the variability-intensive system. The number of possible products is expo-
nential in the number of features, i.e., O(2n), where n is the number of features.
This is the source of much of the complexity of the problem at hand. The ex-
act number of products depends on the constraints that exist between features,
which are commonly recorded in a feature diagram [Kang et al., 1990].

A modelling language needs to be able to express O(2n) behaviours con-
cisely. Current proposals are based on UML [Ziadi et al., 2003], modal tran-
sition systems [Fischbein et al., 2006,Fantechi and Gnesi, 2008,Asirelli et al.,
2010a], modal I/O automata [Larsen et al., 2007, Lauenroth et al., 2009], de-
ontic logics [Asirelli et al., 2009] and CCS [Gruler et al., 2008b]. With the
exception of [Lauenroth et al., 2009], all these approaches fail to recognise the
importance of features as a unit of difference. This means that they capture
different behaviours, but offer little to no means to relate products and their
behavioural descriptions. They also cannot make use of information contained
in a feature diagram, such as the co-occurrence or mutual exclusion of two or
more features. A first challenge is thus to propose an approach for scalable
modelling of behaviour which overcomes the limitations of existing approaches.

The notion of satisfaction in variability-intensive systems can be reduced
to satisfaction in single systems. Intuitively, if the behavioural model of a
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variability-intensive system satisfies a property, this means that every product
satisfies the property. The verification algorithm should thus be able to identify
the products for which a property is satisfied and those by which it is violated.
This means that is has to check property satisfaction for O(2n) products. None
of the proposals mentioned above provides a model checking algorithm capable
of doing this efficiently. The second challenge is thus the efficient verification
of variability-intensive system behaviour.

Research questions
From this, we can derive the central research question of this thesis:

How can model checking be accomplished in the presence of variability?

This question touches upon many topics, and requires a comprehensive answer.
We thus decompose and refine it into three smaller research questions.

Several general observations can be made from the preceding discussion.
First, there is currently no understanding of what behaviour in an SPL con-
text means. Modelling languages for behaviour either describe the behaviour
of individual products rather than that of the product line; or they describe
the behaviour of all products, without the ability to identify which behaviour
pertains to which product; or they do not have a formal semantics which is
required for model checking. In [Lauenroth et al., 2009], the authors describe a
modelling language, but do not study its properties. A fundamental challenge,
to be addressed first, is thus the following.

RQ1 How can the behaviour of an SPL be described formally, and what does
model checking of SPLs mean?

The second step in answering the central research question is to provide and
study solutions to the model checking problem identified as part of RQ1. To
date, model checking of SPLs has only been treated in [Lauenroth et al., 2009]
and [Asirelli et al., 2010a]. However, both approaches are limited. The first
just proposes a rather inefficient proof-of-concept algorithm. The algorithm
of the second cannot even be used to yield information about products. This
leads us to formulate the second research question as follows.

RQ2 Is SPL model checking tractable? If so, how?

Both of these research questions can be answered solely with theory and
mathematics. While theory and mathematics are the prerequisites of any prac-
tical development, it is our explicit goal to evaluate their viability in practice.
The last step in answering the central research question is thus to implement
the theory as part of a model checker. There are currently no tools available
for SPL model checking. The third research question is the following.

RQ3 How can SPL model checking be applied in practice?

In this thesis, we shall strive to provide answers to these three questions.
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Proposed solution

The basis of our proposed model checking approach are Featured Transition
Systems (FTS), a novel formalism introduced in this thesis. FTS are a com-
pact mathematical model for representing the behaviour of a large number
of products. Basically, FTS are transition systems in which the presence of a
transition depends on a combination of features. Features are thus modelled by
annotation. This corresponds to the way features are commonly implemented
in industry (i.e., with #ifdefs [Kästner et al., 2008,Liebig et al., 2010]). The
behaviour of a particular product is a transition system, obtained by removing
transitions whose feature annotation is incompatible with the product. In addi-
tion, an FTS is linked to a feature diagram, which specifies constraints between
features. Linking transitions to features solves the traceability problem most
current proposals suffer from. In case of a property violation, it allows us to
provide a precise statement about the conflicting features. FTS thus overcome
the limitations of existing modelling languages. Moreover, FTS have two desir-
able properties: an FTS can represent any finite set of transition systems (i.e.,
products) and FTS are exponentially more succinct than transition systems.

The model checking problem for FTS corresponds to the intuition given
above. If an FTS satisfies a temporal property, the transition system of every
product satisfies it. Model checking an SPL against a property thus corresponds
to model checking all its products against this property. In consequence, prop-
erties for an SPL can be specified in existing temporal logics, Linear Time Logic
(LTL) [Pnueli, 1977] and Computation Tree Logic (CTL) [Clarke and Emerson,
1982]. As a property might not be relevant to all products, we propose feature
LTL (fLTL) and feature CTL (fCTL). These logics extend LTL and CTL with
an operator that specifies the set of products for which a property should hold.

We define model checking algorithms that allow to verify FTS against fLTL
and fCTL properties. Our model checking algorithms can verify all products at
once and pinpoint those that violate the property. The algorithms explore the
FTS instead of exploring the transition system of every product. They can thus
prevent the exponential blowup due to the number of products. The algorithms
compute for each state the set of products in which it is reachable. A central
concern is to minimise the overhead caused by this, which we do by using a
symbolic encoding for sets of products. A symbolic encoding is a compact
data structure for a large set of elements. Symbolic encodings have long been
used in model checking [McMillan, 1993,Burch et al., 1992]. A novelty of our
algorithm is that it is semi-symbolic. It visits system states one by one, but
represents products symbolically. In addition to this algorithm, we also give a
fully symbolic algorithm. This is motivated by the fact that for single systems,
symbolic algorithms have been shown to be applicable in cases where explicit
algorithms do not scale [Burch et al., 1992].

As this overview of the theoretical results shows, our treatment of FTS
touches many of the well known concepts and debates in model checking: LTL
vs. CTL, explicit vs. symbolic. In addition to these central results, we cover
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aspects such as expressiveness, parallel composition, deadlock checking and
vacuity detection. We also provide an in-depth treatment of the model checking
algorithms, studying their complexity, properties, and various optimisations.

Following RQ3, we not only cover the theoretical foundations, but also tools
that can be used by non-experts. FTS are to variability-intensive systems what
transition systems are to single systems: a semantic model for behaviour. They
are not meant to be used as an actual modelling language. To be usable in
practice, FTS have to be abstracted by a modelling language which is close
to the problems to be modelled. We propose two such languages, based on
different philosophies for modelling features. The first one, fSMV [Plath and
Ryan, 2001], is a feature-oriented extension of the SMV language [McMillan,
1993]. The other is fPromela, an extension of the Promela language from the
popular model checker SPIN [Holzmann, 2004]. fSMV is based on superim-
position: features are specified modularly as changes to be done to a base
system. A product is constructed by composition of features. fPromela, in
contrast, follows an annotative approach in which statements can be guarded
by features. There, products are constructed by removing statements related
to non-selected features. The semantics of both languages is given in terms of
FTS, and both are shown to be expressively equivalent to FTS.

Each language is implemented as part of a separate model checker, using
different logics and algorithms. The model checker for fSMV is fNuSMV, an
extension of the NuSMV model checker [Cimatti et al., 2000], using a fully
symbolic algorithm for fCTL. The model checker for fPromela, SNIP, was im-
plemented from scratch. It uses the semi-symbolic algorithm and supports the
verification of fLTL properties. Both tools can be used to verify properties over
all the products of a variability-intensive system at once. While the languages
provide a practical solution to the problem of scaleable modelling, the model
checkers provide practical solutions to the challenge of efficient verification.

For each tool, we conduct an evaluation consisting of a series of experiments
measuring runtime and state space when the tool verifies a property. The
baseline for this evaluation is the application of a classical model checking
algorithm to each product. The experiments show that our algorithms can
achieve up to order-of-magnitude speedups and reductions in the state space.

FTS are a semantic model for SPL behaviour which overcomes the limita-
tions of existing semantic models. As such it serves as the formal foundation of
our work. However, most of our results, such as the model checking problems
and the algorithmic principles developed in this thesis can by applied beyond
FTS. This becomes clear in our discussion of the model checking tools fNuSMV
and SNIP, where the relation to FTS is only visible in the inner workings, al-
most imperceptible to the user. Nevertheless, their user interface clearly reflects
the SPL model checking problems we defined.

Moreover, the contributions made in this thesis do not only apply to SPLs,
or variability-intensive systems. Even in the case where a model does not repre-
sent a variability-intensive system, our algorithms can be used for tasks such as
model understanding, or to determine which fragment of the model is respon-
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sible for a property violation. Also, the idea of our semi-symbolic algorithm,
which combines symbolic execution with explicit state-space exploration, can
be applied beyond features and Boolean variables. In a broader sense, our algo-
rithms calculate a Boolean function over model parameters which characterises
the parameter values for which the model violates a property. Interpreted this
way, it is clear that the parameters do not have to be features of a variability-
intensive system. For example, they could represent design alternatives that
are being considered for a given system.

Contributions

In summary, the principal contributions of this thesis are the following.

• FTS, a new semantic model for variability-intensive system behaviour.
FTS are formally defined and extensively studied, including expressive-
ness, relation to existing languages and parallel composition. The im-
provements of FTS over existing work are manifold. Variability in FTS is
a first-class citizen, meaning that there is a clear notion of which product
has which behaviour. Reasoning on an FTS is equivalent to reasoning
about the whole product line, or subsets of it. In FTS, very detailed
behavioural variations (e.g., single transitions) can be expressed. The
combination of transition system and feature diagram allows an FTS to
take feature dependencies and incompatibilities into account.

• A study of the model checking problem in variability-intensive systems.
We identify the relevant model checking decision problems, provide formal
definitions and study their complexity. These results are presented in
terms of FTS but apply to variability-intensive systems in general.

• New logics, fLTL and fCTL, as small but important variations of the
well-known existing temporal logics.

• Algorithms for model checking FTS against fLTL and fCTL properties,
the second major contribution. Our algorithms are the first to attempt
to solve the model checking problem for variability-intensive systems ef-
ficiently. We propose two algorithms, a semi-symbolic algorithm, and a
fully symbolic algorithm. We study the properties and optimisations of
the semi-symbolic algorithm and propose two symbolic encodings for sets
of products. We further show how the fully symbolic algorithm can be re-
duced to classical symbolic model checking of specially crafted transition
systems. A detailed complexity analysis of the algorithms is given.

• We study high level modelling languages for variability-intensive system
behaviour. fSMV can be used to express symbolic FTS and is based on
existing work [Plath and Ryan, 2001]. fPromela is a new language, based
on Promela. In both cases, we give a semantics in terms of FTS and
prove full expressiveness of the high-level language. We further discuss
the different philosophies used for modelling features in both languages.
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• Two tools for model checking variability-intensive systems. We present a
tool-chain built around an extended version of NuSMV. It can be used for
the verification of fSMV models and implements the symbolic algorithm.
We also present SNIP, a model checker for fPromela. Both tools are
evaluated empirically based on a number of models.

Structure
The presentation is divided into four parts as follows.

Part I introduces the background of this research. Chapter 1 discusses soft-
ware product lines, a method for the development of variability-intensive
systems. Chapter 2 introduces the model checking problem, and relevant
notations, concepts and techniques. Chapter 3 surveys the state of the art
in verification of variability-intensive systems and identifies limitations.

Part II is the heart of the thesis. It covers the foundational and theoretical
results. FTS are presented and studied in Chapter 4. In Chapter 5
we discuss logics and define the model checking problem for variability-
intensive systems in general, and for FTS in particular. The algorithms
for these decision problems are given in Chapter 6, with the semi-symbolic
algorithms, and in Chapter 7 with fully symbolic algorithms.

Part III presents the practical results. We implemented our theory as part
of two model checking tools, fNuSMV and SNIP presented in Chapters 8
and 9 respectively. Each tool comes with a high-level modelling language,
of which we study the expressiveness and present example models. We
further report on an empirical evaluation of our results.

Part IV discusses limitations and perspectives for future work in Chapter 10
and concludes the thesis.

Bibliographic notes follow on page 193 and an index on page 213.
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Background





Chapter 1

Software Product Lines

“ The computer industry is the only industry that is more fashion
driven than women’s fashion. ”Richard M. Stallman, in The Guardian, 2008

The discipline the present thesis should be attributed to is software engineering.
Software engineering is the “application of a systematic, disciplined, quantifi-
able approach to the development, operation, and maintenance of software;
that is, the application of engineering to software.” [IEEE, 1990,Abran et al.,
2004]. Within the vast area of computer science, it stands as a perfect example
for the integration of two different paradigms [Wegner, 1976]. First and fore-
most, software engineering is technocratic, in that its purpose is the systematic
and cost-effective design of software. It is also mathematical (the rationalist
paradigm in [Eden, 2007]), in that it treats pieces of software as mathemati-
cal objects and uses abstraction or deductive reasoning to study these objects.
Most disciplines in software engineering tend to focus primarily on one of these
paradigms, with the technocratic paradigm dominating [Wegner, 1976]. This
thesis is placed at their intersection. We explore theories and mathematical
models with the ultimate goal to create tools that support the development of
reliable software.

Software engineering as a discipline emerged in response to the software
crisis of the 1960-1970s. The term itself first appeared in the 1968 NATO
Software Engineering Conference [Naur and Randell, 1968]. As computers
started to become orders of magnitude more powerful, the problems solvable
and to be solved by computers started to become more complex, too [Dijkstra,
1972]. Also, the more powerful computers became, the more complex it became
to program them [Dijkstra, 1972]. Furthermore, the development of systems
with large teams of programmers created enormous organisational problems,
which did not exist before [Brooks, 1975]. The results were budget overruns,
canceled projects, low quality software and evan lethal accidents as in the case
of the Therac-25 radiation therapy machine [Leveson and Turner, 1993].
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Over the years, numerous techniques have been developed to address these
problems, the most important of which were high-level programming languages.
Whereas initial attempts were meant to solve the problem altogether, it became
clear that there was no ‘silver bullet’ [Brooks, 1987]. Among the technolo-
gies initially lauded as silver bullets were Ada and other new programming
languages, expert systems or program verification. These techniques provide
incremental rather than order-of-magnitude improvements in productivity or
quality. Most of them remain active subjects of research.

A key concept in software engineering, also introduced during the previously
mentioned NATO conference, is that of reusable software components [McIlroy,
1968]. As described by McIlroy, software back then was “produced by backward
techniques” , as many recurring problems were solved over and over again from
scratch. The availability of standardised components solving these problems
would allow for software development to be more industrialised. This idea is
complemented by Parnas’ introduction of information hiding [Parnas, 1971,
Parnas, 1972], i.e., the idea that an interface should hide the design decisions
that underly its implementation. A notable development of these ideas is the
notion of program family [Dijkstra, 1969,Dijkstra, 1970]. According to Parnas,
a set of programs is considered “to constitute a family, whenever it is worthwhile
to study programs from the set by first studying the common properties of
the set and then determining the special properties of the individual family
members” [Parnas, 1976]. The motivation for this is that the development cost
can be reduced when the “designer/programmer pays conscious attention to
the family rather than a sequence of individual programs” [Parnas, 1976].

These developments culminated in what is today known as Software Prod-
uct Line Engineering (SPLE), a discipline within software engineering which
emphasises systematic and planned reuse. A Software Product Line (SPL)
is traditionally defined as “a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particu-
lar market segment or mission and that are developed from a common set of
core assets in a prescribed way” [Clements and Northrop, 2001]. SPLs are a
particular class of variability-intensive systems, those in which variability is
systematically planned. As we shall see, the theories proposed herein apply
to variability-intensive systems in general. We focus on SPLs because they
provide a frame of reference, with well-defined concepts and notations.

In this chapter, we describe SPLE and its process in Section 1.1. We then
introduce variability and feature diagrams in Section 1.2. In Section 1.3, we
give an overview of feature-oriented software development. In Section 1.4, we
discuss feature interactions, and the problem of feature interaction detection.

1.1 The software product lines paradigm

Whereas the idea of reuse goes back to early technical notions such as soft-
ware component, SPLE as a paradigm did not appear until the advent of
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widespread Commercial Off-The-Shelf (COTS) software in the 1990s. Com-
pared to the mostly tailor-made software systems in use until then, COTS
software is cheaper because it can be sold to more than one customer. A dis-
advantage that comes with this, of course, is that COTS software is not always
well adapted to the requirements of the individual customers. There is a trade-
off between price and fitness-for-purpose. As a mitigation, COTS software is
made configurable. The configurable aspects range from run-time or compile-
time options to extension mechanisms and scripting languages. Since then,
configurability has become a characteristic shared by many software systems.

SPLE is an attempt at achieving a middle ground between tailor-made
software and configurable COTS software. The goal is to achieve mass cus-
tomisation [Pohl et al., 2005], i.e., “the large-scale production of goods tailored
to individual customers’ needs” [Davis, 1987]. In SPLE, this is achieved by
developing several similar systems (called “products”) at once. These products
are designed as a family from the outset, and their development relies heavily
on reuse. Reuse in SPLE is planned and systematic rather than opportunistic.
The different products are identified upfront and a model of their variability
and commonality is created. Commonality denotes all aspects the products
have in common, whereas variability denotes those in which they differ.

Throughout most the thesis, we use a product line of beverage vending ma-
chines (inspired from [Fantechi and Gnesi, 2008]) as the running example. An
example for commonality in these machines is that they all have an availability
indicator for each beverage. There are several sources of variability. The vend-
ing machines serve two kinds of drink: soda and tea, and accept two kinds of
currency. There are also vending machines that distribute drinks for free (in an
office, for instance). All machines except for those that distribute free drinks
have a protected beverage compartment. Finally, some machines allow a pur-
chase to be cancelled, and others do not. When these variations are combined,
a large number of potential vending machines is obtained. Since each of these
requires a different controller, it seems natural to develop these controllers as
an SPL (e.g., as a parameterised controller), and not each time anew.

Commonality and variability are expressed in terms of features. Features
intuitively characterise pieces of functionality in a software system. Many defi-
nitions exist for the term ‘feature’ [Classen et al., 2008a]. In this thesis, we stick
to the one of [Batory et al., 2006], who defines a feature as “an increment in
functionality” . This means that a feature can range from an easily perceivable
key characteristic of the system to a very subtle change in functionality. More-
over, features can denote technical characteristics of a system (like components,
or classes), as well as management or customer-oriented characteristics [Met-
zger et al., 2007]. Since commonality and variability are expressed in terms
of features, a product can be defined as a set of features [Schobbens et al.,
2007] (those that are part of the product). In general, not all feature combi-
nations are considered valid products. For example, some features might be
incompatible. To capture the set of valid products, feature diagrams can be
be used [Kang et al., 1990, Czarnecki and Eisenecker, 2000, Schobbens et al.,
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Figure 1.1: Schema of the SPLE process [Pohl and Metzger, 2006].

2007]. A feature diagram formally specifies the set of valid products by means
of constraints between features. Feature diagrams will be presented in more
detail in Section 1.2.

The key to SPLE is systematic reuse, which occurs throughout all phases
of the software life cycle. More precisely, SPLE distinguishes between two de-
velopment processes: domain engineering and application engineering [Pohl
et al., 2005]. Both processes can be thought of as full-fledged software devel-
opment processes, each with a different goal. The overall process is illustrated
in Figure 1.1, taken from [Pohl and Metzger, 2006]. Domain engineering is
concerned with producing reusable artefacts. These artefacts can range from
requirements, design documents and models to code. The domain artefacts
are created to be reused. They contain variability and can be parameterised
or composed to create products. Generally, features correspond to such arte-
facts or their parameters. In this respect, domain artefacts are different from
those found in the classical development processes of single systems. A further
particularity is that domain engineering generally does not produce a running
system. A concrete system is created during the application engineering pro-
cess. This process is repeated for each product. Its starting point is thus the
selection of features that make up a product. The processes of selecting fea-
tures is called configuration [Czarnecki et al., 2005] and might reach into, or
even beyond the application engineering phase (depending on the binding time
of the various choices). During application engineering, a particular product
is built using the domain artefacts. Depending on the techniques used to im-
plement the domain artefacts, this can take different forms. For example, if
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domain engineering has produced a large body of configurable code, then ap-
plication engineering amounts to reducing this code to the selected features.
On the other hand, if domain engineering just produced a library of reusable
functions, then application engineering might be more involved, requiring new
code to be written.

The motivation for adopting SPLE is that systematic reuse of development
artefacts leads to economies of scale [Clements and Northrop, 2001]. Basi-
cally, domain artefacts can be developed in mass production mode, with all
the benefits and economies this implies for the producer. Systems adapted to
the requirements of a customer are derived from these artefacts, allowing the
producer to benefit from the economic advantages of offering individualised
products to the customer.

1.2 Feature diagrams

Feature Diagrams (FDs) are a common means to model the variability of an
SPL. In this context, they have proven to be useful for a variety of tasks such as
project scoping, requirements engineering and configuration [Bosch, 2005,Lee
et al., 2002,Thiel and Hein, 2002,Pohl et al., 2005,Benavides et al., 2005]. FDs
were introduced in the 1990s by [Kang et al., 1990]. They rose to prominence
later through the work of [Czarnecki and Eisenecker, 2000,Batory, 2005,Batory
et al., 2006,Schobbens et al., 2006,Benavides et al., 2010].

1.2.1 Syntax

To illustrate the syntax of FDs, we elaborate on the vending machine example.
From the description of the product line of beverage vending machines given

above, we can derive the following features. Soda and Tea represent the possible
beverages served. To capture the constraint that at least one beverage has to
be sold, they are grouped under a feature Beverage with an or -decomposition.
Features Euro and Dollar represent the currencies. They are also grouped un-
der a corresponding feature, with an xor -decomposition, meaning that they are
alternatives. The FreeDrinks and CancelPurchase features are independently
optional. Finally, FDs require a root feature which represents the system itself,
hence VendingMachine in our case. The resulting FD is shown in Figure 1.2.
For convenience, each feature is given a one-letter acronym. Some of the fea-
tures are coloured. These colours will be used in a later chapter.

Basically, FDs are trees (or directed acyclic graphs, DAGs [Kang et al.,
1998]) whose nodes denote features and whose edges represent top-down hier-
archical decomposition of features. Each decomposition tells that, given the
presence of the parent feature in a product, some combination of its children
should be present in the product, too. Which combinations are allowed depends
on the type of the decomposition. In addition to the tree-shaped decomposi-
tion structure, FDs can also contain cross-cutting constraints (usually requires,
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Figure 1.2: Feature diagram of an SPL of beverage vending machines.

Table 1.1: Graphical elements of FDs and their meaning

a

a

a

and : ∧

or : ∨

xor : ⊕

�n..n�

�1..n�

�1..1�

�i..j�a i..j

Cardinality
Concrete
syntax

Boolen
operator

a

mandatory children

one or more children required

alternative choice of children

optional child feature (under and)

custom cardinality

Meaning

expressing dependency, or excludes, expressing incompatibility) as well as side
constraints in a textual language such as propositional logic [Batory, 2005].
FDs are thus a constraint language that can be used to define the set of valid
products of an SPL concisely.

Let N be the set of all features of an SPL. A specific set of features p ⊆ N
specifies a product. An FD d formally defines a set of products, i.e., a set of sets
of features [[d]]

FD
⊆ P(N). The formal definition of FDs is due to [Schobbens

et al., 2006] and follows the guidelines of Harel and Rumpe [Harel and Rumpe,
2000]. They argue that each modelling language must possess an unambiguous
mathematical definition of three distinct elements: the syntactic domain, the
semantic domain and the semantic function, traditionally written [[ ]].

Formally, an FD is defined as follows.

Definition 1.1. An FD d is a tuple (N, r,DE, λ,Φ), where

• N is the set of features (nodes).

• r ∈ N is the root.
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• DE ⊆ N ×N is the decomposition relation between features which must
form a tree or a DAG with r as its root. For convenience, we write
children(f) , {f ′ | (f, f ′) ∈ DE}.

• λ : N → N×N indicates the decomposition type of a feature, represented
as a cardinality 〈i, j〉 where i indicates the minimum number of children
required in a product and j the maximum.

• Φ is a formula that captures additional constraints such as requires and
excludes. Without loss of generality, we consider Φ to be a formula in
propositional logic, Φ ∈ B(N), as defined in Definition 1.2 below.

The syntactic domain of the FD language is the set of all FDs conforming to
this definition. The semantic domain is PP(N), meaning that each correct
diagram is interpreted as a set of products. The semantic function, [[d]]

FD
,

returns the valid products of d, that is, any p ⊆ N that

• contains the root: r ∈ p;
• satisfies the decomposition types: m ≤ |children(f) ∩ p| ≤ n, for any
f ∈ p with λ(f) = 〈m..n〉;

• satisfies the additional constraints: p |= Φ;

• contains the parents of selected features: g ∈ p∧g ∈ children(f)⇒ f ∈ p.
An optional feature f with parent g is syntactic sugar for two features f and
f ′ with (g, f ′), (f ′, f) ∈ DE and λ(f) = 〈0, 1〉.
For example, the FD in Figure 1.2 admits 24 valid products out of the 29

possible feature combinations (or 26 if the structuring features are omitted).
Given an FD, configuration is the process of gradually making the choices

defined in the FD with the purpose of determining the product that is going to
be built. In a realistic development, the configuration process is a small project
itself, involving many people and taking up to several months [Rabiser et al.,
2007]. Czarnecki et al. [Czarnecki et al., 2005] proposed multi-level staged
configuration, in which configuration is carried out by different stakeholders
at different levels of product development or customisation. At each stage
some variability is removed from the FD until none is left. This addresses
problems that occur when different abstraction levels are present in the same
FD and also allows for more realism since a realistic project would have several
related FDs rather than a single big one [Reiser and Weber, 2006,Rabiser et al.,
2007]. In [Classen et al., 2009c], we formalised and studied the properties of
configuration processes [Classen et al., 2009c] which led to the proposal of
feature configuration workflows [Hubaux et al., 2009,Classen et al., 2009b].

The notion of configuration is closely related to the binding time of a feature,
which is the point in the development cycle at which a feature selection is fixed.
One generally distinguishes between design-time variability, i.e., variability that
is bound at design-time, and run-time variability i.e., variability that is only
bound at run-time (using configuration files, or other parameters). The scope



10 Chapter 1 Software Product Lines

of this thesis will be limited to design-time variability. The model checking
technique proposed in this thesis does not directly apply to cases in which
features are activated or deactivated at runtime.

The FDs conforming to Definition 1.1 are rather basic but largely sufficient
for the purpose of this thesis. Various extensions to FDs have been proposed,
such as feature attributes [Benavides et al., 2005], binding times [van Gurp
et al., 2001], the use of of multi-level feature trees to improve scalability [Reiser
and Weber, 2006, Reiser et al., 2007]. An alternative to the graphical FD
notation shown in Figure 1.2 are textual languages such as FDL [van Deursen
and Klint, 2002], GUIDSL [Batory, 2005], VSL [Abele et al., 2010,Reiser, 2009]
or our own TVL [Classen et al., 2011a, Classen et al., 2010a, Boucher et al.,
2010a]. In TVL, the FD of the vending machine from Figure 1.2 would be
written as follows.

1 root VendingMachine
2 group allOf {
3 opt CancelPurchase ,
4 Beverages group someOf {
5 Soda ,
6 Tea
7 },
8 opt FreeDrinks ,
9 Currency group oneOf {

10 Euro ,
11 Dollar
12 }
13 }

The keyword allOf denotes an and -decomposition, someOf an or -decomposi-
tion and oneOf an xor -decomposition. Optional features are preceded by the
opt keyword, and the hierarchy is represented by nested groups. TVL is used
by the tools developed as part of this thesis. In the chapters of Part III, we
will generally use TVL instead of the graphical representation.

1.2.2 Analysis and reasoning

FDs lend themselves well to automated analysis. Examples of such analyses
are satisfiability, i.e., whether the FD admits at least one valid product; prod-
uct inclusion, i.e. whether the FD admits a particular product, or a product
containing certain features, and product listing, i.e. to list the valid products.
The straightforward semantics of FDs can easily be encoded in the form of an
expression in propositional logic [Mannion, 2002,Batory, 2005].

Definition 1.2. Given a set of variables vx, B(vx) denotes the set of all possi-
ble expressions φ, with φ ::= 1 | v (∈ vx) | φ1∧φ2 | ¬φ. The usual operators
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are derived from this: 0 , ¬1, φ1 ∨ φ2 , ¬(¬φ1 ∧ ¬φ2). In the remainder of
this thesis, we write 1 to denote true and 0 to denote false.

The semantics of an expression φ ∈ B(vx), written [[φ]], is the set of func-
tions σ : vx → {0, 1} so that σ |= φ, where: σ |= 1, σ |= v ⇐⇒ σ(v) = 1,
σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 ∧ σ |= φ2 and σ |= ¬φ ⇐⇒ σ 6|= φ. Regarding
notation: σ ∈ [[φ]], σ |= φ and φ(σ) = 1 (function application) are equivalent.

In a slight abuse of the language we just specified, we note B(d) the propo-
sitional logic encoding of an FD d. When N is the set of features in d, then
B(d) ∈ B(N), that is, the variables in the expression correspond to the features.
An assignment σ thus defines a product (1 corresponds to selection and 0 to
deselection of a feature), and [[B(d)]] defines a set of products, namely [[d]]

FD
.

With this encoding, satisfiability of an FD d corresponds to satisfiability
of B(d). The inclusion of a product p corresponds to satisfiability of φp ∧
B(d), where φp is a conjunction of all literals positive for features in p and
negative otherwise. Such analyses can be conducted using a satisfiability (SAT)
solver and easily scale up to FDs with 10,000 of features [Mendonca et al.,
2009]. An alternative representation for Boolean functions are binary decision
diagrams [Bryant, 1992], which can also be used to conduct these analyses.

For the remainder of the thesis, unless otherwise stated, we always assume
d to denote an FD, and N a set of features.

1.3 Feature-oriented software development

The SPL implementation techniques that use features (or similar concepts [Pohl
et al., 2005]) as the building blocks of a product fall under the umbrella of
Feature-Oriented Software Development (FOSD) [Prehofer, 1997,Batory, 2004,
Apel and Kästner, 2009,Apel et al., 2011]. FOSD techniques range from model-
driven approaches to pure implementation techniques and can be categorised
broadly into two groups: annotative and compositional [Kästner et al., 2008].

Annotative techniques consist in implementing a product containing all fea-
tures, which are clearly identified by annotations (e.g. using #ifdefs in the
C programming language [Kästner et al., 2008, Liebig et al., 2010], or code
tags [Boucher et al., 2010b]). Creating a product consists in removing code or
artefacts pertaining to non-selected features (which we call pruning). This is
probably the FOSD technique most commonly used in industry. A claimed dis-
advantage of annotative techniques is that they do not guarantee modular fea-
ture implementations, i.e., implementations in which features are independent
from each other and interact in well-defined ways. Most annotative techniques
allow to intertwine features arbitrarily in the code, which breaks modularity.

Compositional techniques, in contrast, separate the individual features and
only allow for modular implementations. Features are specified individually as
building blocks of a system and a base system provides a common core to which
features can be added. A product is obtained by composing the base system
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with the implementations of selected features. A number of composition mech-
anisms have been proposed in the literature. Programming language based
approaches to FOSD generally rely on superimposition [Francez and Forman,
1990]. Examples of such techniques are aspect-oriented programming [Kicza-
les et al., 1997,Mezini and Ostermann, 2004,Voelter and Groher, 2007], mix-
ins [Smaragdakis and Batory, 2002] and FeatureC++ [Apel et al., 2005], which
are supported by tools such as AspectJ [Laddad, 2003], AHEAD [Batory, 2004],
or FeatureHouse [Apel et al., 2009]. Approaches based on composition are most
commonly used in research.

1.4 Feature interactions
In practice, features are seldom independent. FOSD techniques generally allow
features to share variables, or to override changes made by other features. In
these cases, features are said to interact, and a particular case is called a feature
interaction [Calder et al., 2003]. An interaction might be desired (e.g., two
features collaborating) or undesired (e.g., incompatible features). Undesired
feature interactions are sometimes called interferences. When we use the term
feature interaction, unless otherwise stated, we mean an undesired interaction.

Feature interactions were originally a research topic in the telecommunica-
tions domain [Keck and Kuehn, 1998]. The various services offered in a tele-
phone network are all centralised (hence the concept of intelligent network).
With a large number of centralised services, the likelihood of some of them
interacting increases considerably. Furthermore, the exponential number of
possible service combinations makes it hard to identify interactions by testing.

With the advent of SPLE and FOSD, feature interactions have once more
become an important research problem. A large number of approaches for de-
tecting and managing interactions, largely in telecommunication systems, have
been proposed [Calder et al., 2003]. Among these approaches are approaches for
detection (often based on verification techniques [Plath and Ryan, 2001,Calder
and Miller, 2001]) and approaches for avoidance (based on architecture [Jackson
and Zave, 1998], or particular composition operators [Hay and Atlee, 2000]).
Detection approaches are generally limited to testing a subset of the potential
systems, by considering pairs of features only. This is a major difference wrt.
the work presented in this thesis.

In the past [Classen, 2007,Classen et al., 2008a,Classen et al., 2008c], we
have studied the formal properties of feature interactions in the requirements
engineering framework of [Zave and Jackson, 1997]. Our focus there were fea-
ture interactions that take the physical environment into account, which are
especially relevant for SPLs of embedded control systems [Metzger et al., 2005].



Chapter 2

Model Checking

“ It is all a matter of time scale. An event that would be unthinkable
in a hundred years may be inevitable in a hundred million. ”Carl Sagan, Cosmos, 1998

Information and communication technology permeates our daily lives. As soft-
ware systems become increasingly complex and play more important roles, reli-
ability has become a prime concern in their development. Embedded systems,
in particular, are pervasive and often control safety-critical processes. Failures
in systems such as automobile controllers [Koscher et al., 2010], network proto-
cols [Zave, 2008], or spacecraft [Havelund et al., 2001] can cause death, injury
or major financial loss.

An important activity in the development of such systems is thus quality
assurance. Quality assurance comprises two aspects: validation and verifica-
tion [Easterbrook, 1996]. Validation considers the system in its context. Its goal
is to make sure that the system being built conforms to initial requirements,
i.e., that the right system is built. Verification, in contrast, makes assumptions
about the environment and tests whether the system exhibits certain properties
under these assumptions, i.e., whether the system is built right [Boehm, 1981].

In this thesis, we focus on verification, and one method in particular: model
checking. Section 2.1 introduces model checking while Section 2.2 covers its
fundamentals. In Section 2.3, we discuss model checking algorithms and in
Section 2.4 the advanced techniques relevant to this work.

2.1 Introduction to model checking

Model checking is part of the subdomain of software engineering concerned with
verification. A number of verification techniques were born out of the 1960s-
70s software crisis. Many of them, such as Hoare logic [Hoare, 1969], consisted
of proof systems for sequential programs. The goal of these methods was to
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start from an assumption about the inputs of a program (the precondition) and
systematically derive the guarantees it makes about the output (postcondition),
or the other way round. Hoare logic has generic rules for each statement and
derives the postcondition statement by statement. Loop statements are the
most difficult, as they require a loop invariant, that is, a property that holds
at the beginning of each iteration.

The early methods did not fare well as programs grew more complex. Since
they were performed manually, they did not scale beyond simple programs,
and the guarantees they could make were offset by the possibility of errors in
their application. Furthermore, they had theoretical limitations. The search of
invariants is hard to automate, and some properties, such as termination, are
undecidable. Another problem came with the advent of concurrent execution
of programs and reactive systems. Existing methods all worked under the
assumption that a program was a sequence of steps which calculated a function
of the input. They did not consider the case that execution might be interleaved
in various ways with that of other programs, and that the programs might be
interacting. They also did not consider the case of systems that reacted to
inputs and produced outputs continuously, as a normal controller does.

This led to developments such as process algebra [Milner, 1980], which al-
lows to describe distributed systems, and model checking, which allows to ver-
ify them, in the early 1980s. Model checking was developed independently by
Clarke and Emerson [Clarke and Emerson, 1982] and Queille and Sifakis [Queille
and Sifakis, 1982]. Contrary to other verification techniques at the time (e.g.,
testing, code review, or theorem proving), model checking is fully automatic
and does not require human intervention. Model checking targets reactive sys-
tems; that is, systems with little to no data manipulation, but with a lot of
non-determinism and interaction with the environment. Those properties make
reactive systems extremely hard to test. Many behaviours are just exhibited
under very special circumstances. While they are highly unlikely to be repro-
duced during a test session, they are rather likely to occur during years of
operation. Reactive systems are also rather easy to model check. As they only
manipulate small amounts of data, their state space is often finite and of rea-
sonable size. Reactive systems are pervasive today. Most embedded systems,
ranging from controllers in automobiles to pace makers, are of this kind. They
observe a set of phenomena in the real world, and react accordingly.

The role of verification in software engineering has changed over time. The
initial goal of most approaches was to prove some sort of correctness. This
turned out to be overly ambitious, not least because there is no generic notion
of correctness. Furthermore, for complex systems it is considered impossible,
or at least impracticable, to provide a full verifiable specification of the system.
Nowadays, model checking and other verification techniques are used in concert.
Their goal is to provide confidence in designs and assistance in the development.

Model checking is highly relevant today. It is used in the development of
critical systems [Giannakopoulou et al., 2005,Havelund et al., 2001], commercial
software [Ball and Rajamani, 2001,Ball et al., 2004], and in the development
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of hardware circuits [Burch et al., 1990]. In 2007, Clarke, Emerson and Sifakis
received the Turing Award for their work on model checking.

2.2 Fundamentals

Model checking essentially deals with two types of artefact: models which de-
scribe system behaviour, and properties which are specifications that one would
like the system to satisfy. Given a model and a property, the model checker
can determine whether or not the model satisfies the property.

Unfortunately, the terms ‘model’ and ‘specification’ are overloaded with in-
terpretations, some overlapping. In this thesis, ‘model’ denotes an artificial
abstraction of the real world created for the purpose of analysis. A ‘specifica-
tion’ is a declarative assertion that expresses a desired property of an artefact.
In this sense, a model might well serve as the specification for an engineer.
However, when we write ‘specification’, we generally mean assertions about
the system and the model. Moreover, in the study of formal languages (such as
propositional logic), the term ‘model’ denotes an interpretation of a sentence
in a language that evaluates to true. This is the meaning of ‘model’ in ‘model
checking’, that is, model checking is appropriately named as the procedure of
checking whether an interpretation (the behavioural model) is a model of a
formula (the specification).

Let us use the vending machine to illustrate these concepts. The behaviour
of a basic vending machine which just sells soda and tea is as follows. Initially,
the machine waits for a coin to be inserted. Once a coin is inserted, it returns
change (assuming all beverages have the same price) and waits for the user
to select the beverage. Upon selecting soda or tea, the machine serves it and
opens the beverage compartment. The customer can then take her beverage
and the machine closes the beverage compartment.

An example of a property that a vending machines should satisfy is that
“After selecting a beverage, the machine will always open the beverage com-
partment to allow the customer to collect her purchase.”

2.2.1 Formal models

The starting point for model checking is a description of the behaviour of a
system. Such a description generally abstracts away from the physical char-
acteristics of the machine on which the system is executed. In the most basic
form, the behaviour of a system can be considered as a sequence of states. For a
system consisting of a single program, a state would be a snapshot of the block
of memory allocated to the program. The set of all states of a system is its state
space. If a state is a block of n bits of memory, the state space is given by the
2n possible values that the block of memory can have. The program consists of
a set of instructions that manipulate this memory. Its behaviour is thus given
by a sequence of blocks of memory, one for each executed instruction.
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As we shall see later, model checking algorithms make searches in the state
space of a system. A limiting factor in the performance of these algorithms is
the number of states that can be explored. As seen before, the size of the state
space of a system is exponential in the size of a state. Already for states as
small as 288 bits (or 36 bytes), the maximal size of the state space is about
1073 terabytes, or as large as the observable universe measured in numbers of
atoms (which is about 1085 [Hawking, 1988]). Even if only a fraction of these
states is ever taken by the system, the number of states would be huge. This
problem is known as state explosion, and is one of the main obstacles for the
adoption of model checking to verify program code.

One way to combat state explosion is abstraction. In practice, languages
for describing system behaviour abstract away from execution details, such as
the representation of programs and their variables in memory. In addition, the
engineer creating the model will abstract away from details that he considers
irrelevant to the properties he wants to analyse. E.g., the description of the
vending machine behaviour given above does not mention prices, or describe
the handling (identification, validation and counting) of the inserted coins.

Whatever the language for describing behaviour, it always boils down to
sequences of states. The most basic model for the system behaviour, and the
semantic basis for many behavioural modelling languages are transition systems
and Kripke structures [Baier and Katoen, 2008, Kripke, 1963]. Basically, a
transition system is a graph where vertices are states and edges transitions
between states. A transition from one state to another represents the capability
of the system to perform this state change. A number of states are designated
initial states, which means that they represent the possible states of the system
at launch. Every path through the graph corresponds to a possible execution
of the system, and the semantics of the transition system is the set of such
executions. Formally:

Definition 2.1. A transition system is a tuple ts = (S, trans, I), where

• S is a set of states;
• trans ⊆ S × S is a set of transitions;
• I ⊆ S is a set of initial states.

For s ∈ S, paths(ts, s) denotes the set of all non-empty (potentially infinite)
sequences π = s0s1 . . . with s0 = s and si→ si+1 for all 0 ≤ i.
Definition 2.2. The semantics of a transition system ts is its set of executions
(also called behaviours), [[ts]]

TS
=
⋃
s0∈I paths(ts, s0). The semantic domain

of transition systems is thus the power set of the (infinite) set of all possible
(finite and infinite) executions.

Unlike automata, transition systems have no accepting states. While they may
have finite executions, the most interesting cases are those where the executions
are always infinite. This corresponds to systems that never terminate, which
is often the case for reactive systems.
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Transition systems serve as the model on which most of the model check-
ing theory is based, as they are independent of the types or variables used in
actual modelling languages. However, verification properties usually do refer
to variables, or particular states. To this end, transition systems are generally
augmented with one or two forms of labelling. Firstly, transitions have tex-
tual labels that convey the action that causes the state change. In our case,
those labels serve mainly as documentation and make example models easier
to understand. Secondly, states are labeled with atomic propositions. Atomic
propositions are assertions about the system state, e.g., ‘beverage compart-
ment open’, that are true in the states that are labelled with them. Atomic
propositions are used to abstract away from variables and other high-level con-
cepts generally used when specifying properties. This leads to the following
definition, which is the proper definition used in the remainder of the thesis.

Definition 2.3. A transition system is a tuple (S, Act, trans, I, AP, L), where

• S is a set of states;

• Act is a set of actions;

• trans ⊆ S × Act × S is a set of transitions, with (s1, α, s2) ∈ trans
sometimes noted s1 α→ s2;

• I ⊆ S is a set of initial states;

• AP is a set of atomic propositions;

• L : S → 2AP is a labelling function.

The semantics is defined as in Definition 2.2.

A Kripke structure is a transition system without actions, and in which every
state has at least one outgoing transition (i.e., all executions are infinite).

For example, a transition system of the beverage vending machine is shown
in Figure 2.1. Each step of the procedure described at the beginning of Sec-
tion 2.2 has become a transition. To avoid clutter, atomic propositions are
omitted in the figures.

Systems consisting of several interacting processes can be modelled with
several transition systems. The transition system of the combined system is
then defined as their parallel composition. The initial assumption is that both
processes are independent. The state space after parallel composition is thus
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Figure 2.1: Transition system of the basic vending machine.
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the product of the original state spaces (another reason for state explosion), so
that a process can be in any state, independently from the other. The parallel
composition of two transition systems is the interleaving of their executions.
This means that only one process at a time can fire a transition, after which his
part of the global system state changes. In the real world, processes may syn-
chronise, e.g., when sending/receiving a message. Parallel composition takes
this into account by forcing transitions with the same label to execute syn-
chronously. In this case, both processes fire their transition at the same time,
and the global system state changes for both. This is formalised as follows.

Definition 2.4. Given two TS tsi = (Si, Acti, transi, Ii, APi, Li), with
i ∈ {1, 2}, the parallel composition of ts1 and ts2 synchronised over the set of
shared actions Act1 ∩Act2, written ts1||ts2, is the TS

(S1 × S2, Act1 ∪Act2, trans, I1 × I2, AP1 ∪AP2, L)

where

• L((s1, s2)) = L(s1) ∪ L(s2)

• trans is the smallest relation satisfying

- for α 6∈ Act1∩Act2 (interleaving):
s1

α→1
s′1

(s1,s2)
α→ (s′1,s2)

s2
α→2

s′2

(s1,s2)
α→ (s1,s′2)

- for α ∈ Act1 ∩Act2 (synchronisation):
s1

α→1
s′1∧s2 α→2

s′2

(s1,s2)
α→ (s′1,s

′
2)

This form of parallel composition is just one of many. However, it is widely used
and captures the key concept of parallel composition: asynchronous execution.

Transition systems are very basic, and are generally not meant to be used
as a modelling language directly. There exist a number of high-level languages
in which the engineer can use familiar concepts such as variables to specify
behaviour. Such languages can often be generalised to program graphs [Baier
and Katoen, 2008], whose semantics is expressed in terms of transition systems.

2.2.2 Properties
The second key concept in model checking are specification languages for the
properties that the models are checked against. Since transition systems as de-
fined in the previous sections abstract away from time, properties can only refer
to the inclusion and the ordering of certain states in executions. Such proper-
ties can be expressed in temporal logics [Prior, 1967], which are propositional
languages that include modalities for time.

The first use of temporal logic in computer science was due to [Pnueli, 1977]
who proposed linear temporal logic (LTL) to encode properties of executions
(see Definition 2.2). An execution satisfies a property if its initial state satisfies
it. In addition to the usual Boolean connectives, LTL has temporal operators.
Those are next, ©φ, which requires that the next state satisfies φ; and until,
φ1Uφ2, which requires that φ2 is satisfied in some future state and that φ1

holds until then.
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Definition 2.5. An LTL formula φ is an expression

φ ::= 1 | a (∈ AP ) | φ1 ∧ φ2 | ¬φ | © φ | φ1Uφ2.

LTL formulas are interpreted over infinite executions. Satisfaction for an exe-
cution π is defined as follows:

π |= 1
π |= a ⇐⇒ a ∈ L(head(π))
π |= ¬φ ⇐⇒ π 6|= φ
π |= φ1 ∧ φ2 ⇐⇒ π |= φ1 and π |= φ2

π |=©φ ⇐⇒ π1 |= φ
π |= φ1Uφ2 ⇐⇒ ∃i ≥ 0 • πi |= φ2 ∧ ∀j ∈ [0, i− 1] • πj |= φ1

Where head(π) denotes the first state in π and πi denotes the tail of π starting
at the ith state (with π0 = π). Satisfaction for a transition system ts is given
by ts |=LTL φ ⇐⇒ ∀π ∈ [[ts]]TS • π |= φ.

Other Boolean connectives can be derived from ∧ and ¬. Other temporal
operators can be derived from U : eventually, ♦φ , 1Uφ, requires that the φ
holds in some future state; and globally �φ , ¬♦¬φ, which requires that φ
holds on all future states.

In the case of the vending machine, suppose we have two propositions
selected (denoting the fact that the user has selected a beverage) and open
(denoting the fact that the beverage compartment is open). The example
property given before could then be translated to the following LTL formula:
�
(
selected⇒ ♦open). An execution that satisfies the property is one in which

the following pattern of propositions is always repeated

{} → {selected} → {open}

A violating execution is an infinite execution in which no open appears after
the last selected

{} → {selected} → {open} → {selected} → {} → . . . .

Lamport identified two types of temporal property [Lamport, 1977]. A
safety property specifies that something bad does not happen, whereas a live-
ness property specifies that something good does eventually happen. While
safety properties can be disproven by a finite execution leading to the undesired
phenomenon, liveness properties can only be disproven by an infinite execution
showing the absence of the desired phenomenon. The property discussed before
is a liveness property. Alpern and Schneider showed that every property is the
intersection of a safety and a liveness property [Alpern and Schneider, 1987].

Another temporal logic commonly used in model checking is computation
tree logic (CTL) [Clarke and Emerson, 1982]. It is distinct from LTL in that it
does not consider individual executions of the system, but a tree of executions.
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This tree is obtained when the common prefixes of all executions of a transition
system are collapsed. It branches every time there is a choice between two
transitions. In CTL, each temporal operator is preceded by a path quantifier.
The two quantifiers are E, requiring at least one path to satisfy a property; and
A, requiring all paths to satisfy a property. The A quantifier can be obtained
from E [Baier and Katoen, 2008], and will thus not be used in definitions or
algorithms. The temporal operators next, until and globally have a similar
meaning as in LTL.

Definition 2.6. A CTL formula φ is an expression

φ ::= 1 | a (∈ AP ) | φ1 ∧ φ2 | ¬φ | E© φ | E(φ1Uφ2) | E�φ
CTL formulas are interpreted over a transition system ts (or a Kripke struc-
ture) and a state s

ts, s |= 1
ts, s |= a ⇐⇒ a ∈ L(s)
ts, s |= ¬φ ⇐⇒ ts, s 6|= φ
ts, s |= φ1 ∧ φ2 ⇐⇒ (ts, s |= φ1) ∧ (ts, s |= φ2)
ts, s |= E© φ ⇐⇒ ∃π ∈ paths(ts, s) • ts, head(π1) |= φ
ts, s |= E(φ1Uφ2) ⇐⇒ ∃π ∈ paths(ts, s) • ∃j ≥ 0 • ts, head(πj) |= φ2

∧ ∀0 ≥ i < j • ts, head(πi) |= φ1

ts, s |= E�φ ⇐⇒ ∃π ∈ paths(ts, s) • ∀i ≥ 0 • ts, head(πi) |= φ

Satisfaction for a transition system ts with a set of initial states I is given by
ts |=CTL φ ⇐⇒ ∀s ∈ I • ts, s |= φ.

Note that LTL and CTL are not equivalent. Both logics are subsets of the
logic CTL∗, which allows the path quantification operators to be mixed with
the Boolean connectives.

In model checking there is a series of “Great Debates” [Holzmann, 2004], one
of them being whether to use branching or linear time logics. In a linear time
logic, such as LTL, each possible execution of the system is interpreted as a
line of events. In a branching time logic, such as CTL, there is instead a single
execution tree that branches each time different events can occur. A branching
time logic allows to quantify over the branches at each point in the execution
tree. There are various arguments for either of these logics [Vardi, 2001]. The
theoretical worst-case complexity of CTL model checking is linear in size of the
formula, whereas it is exponential for LTL. On the other hand, LTL formulae
are considered more intuitive to write and understand. This debate also applies
to SPLs. It thus seems natural for us to consider both CTL and LTL.

2.2.3 The model checking problem
The model checking problem is the decision problem that consists in deter-
mining whether a transition system satisfies a property. For LTL, a transition
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system satisfies a property if all its executions satisfy the property. In this case,
the output is true. Should the property be violated, the output is false. In
practice, a model checker will also return an execution that demonstrates the
property violation. This execution is commonly called counterexample.

Definition 2.7. For a transition system t and an LTL formula φ, SMcLTL(t, φ)
returns true iff t |=LTL φ, and false otherwise.

The ‘S’ in SMcLTL stands for ‘single-system’, to distinguish it from the model
checking problem in SPLs, which we introduce later. For CTL, satisfaction
means that the property is satisfied in all initial states.

Definition 2.8. For a transition system t and a CTL formula φ, SMcCTL(t, φ)
returns true iff t |=CTL φ, and false otherwise.

In the example of Figure 2.1, suppose that state Å is labelled with the
proposition selected and state Æ with the proposition open. The example
LTL property of the vending machine discussed before, �

(
selected⇒ ♦open),

indeed holds for the transition system. It is clear that in every execution of the
transition system, state Å is followed eventually by state Æ, i.e., every selected
is followed by an open.

2.3 Model checking algorithms
To check the satisfaction of a formula, model checking algorithms perform a
systematic search in the state space. A number of techniques for this have
been proposed in the past decades. One of the more prominent algorithms
for checking the satisfaction of LTL properties is due to [Vardi and Wolper,
1986,Courcoubetis et al., 1992] and based on automata theory. An automaton
is a concise representation for a set of words (its language). The basic principle
of automata-theoretic model checking is that it is possible to construct an
automaton whose language corresponds to the executions allowed by a property.

For safety properties, automata over finite words are sufficient.

Definition 2.9. A finite automaton is a tuple (Q, Σ, δ, Q0, F ) where

• Q is a set of states,

• Σ is the alphabet,

• δ ⊆ Q× Σ×Q the transition relation,

• Q0 ⊆ Q a set of initial states and

• F ⊆ Q a set of accepting states.

The language of a finite automaton A, [[A]], is the set of all words σ0 . . . σk with
∀i ∈ [0, k] • σi ∈ Σ so that there is an execution of the automaton q0 . . . qk+1

which starts in an initial state q0 ∈ Q0, respects the transition relation ∀i ∈
[0, k] • (qi, σi, qi+1) ∈ δ and ends in a final state qk+1 ∈ F .
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Liveness and LTL properties require automata over infinite words.

Definition 2.10. A Büchi automaton is defined in the same way as a finite
automaton. The language of a Büchi automaton A, [[A]], is the set of all infinite
words σ0 . . . with ∀i ≥ 0 • σi ∈ Σ so that there is an execution of the automaton
q0q1 . . . which starts in an initial state q0 ∈ Q0, respects the transition relation
∀i ≥ 0 • (qi, σi, qi+1) ∈ δ and contains one or more accepting states infinitely
often I ∩ F 6= ∅ (where I is the set of states appearing infinitely often).

This results in the following algorithm for LTL.

Algorithm 2.11. Given a transition system ts and an LTL property φ, cal-
culate A¬φ, the Büchi automaton corresponding to ¬φ [Vardi and Wolper,
1986,Gastin and Oddoux, 2001]. Now test whether [[ts]]

TS
∩ [[A¬φ]] = ∅ [Vardi

and Wolper, 1986] by executing the automaton jointly with the transition sys-
tem. When an accepting execution is found, the property is violated. The
algorithm then returns false and the path to the current state. When all pos-
sible executions were considered and no accepting one was found, the property
is satisfied and the algorithm returns true.

The algorithm is essentially a search in a graph, which can be implemented
with a nested depth-first search or a depth-first search combined with a breadth-
first search. Such an algorithm is called explicit, as it visits states one by one.
The computational complexity of this procedure is O(2|φ|.|ts|), where |φ| is the
size of the formula (number of operators) and |ts| the size of the transition
system (number of states and transitions). Altogether, the decision problem
SMcLTL is PSPACE-Complete [Sistla and Clarke, 1985,Schnoebelen, 2002].

The LTL algorithm is exponential in the size of the property, which was an
obstacle for early approaches to this problem. Hence, initial research into model
checking focussed on branching time logics similar to CTL (notably [Clarke
and Emerson, 1982,Queille and Sifakis, 1982]), which are comparatively easier
to compute. The CTL algorithm computes directly on the property and the
transition system. It uses the parse tree of a formula to decompose it into
subproblems that can be handled independently.

Definition 2.12. Given a CTL formula φ, its parse tree is a graph, with φ
as the root, where leaf nodes correspond to terminal formulae (i.e., 1 or a) and
where each intermediate node corresponds to a production of Definition 2.6 with
its children being the sub-formulae of this production.

The CTL algorithm traverses the parse tree of the formula bottom-up. First,
the states satisfying the formulae of the leaves are computed, then the informa-
tion is used to compute the states satisfying the formulae of their parents and
so on. The last step is to compute the states satisfying the whole formula. The
intermediate results are referred to as satisfaction sets; they are sets of states
that satisfy a particular sub-formula. The algorithm is given by a recursive
specification of the satisfaction set calculation.
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Algorithm 2.13. Given are a transition system ts and an LTL property φ.
For each sub-formula φ′, starting with the smallest, calculate Sat(φ′) ⊆ S, the
set of states that satisfy φ′. If I ⊆ Sat(φ), the property is satisfied and the
algorithm returns true, otherwise it returns false.

The crux of this algorithm is the calculation of Sat(φ1Uφ2) and Sat(�φ).
They can be computed by a backward search and by a strongly connected
components analysis respectively [Clarke et al., 1986]. The computational
complexity of the CTL algorithm is O(|φ|.|ts|), i.e., linear in the size of the
formula. The decision problem SMcCTL is P-Hard [Schnoebelen, 2002]. Note
that the CTL algorithm does not directly produce a counterexample. It has to
be calculated a posteriori [Clarke et al., 1995].

2.4 Advanced techniques in model checking
The model checking algorithms discussed above are part of the early results
published about model checking. Research has since focussed on making model
checking scale to systems of non-trivial size, and on making models and log-
ics more expressive (e.g., by taking time into account [Alur and Dill, 1990],
or replacing transition systems by Markov chains or Markov decision pro-
cesses [Vardi, 1985,Vardi and Wolper, 1986,Baier et al., 2009]).

Among the topics that are currently the focus of the research community
are bounded, probabilistic and software model checking. Bounded model check-
ing [Biere et al., 1999] trades soundness for scalability and encodes the model
checking problem as a SAT problem by unrolling the transition relation a fi-
nite number of times (i.e., the length of the considered executions is bounded).
Probabilistic model checking enables the use of probabilistic models, such as
Markov chains or Markov decision processes, to describe system behaviour.
This allows to capture quantitative properties and model uncertainty. Software
model checking is the application of model checking to program code rather
than models [Corbett et al., 2000,Visser et al., 2000]. It addresses the prob-
lem of model construction. Constructing models is tedious, error prone, and
it is hard to prove that the implementation conforms to the analysed models.
Software model checking faces problems with scalability due to state explosion.

The goal of this thesis is to provide a basis for the modelling and verifica-
tion in SPLs. We will thus revisit the basic theories and algorithms in model
checking, and see how they apply to SPLs. Most of the topics that are cur-
rently fashionable in model checking research will thus not be touched upon,
and are reserved for future work. Let us briefly discuss the advanced techniques
in model checking that are relevant to this work.

2.4.1 Symbolic model checking
A number of solutions have been proposed to the state explosion problem. An
important one is the use of symbolic encodings of the state space [McMillan,
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1993]. Given a transition system, a symbolic representation is a compact data
structure for a large set of states and transitions. Symbolic algorithms have
been shown to be applicable in many cases where exhaustive techniques do not
scale [Burch et al., 1992].

In model checking, a widely used data structure for this is the Reduced
Ordered Binary Decision Diagram (BDD), first proposed by Bryant [Bryant,
1992]. In the symbolic setting, sets of states and the transition relation are en-
coded directly with their characteristic functions. The characteristic functions
are then turned into Boolean functions, which are represented by BDDs. BDDs
are often compact and Boolean operators such as conjunction, disjunction and
negation (corresponding to intersection, union and complementation of the sets
they represent) can be computed efficiently on them.

As a starting point we assume the existence of a binary encoding of states,
that is, a function enc : S → {0, 1}k, where k is chosen large enough to en-
code all states. With this encoding, {0, 1}k implicitly denotes the sets of all
(encoded) states. Any subset of states T ⊆ S can be represented by its char-
acteristic function, χT , that is

χT (s) : {0, 1}k → {0, 1} • χT (enc(s)) = 1 ⇐⇒ s ∈ T
χ stands for characteristic function [Baier and Katoen, 2008]. The subscript
of χ, e.g., ‘X ∪ Y ’ in χX∪Y , denotes the set for which this is the characteristic
function. In parentheses follow the variables on which the function is defined.
By convention, s denotes a vector of variables encoding a state. The cofactor
χT [s←enc(x)] of a Boolean function χT (s, p, . . .) is the function over the variables
p, . . . obtained by replacing the variables s by the value they take in enc(x). In a
tool implementation, each χ(x1, .., xk) becomes a BDD over variables x1, .., xk.

A BDD is a directed acyclic graph with a single root. Each vertex represents
a variable, and two terminal vertices represent 1 and 0. The variable vertices
all have two outgoing edges, one meaning that its value is 1 and one 0. Given a
value assignment, these edges are such that following them from the root leads
either to the 1 or to the 0 vertex, denoting the output of the function for this
assignment. BDDs can be minimised, and the minimal size of a BDD depends
on the ordering chosen for its variables.

Symbolic model checking algorithms compute directly on the BDDs, that
is, on sets of states rather than on individual states. The CTL algorithm can
easily be given in terms of set computations, which is why most symbolic model
checking approaches focus on CTL. Algorithm 2.13 is already specified in terms
of set operations, except for the computation of EU and E�. These can be
computed by a fixed-point algorithm over the set of states [Clarke et al., 1999].

2.4.2 Generalised and parameterised model checking
A number of approaches have been proposed whose strategy is to prove satisfac-
tion or violation of a property with the smallest possible state space. An exam-
ple of such an approach that has become rather successful is counterexample-
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guided abstraction refinement [Clarke et al., 2000]. The technique starts with
a coarse abstraction of a system to be verified (generally program code), and
then refines this abstraction based on inconclusive model checking results, until
the property is either proven satisfied or violated.

Generalised model checking addresses state-space reduction in a different
way [Bruns and Godefroid, 2000]. The idea is to check a property against a
partial state space. As the state space is partial, the algorithm might be unable
to determine whether or not the property is satisfied. This leads to a three-
valued model checking result: satisfied, violated or unknown. The generalised
model checking problem can be solved by two normal model checks [Bruns and
Godefroid, 2000,Godefroid and Piterman, 2009]. In one check, the partial state
space is completed optimistically, meaning that if the property is violated in
this case, it is also violated by the full state space. In the other check, the partial
state space is completed pessimistically so that if the property is satisfied in
this case, it would also be satisfied by the full state space. If a property is
satisfied by the optimistic check and violated by the pessimistic check, it is
unknown whether the property is satisfied or violated by the full state space.
Generalised model checking can be seen as a middle ground between classical
model checking and satisfiability checking, that is, checking whether a model
exists that satisfies a given temporal property. It generalises both [Bruns and
Godefroid, 2000]. The algorithms presented in Part II are similar in that they
are capable of determining the values of a number of parameters for which a
given model satisfies a temporal property. However, they always produce an
answer (there is no ‘unknown’).

There is a body of research into the problem of parameterised model check-
ing [Emerson and Namjoshi, 1996]. The goal of these techniques is to model
check an arbitrary number of parallel processes. The parameter thus determines
the number of processes, which is different from our work where parameters
are Boolean variables that determine the behaviour of individual processes.

A related approach is that of temporal logic queries [Chan, 2000, Bruns
and Godefroid, 2001]. A temporal logic query is a temporal logic formula
with a placeholders. Solving a query for a given transition system yields a
propositional expression which when substituted for the placeholder makes the
property true in the transition system. The model checking problem for SPLs
as defined in Part II can be expressed as a particular kind of temporal query.
Our algorithms compute an expression over the feature variables characterising
the products for which a temporal logic formula holds. Our work is original in
that we use a semi-symbolic model checking algorithm and apply it to SPLs.

2.4.3 Symbolic execution

With the advent of software model checking [Holzmann and Smith, 1999a,
Holzmann and Smith, 1999b, Corbett et al., 2000, Visser et al., 2000, Visser
et al., 2003], a number of static analysis techniques found their way into model
checking. The biggest problems in software model checking are state explosion



26 Chapter 2 Model Checking

due to the large number of variables, and infinite state spaces due to language
features like dynamic allocation. Static analyses, such as program slicing can
be used to filter out variables and threads that are not relevant to properties
being analysed [Corbett et al., 2000]. Furthermore, compression techniques
have to be used to be to store large state spaces in memory [Holzmann, 1997].

Another technique to reduce the state space is to abstract the domains of
variables into the properties of interest. E.g., instead of considering all pos-
sible lists, only the case of an empty list, and that of a non-empty list are
considered [Corbett et al., 2000,Visser et al., 2000,Visser et al., 2003]. A nat-
ural extension of this is symbolic execution, a type of abstract interpretation in
which program code (or some high-level model) is executed with symbolic val-
ues [King, 1976]. This means that instead of having fixed values, the variables
are defined by expressions, and all statements of the program are computed
over these expressions. Symbolic execution predates model checking. However,
it has become highly relevant for model checking high-level modelling languages
or program code.

Symbolic execution builds a tree of the various paths through the code.
Each path has a path condition, an expression that symbolically represents the
input values for which the path can be taken. Such expressions can then be
checked for satisfiability with a SAT solver (or similar) to yield information
about reachable paths, or erroneous paths. In [Khurshid et al., 2003], the
authors introduce lazy initialisation which uses symbolic execution to reduce
the state space by initialising variables as late as possible.

The algorithms presented in Part II use symbolic execution limited to cer-
tain variables. However, unlike in existing approaches, the goal is to compute
sound and complete symbolic expressions that are of interest to the engineer.
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Related Work

“ The greatest triumph that modern PR can offer is the transcendent
success of having your words and actions judged by your reputation,
rather than the other way about. ”Christopher Hitchens, in Salon, 1998

Now that we introduced the context of this work, we are equipped with the
necessary concepts to present the motivation given at the very beginning more
precisely. We revisit the problem and its motivation in Section 3.1. In Sec-
tion 3.2, we discuss state-of-the-art approaches that aim to tackle this problem.

3.1 Motivation

The starting point of this thesis is the observation that quality assurance in
SPLs should already be conducted during domain engineering, not only during
application engineering. Current techniques for quality assurance, however,
were not designed to deal with variability inherent in domain artefacts. Our
ultimate goal is thus to study quality assurance at the domain engineering level.
Since quality assurance comprises a vast range of activities and methods, we
refined the scope of this thesis to a particular technique: model checking.

Let us illustrate the challenges faced for model checking approaches in do-
main engineering with the example of the vending machine. As formalised with
the FD of Figure 1.2, the product line of beverage vending machines has 24
products. In terms of model checking, the behaviour of each one of them is a
transition system. In Figure 3.1, we give four of these transition systems.

The one in Figure 3.1(b) was already discussed in Section 2.2. The other
variants shown are a machine that only sells soda, in Figure 3.1(a). One that
lets the customer cancel her purchase after entering a coin, in Figure 3.1(c).
A third one offers free drinks and has no closing beverage compartment, see
Figure 3.1(d). Each of them highlights one of the four central features of the
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pay soda serveSoda open
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change take

(a) Basic vending machine

pay
soda serveSoda
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tea serveTea
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change take

(b) Selling tea and soda

pay soda serveSoda open

cancel
return close

change
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(c) With a cancel purchase function

soda serveSodafree

take

(d) Distributing soda for free

Figure 3.1: Several variants of a vending machine.

vending machine product line: Soda, Tea, CancelPurchase and FreeDrinks.
The other features do not cause behavioural variations. As explained before,
we abstract away from coins and currency in the behavioural model.

By combining these variants, the behaviour of the other 20 vending ma-
chines can be obtained. That is, a model of the behaviour of a small example
such as this would already require 24, largely identical, behavioural descrip-
tions. For realistic cases, this number is so high that it is outright impossible
to model each product individually. Furthermore, conducting model checking
at the domain engineering level means that checks should be performed over all
those 24 products. Again, given that most of them are largely identical or have
substantial overlap, executing a classical model checking algorithm on each one
of them would seem to be inefficient.

This example illustrates the two main challenges to be addressed in this
work: (a) scalable modelling and (b) efficient verification of variability-intensive
system behaviour. Existing methods in mainstream model checking, especially
state space reduction techniques, do not consider the case of variability at all.
Still, a number of approaches for modelling and verification of product lines
have been proposed in the past years. However, these proposals generally suffer
from two main limitations.

Firstly, their behavioural models often fail to recognise the importance of
features as a unit of difference. This means that they capture the behaviours
of different products, but offer little to no means to relate these behaviours to



3.2 State of the art 29

products or features. In many cases, features are not even first-class entities in
the models. A consequence of this is that these approaches cannot make use of
information contained in models such as FDs, e.g., the co-occurrence or mutual
exclusion of features. Secondly, none of the proposals provide concrete means
for checking behavioural models against temporal properties.

Let us now review the state of the art in quality assurance of SPLs, including
existing proposals that address the above challenges.

3.2 State of the art

Many of the early approaches to modelling variability in behaviour do not
consider verification, offering at best means for structural integrity checks.
These approaches are generally based on UML, like [Ziadi et al., 2003] a UML
profile for variability with stereotypes for optionality, alternatives and refine-
ment. Another UML-based approach is described in [Czarnecki and Antkiewicz,
2005,Czarnecki and Pietroszek, 2006] in which variability is modelled by spec-
ifying presence conditions of model fragments. These are Boolean expressions
that define to which products a model fragment belongs. Both approaches allow
modelling of SPL behaviour with the corresponding UML diagram types (se-
quence diagrams, state machines). Verification can be accomplished using ex-
isting methods and tools, as in [Kishi and Noda, 2006, Liu et al., 2007], by
deriving the model of a specific product. If conducted during domain engineer-
ing, such approaches face a scaleability problem as the number of products is
potentially huge.

The more formal approaches to modelling SPL behaviour are based on
modal transition systems (MTS) [Larsen, 1989, Fischbein et al., 2006] and
modal I/O automata [Larsen et al., 2007]. In these approaches, transitions
can be mandatory (required transitions) or optional (allowed transitions). As
expected, allowed transitions can be used to model variability, and an MTS
essentially specifies a family of transition systems. Fantechi and Gnesi ex-
tend MTS by introducing variability operators that allow to specify cases in
which a specific number of outgoing transitions may be taken [Fantechi and
Gnesi, 2008,Fantechi and Gnesi, 2007]. In [Asirelli et al., 2009,Asirelli et al.,
2010b, Asirelli et al., 2010a], the authors propose a deontic logic interpreted
over MTS, that can be used to express both behavioural properties, and con-
straints over features. Gruler et al. adapt the CCS process algebra [Milner,
1980] in a similar way [Gruler et al., 2008b,Gruler et al., 2008a]. Their PL-
CSS algebra has an operator that allows to model variability in the form of
alternative choice between two processes.

All these approaches suffer from the limitation mentioned before: they do
not allow to relate behaviours to products. An MTS, for instance, does not
capture the features that make a transition optional; similarly, choices be-
tween processes in PL-CSS are not linked to features. In consequence, when a
verification algorithm finds an execution that violates a property, there is no
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information to determine the products that exhibit this execution (i.e., those
that violate the property) or the features that enable such an execution. The
more recent approach of Lauenroth et al., which shares some similarity with
this work, does overcome this limitation [Lauenroth and Pohl, 2008,Lauenroth
et al., 2009]. Just as the algorithms we propose in this thesis, those in [Lauen-
roth et al., 2009] are capable of determining the products for which a certain
temporal property holds. However, the algorithms are inefficient (exponential
in the size of the state space, see Section 7.4), the modelling formalism not
thoroughly studied, and no high-level languages are proposed.

Those are all the approaches to modelling and verification of SPLs that
are currently proposed in the literature. There are a number of other relevant
techniques, which do not address SPL verification directly.

Morin et al. propose a method to check for inconsistencies between features
in adaptive systems [Morin et al., 2009]. Instead of verifying all possible com-
binations at design time, they verify a feature combination when it is activated
at runtime, which is prevented in case of an inconsistency. This verification,
however, only covers structural properties of the system. Furthermore, testing
the validity of a product when it is chosen at run-time, and refusing the choice
if it is invalid, is not a user-friendly solution and does not seem to be a viable
approach in the case of embedded systems.

In the context of workflow modelling, van der Aalst et al. propose work-
flow templates that contain variation points [van der Aalst et al., 2008]. The
authors propose a technique for configuring workflow models incrementally,
continuously verifying that they are deadlock free. However, verifying tem-
poral properties over all workflow instances upfront is not possible with their
approach. Furthermore, the predefined properties being verified during config-
uration are specific to workflows and cannot be readily changed.

Fisler, Krishnamurthi and Li propose a compositional approach for CTL
model checking of collaborations, a feature-like concept [Fisler and Krishna-
murthi, 2001,Li et al., 2002b,Li et al., 2002a]. In this approach, the automaton
of a feature can be attached to precisely defined interface states of a base
system. The advantage of this is that each feature can be verified in isolation,
which overcomes the problem of exponentially many feature combinations. The
disadvantage is lost expressiveness: features can only add sequentially at the
interface and cannot remove transitions or states. Compositional verification
has also been studied in the context of aspect-oriented systems [Krishnamurthi
et al., 2004,Goldman and Katz, 2007,Katz and Katz, 2008]. In [Goldman and
Katz, 2007], the authors introduce the MAVEN approach, in which assumptions
and guarantees of an aspect are specified and aspects can be verified in isolation.
Such approaches have not yet been studied in the context of SPLs. Further-
more, compared to annotation-based approaches, aspects are only rarely used
for implementing features in SPLs (beyond the research literature).

In addition to the above, there is a body of related research in the field of
feature interaction detection [Calder et al., 2003]. Feature interaction research
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lacks the product line perspective: their techniques generally focus on pair-
wise checks and do not deal with the problem of an exponential number of
possible feature combinations. Contrary to this, we aim to provide complete
techniques. Our results have the potential to supersede existing approaches in
feature interaction detection.

When it comes to quality assurance in SPLE in general, the picture is
also rather bleak. Unlike in normal (single systems) development, none of the
implementation approaches in FOSD have any form of built-in correctness.
Classical correctness notions, e.g., those in compilation and testing, only apply
during application engineering, once a specific product is generated. This is true
even for seemingly easy to catch errors like type errors [Thaker et al., 2007]. For
annotative approaches, a fundamental challenge is also the parsing of annotated
code [Garrido and Johnson, 2005,Kästner et al., 2010]. There has been some
progress over the last years, in particular regarding type checking [Kästner
and Apel, 2008]. However, type checking of annotated code is a structural
verification problem and cannot be used to check specifications, for instance.

A number of approaches for testing in SPLE have been proposed [Cohen
et al., 2006,Cohen et al., 2007,Oster et al., 2010,Perrouin et al., 2010]. In test-
ing, just as in model checking currently, there are no techniques to deal with
variability in domain artefacts. Testing always operates on particular prod-
ucts. To assure a reasonable coverage of the space of products, combinatorial
techniques are used. Coverage criteria are, for instance, that every pair of fea-
tures is covered. Testing in SPLE is thus a rather straightforward extension of
current testing techniques.
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Chapter 4

Featured Transition Systems

“ . . . In that Empire, the craft of Cartography attained such Perfec-
tion that the Map of a Single province covered the space of an
entire City, and the Map of the Empire itself an entire Province.
In the course of Time, these Extensive maps were found somehow
wanting, and so the College of Cartographers evolved a Map of the
Empire that was of the same Scale as the Empire and that coincided
with it point for point. Less attentive to the Study of Cartography,
succeeding Generations came to judge a map of such Magnitude
cumbersome, and, not without Irreverence, they abandoned it to
the Rigours of sun and Rain. In the western Deserts, tattered Frag-
ments of the Map are still to be found, Sheltering an occasional
Beast or beggar; in the whole Nation, no other relic is left of the
Discipline of Geography. ”

Jorge Luis Borges, On Exactitude in Science, 1946

The starting point and foundation of this work is a formalism for describing the
behaviour of an SPL. There is one key criterion that such a formalism should
have. It derives from the observation that transition systems are a generic and
well studied fundamental model for the behaviour of single systems. They are
the starting point of most developments in model checking. In consequence, a
formalism for SPL behaviour should describe the behaviour of each product as
a transition system.

In this chapter, we present one such formalism, featured transition sys-
tems (FTS), and study its properties. Section 4.1 gives an intuitive introduc-
tion to FTS, while formal definitions are given in Section 4.2. In Section 4.3,
we discuss parallel composition of FTS. We study formal properties of FTS
and compare them to other languages in Section 4.4. In Section 4.5, we give a
number of sizeable examples before we conclude the chapter in Section 4.6.
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4.1 Introduction

The first challenge identified in Chapter 3 is that of scalable modelling. The
goal is that the size of a model, measured in number of elements, increases
linearly with the number of features; unlike the number of products which in-
creases exponentially. This, of course, precludes a formalism in which products
are modelled individually, or are otherwise first-class concepts. A basic red
lights controller, for instance, will switch between red and green. So far, the
controller can be modelled with a conventional transition system, as shown in
Figure 4.1(a). Assume that another version (i.e., product) shows yellow before
switching to red. It can be modelled by a second transition system with an ad-
ditional state and transition À yellow−−−−→Ã red−−→Á, and so forth for every product.
This approach does not scale to a large number of different products, even if
they only differ in small details. It is preferable that a single model represents
these instances, in order to exploit the similarities between them.

Nevertheless, it should be possible to relate behaviours to products. A
model which captures many behaviours, but offers no means to identify the
product(s) that exhibit a particular behaviour, cannot be used to identify
problematic products and would thus not be of much use in SPLE. A way
of achieving this is by making features first-class concepts of the formalism.
This has to be done in such a way that behaviours can be related to features,
which, in turn, can be related to products.

The question thus becomes: how should features be captured as part of
a transition system? A look at the transition systems in Figure 3.1 shows
that the impact of adding a feature to a product is either to add states and
transitions (as do features Tea and CancelPurchase in Figures 3.1(b) and 3.1(c)
respectively) or to remove states and transitions (as does feature FreeDrinks
in Figure 3.1(d)). In consequence, a formalism for SPL behaviour should be
able to capture addition and removal of single transitions and states. Note
that it is sufficient to capture the addition or removal of transitions. Through
the addition or removal of incoming transitions, states become reachable or
unreachable, which is as if they were added or removed themselves.

The formalism we propose for modelling SPL behaviour, featured transition
systems (FTS), adopts this mechanism. In FTS, each transition has an anno-
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(a) The basic version without variability.

31 2
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feature expressions

(b) With one additional feature.

Figure 4.1: FTS of the red lights controller.
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Figure 4.2: FTS of the vending machine.

tation (or labelling) that specifies to which products it belongs. This is similar
to the annotative style in FOSD discussed in Section 1.3. To model both red
lights systems in FTS, it is sufficient to add two transitions À yellow−−−−→Ã red−−→Á
as described before, and to label the first one with a different feature, say Y.
The fact that there are two variants of the system, one with Y and one without,
is documented in an FD.

This is how FTS handles the situation in which a feature adds transitions
to a transition system. The Y feature also removes the À red−−→Á transition.
In FTS, this is done by labelling À red−−→Á with the Boolean expression ¬Y.
Such Boolean expressions are called feature expressions. This way, only one of
the transitions leaving À can exist in a product. The resulting FTS is shown
in Figure 4.1(b). Features in FTS can thus be non-monotonic, i.e., remove
transitions (and thus remove behaviours).

Now consider the vending machine example. Figures 3.1(b) and 3.1(c) show
the impact of adding features Tea and CancelPurchase to a machine serv-
ing only soda: both add two transitions. In consequence, those transitions
are labelled with the feature they belong to. The FreeDrinks feature replaces
À pay−−→Á change−−−−→Â by the À free−−−→Â transition and Æ open−−−→Ç take−−−→È close−−−→À
by Æ take−−−→À. The replaced transitions are thus labelled with ¬f , which means
that they only belong to products without FreeDrinks, whereas the replacing
transitions are labelled with f . The corresponding FTS is given in Figure 4.2.
The feature label of a transition is shown next to its action label, separated by
a slash. The colours of the transitions correspond to those used in Figure 1.2.

4.2 Syntax and semantics of FTS
As shown in the examples, an FTS is a transition system with an additional
labelling function and an FD:

Definition 4.1. An FTS is a tuple (S, Act, trans, I, AP, L, d, γ), where

• (S,Act, trans, I, AP,L) is a transition system, as defined in Definition 2.3,
• d is an FD as defined in Definition 1.1,
• γ : trans → B(N) is a total function, labelling each transition with a

feature expression, i.e., a Boolean expression over the features.
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Feature expressions work similarly to presence conditions in [Czarnecki and
Antkiewicz, 2005]. The transition system of a particular product is obtained
by removing all transitions whose feature expression is not satisfied. This
operation is called projection.

Definition 4.2. The projection of an FTS fts = (S, Act, trans, I, AP, L, d,
γ) to a product p ∈ [[d]]

FD
, noted fts |p, is the transition system

ts = (S,Act, trans′, I, AP,L) with trans′ = {t ∈ trans | p ∈ [[γ(t)]]}.

The four transition systems of Figure 3.1 can be obtained from the vending
machine FTS fts in Figure 4.2 with the projections:

(a)fts |{v,b,s}, (b)fts |{v,b,s,t}, (c)fts |{v,b,s,c} and (d)fts |{v,b,s,f}.

Each transition system obtained by projection describes the behaviour (as
in Definition 2.2) of a particular product. This corresponds to the criterion
discussed at the beginning. The FTS itself describes the behaviour of all prod-
ucts in the SPL. The semantics of an FTS is thus defined as the union of the
behaviours of the projections on all valid products.

Definition 4.3. The semantic domain of FTS is that of transition systems:
the power set of the (infinite) set of all finite and infinite executions. The
semantics of a particular FTS is given by

[[fts]]
FTS

=
⋃

p∈[[d]]
FD

[[fts |p]]TS

It is important to point out that this is not equivalent to removing d and
γ from an FTS and interpreting it as a transition system. In other words,
the FTS semantics from Definition 4.3 is not equal to the transition system
semantics of Definition 2.2. In general, the following theorem holds.

Theorem 4.4. Let TS(fts) be the transition system obtained by removing d
and γ from an FTS fts, then for any fts,

[[fts]]
FTS
⊆ [[TS(fts)]]

TS
.

Proof. Let ts1 and ts2 be two transition systems that are identical except for
trans1 ⊆ trans2. Clearly, [[ts1]]

TS
⊆ [[ts2]]

TS
. The theorem follows from this,

since all projected transition systems have less transitions than TS(fts) and
are otherwise identical.

The transition system interpretation of an FTS has thus more behaviours.
In the vending machine SPL, for example, a valid execution e ∈ [[TS(fts)]]

TS
is

one in which the vending machine would ask the first customer for a coin and
offer a free drink to the next one. This is not admitted by the FTS semantics,
according to which a machine should either always offer free drinks or always
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require payment: e 6∈ [[fts]]
FTS

. The choice between the transitions À pay−−→Á
and À free−−−→Â is non-deterministic in the transition system interpretation. In
an FTS, they are alternatives depending on the FreeDrinks feature.

A corollary of Theorem 4.4 is that one cannot use classical model checking
algorithms directly on an FTS. They would produce sound but incomplete
results, i.e., they might find properties to be violated when they are in fact
satisfied (a false positive).

Assuming that the behaviour of an SPL is given as a finite set of transi-
tion systems (one for each product), it is clear from Definition 4.1 that any
such set can be represented as an FTS. By labelling transitions with feature
expressions, FTS overcome the limitations of existing modelling languages for
SPL behaviour: they have the ability to represent the behaviour of any SPL
concisely, and any execution of an FTS can be traced to one or more prod-
ucts. Later on, we will further show that FTS are more concise than transition
systems. Before we do this, let us discuss parallel composition of FTS.

4.3 Parallel composition

An important tool for the design of large scale systems is parallel composition.
Generally, parallel composition is used if a system consists of parallel processes.
Each process is modelled separately, and the parallel composition yields the fi-
nal system. For example, the FTS of the red lights system by itself is rather
limited. Vehicles have to be added to make it interesting. The vehicles are
a typical example of parallel processes: they operate independently from each
other. It would thus be natural to specify the FTS of such a system as the par-
allel composition of the red lights FTS and several FTS modelling the cars (see,
e.g., [Magee and Kramer, 2006]).

There are several different execution models for parallel composition. Gen-
erally, the composed systems are executed asynchronously in parallel, that
is, their executions are interleaved. For the purpose of this thesis, we adopt
the handshake execution model, in which certain transitions are executed syn-
chronously. The transitions that are executed synchronously are those with
shared actions. This is a rather common model of parallel composition. How-
ever, other models exist and can be adapted to FTS in a similar way.

We already discussed the parallel composition of transition systems in Sec-
tion 2.2.1 and Definition 2.4. To adapt it to FTS, the two additional elements
of the FTS definition have to be taken into account: the FDs and the labelling
with feature expressions. Before we do this, we should discuss what parallel
composition in SPLs actually means.

4.3.1 Two types of parallel composition

Conceptually, an FTS captures the behaviour of an SPL. The parallel com-
position of two FTS thus entails some kind of composition of the SPLs they



40 Chapter 4 Featured Transition Systems

represent. More precisely, we can distinguish several cases. One case is that
each FTS represents a fragment of the behaviour of the same SPL, which means
that their parallel composition represents the same SPL, but without the frag-
ments. Finally, each FTS could also represent a different SPL (or a different
instance of the same SPL), in which case their parallel composition represents
yet another SPL, obtained by composing the initial SPLs.

An FD captures the essence of an SPL, its variability and its set of products.
Furthermore, each FTS comes with its own FD. The two situations described in
the previous paragraph can thus be characterised by whether or not the FDs of
both FTS are identical. When two FTS have identical FDs, it is safe to assume
that they belong to the same SPL. Their parallel composition thus happens
within this SPL. We call this Intra-SPL composition. On the other hand, when
the two FTS have different FDs, it is safe to assume that they represent different
SPLs. In this case, the parallel composition has to combine two FDs into a new
FD (hence two SPLs into a new SPL). We call this Inter-SPL composition. The
case in which each FTS represents a different instance of the same SPL can be
reduced to Inter-SPL composition by renaming the features in the FDs (e.g.,
by appending indices). Let us expand on this distinction.

Intra-SPL composition is a situation in which parallel composition occurs
within the same SPL. In terms of FTS, this means that the FTS being
composed all have the same FD, and that the result of the composi-
tion also has this FD. Intra-SPL composition thus does not create new
products. Rather, each product is defined as the parallel composition of
several distributed processes, each corresponding to one of the composed
FTS. In the case of the red lights system with cars, Intra-SPL composition
would correspond to a situation in which the cars do not have variability.
They just provide a context for the red lights controller, and are hence
part of its SPL.

Inter-SPL composition is a situation in which parallel composition occurs
between different SPLs, that is, SPLs that do not share the same sets
of products. The products of the resulting FTS are parallel composi-
tions of products (hence of transition systems) of the operands. Prod-
uct generation by composition is needed, for instance, in the automotive
industry [Reiser and Weber, 2006]. Each electronic control unit in an
automobile can be thought of as an SPL. These electronic control units
are typically provided by different manufacturers and communicate over
a bus. They form a distributed system. The difference wrt. the previous
case is that parallel composition is no longer between two SPLs with the
same products, but happens between SPLs with different products. Ba-
sically, each product of one SPL will be put in parallel with each product
in the other SPL. The result of the parallel composition is thus defined
over a set of products obtained by combining the sets of products of the
original SPLs.
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Parallel composition in FTS should support both of these cases. For Inter-
SPL composition, we thus have to investigate the composition of the FDs that
are associated to the FTS (in addition to parallel composition itself). Basically,
we need a binary operator ⊕ : FD×FD → FD that combines FDs. It should
be commutative and idempotent. If ⊕ is idempotent, Intra-SPL composition
becomes a special case of Inter-SPL composition in which all FDs are equal.

Schobbens et al. specify three composition operations on the level of prod-
ucts [Schobbens et al., 2007]. Intersection of the sets of products, [[d1]]

FD
∩

[[d2]]
FD

: this is a very restrictive operation as it assumes that the sets of prod-
ucts of both SPLs overlap. This would require both SPLs to have the same set
of features, which is most likely not a safe assumption. Union of the sets of
products, [[d1]]

FD
∪ [[d2]]

FD
: this operation is problematic as it does not com-

bine the products of both SPLs. The reduced product of the set of products,
{p1 ∪ p2 | p1 ∈ [[d1]]

FD
, p2 ∈ [[d2]]

FD
}: this operation combines the products of

both SPLs. However, it is not idempotent.
None of these composition mechanisms corresponds to our needs. We thus

propose the following alternative mechanism.

Definition 4.5. Given a set of features N and two FDs d1 and d2 with sets
of features N1, N2 ⊆ N , their join d2 ⊕ d2 is an FD with

[[d2 ⊕ d2]]
FD

= {p ∈ N1 ∪N2 | (p ∩N1) ∈ [[d1]]
FD
∧ (p ∩N2) ∈ [[d2]]

FD
}

The join of two SPLs is similar to the reduced product in that it combines the
products of both SPLs. However, contrary to the reduced product, it conjoins
constraints defined in both SPLs (if two features are exclusive in one SPL,
but not in the other, they will be exclusive in their join). Moreover, the join
operation is idempotent.

Like the definitions from [Schobbens et al., 2007], Definition 4.5 only charac-
terises a composition operator. It does not immediately translate to a procedure
that operates on FDs. Since the study of syntactical procedures for FD merging
falls out of the scope of this thesis, we content ourselves with the specification
of the join operator. The interested reader is referred to [Acher et al., 2009]
who study generic merge procedures for FDs. Nevertheless, the join operator
can readily be implemented on the Boolean function encoding of the FDs (see
Section 1.2). The following theorem is a corollary of Definition 4.5.

Theorem 4.6. Given a set of features N and two FDs d1 and d2 with sets of
features N1, N2 ⊆ N , then [[d2 ⊕ d2]]

FD
= [[B(d1) ∧ B(d2)]].

In a tool implementation, this will most likely be sufficient, since tools generally
operate on the Boolean function encoding of the FDs.

4.3.2 Parallel composition of FTS
The other question in adapting parallel composition to FTS is what happens to
the feature expressions. This is rather straightforward. The feature expressions
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of asynchronous transitions are those of the original transitions. The feature
expressions of synchronous transitions are conjoined.

This leads to the following definition of parallel composition.

Definition 4.7. Given two FTS ftsi = (Si, Acti, transi, Ii, APi, Li, di, γi),
with i ∈ {1, 2}, their parallel composition synchronised over the set of shared
actions Act1 ∩Act2, written fts1||fts2, is the FTS

(S1 × S2, Act1 ∪Act2, trans, I1 × I2, AP1 ∪AP2, L, d1 ⊕ d2, γ)

where

• L((s1, s2)) = L(s1) ∪ L(s2)

• trans is the smallest relation satisfying

- for α 6∈ Act1∩Act2 (interleaving):
s1

α→1
s′1

(s1,s2)
α→ (s′1,s2)

s2
α→2

s′2

(s1,s2)
α→ (s1,s′2)

- for α ∈ Act1 ∩Act2 (synchronisation):
s1

α→1
s′1∧s2 α→2

s′2

(s1,s2)
α→ (s′1,s

′
2)

• For α 6∈ Act1 ∩Act2,
{
γ
(
(s1, s2) α→ (s′1, s2)

)
= χ1

γ
(
(s1, s2) α→ (s1, s′2)

)
= χ2

for α ∈ Act1 ∩Act2, γ
(
(s1, s2) α→ (s′1, s

′
2)
)

= χ1 ∧ χ2,
where for i ∈ [1, 2], χi = γ(si α→i s

′
i).

An important property of this parallel composition operator is that it is
equal to the one for transition systems (Definition 2.4) modulo projection.
This is formalised by the following theorem.

Theorem 4.8. For any two FTS, fts1 and fts2, with the same feature diagram
d, and for any product p ∈ [[d]]

FD
, fts1 |p||fts2 |p is syntactically equivalent to

(fts1||fts2) |p.

This corresponds to the characterisation of Intra SPL composition given ear-
lier: each product is the parallel composition of several transition systems.

Let us point out one special case of parallel composition. In a system which
interacts with the environment (such as the mine pump system presented later
in Section 4.5.2), elements of the environment are most likely modelled as
parallel FTS. Since these FTS are not part of the SPL, they cannot be labeled
with any feature. When composing the environment with the FTS of the
system, each synchronised transition should simply inherit the labelling of the
system FTS. This can be achieved if all transitions of the environment FTS are
labelled with the feature expression true. In our first FTS implementation, this
was the only kind of parallel composition supported. In this case, Definition 4.7
degenerates into something close to Definition 2.4.
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4.4 Expressiveness

The expressiveness of a formalism is a measure of its ability to express the
various subjects that the formalism is meant to model. Formally, the expres-
siveness of a language (viz. modelling language) is the set of words (viz. models)
that can be expressed in the language [Hopcroft et al., 2000]. The expressive-
ness is generally measured in comparison to the set of words that are in the
semantic domain of the language. A language it is said to be fully expressive
if it covers the entire semantic domain [Trigaux, 2008]. Another notion used
when evaluating characteristics of languages is succinctness. It is a measure of
the relative size of the same model in two different languages.

In the following, we will study these properties in the context of FTS and
other languages.

4.4.1 Preliminaries

Trigaux formally defined the notions of expressiveness and succinctness [Tri-
gaux, 2008] in the context of the framework of [Harel and Rumpe, 2000]. Given
a language L, its expressiveness is the codomain of the semantic function.

Definition 4.9. The expressiveness of a language L with syntactic domain
syn(L) and semantic domain sem(L) is the set exp(L) , {[[l]] | l ∈ syn(L)}.
A language L is more expressive than a language L′ iff exp(L) ⊇ exp(L′). A
language L is fully expressive iff exp(L) ⊇ sem(L).

Of course, languages can only be compared in terms of expressiveness if
their semantic domains are equal. Definition 4.9 is declarative and does not
give a practical method for comparing the expressiveness of two languages.
This is done by providing a translation from one language to the other. If
it is possible to translate any model of a language L into a model of another
language L′ with the same semantics, then L′ is at least as expressive as L.

Definition 4.10. A semantics-preserving translation T from a language L to a
language L′ is a total function T : syn(L)→ syn(L′) such that [[T (l)]]L′ = [[l]]L
for any l ∈ L.

Lemma 4.11. If there exists a semantics-preserving translation from L to L′,
then L′ is more expressive than L.

Succinctness is a property of such a translation. It measures the factor
by which the translation increases (or decreases) the size of the model. It
is given as a function over the natural numbers which returns the size of the
output model in function of the size of the input model (denoted by the variable
x). Succinctness can also be given as a set of such functions, which is often
specified with the big-O notation. E.g., a succinctness of O(x2) means that the
translation increases the number of elements of the input model quadratically.
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Definition 4.12. The succinctness of a translation T : syn(L) → syn(L′) is
S, with S ⊆ N→ N, iff ∃s ∈ S • ∀n ∈ N, l ∈ syn(L) • |l| ≤ n⇒ |T (l)| ≤ s(n).
A language L is S-as succinct as L′ iff there is a translation of succinctness S.

Succinctness thus indirectly measures the ability of a language to represent a
subject (i.e., an element the semantic domain) concisely. As the computational
complexity of most analysis algorithms is related to the size of the model, a more
concise model (everything else being equal) can be analysed more efficiently.

Finally, to be able to compare sizes of models, we need to define what the
size of a transition system or an FTS is.

Definition 4.13. The size of a transition system t is |t| , |S|+ |trans|.
Definition 4.14. The size of an FTS fts is |fts|, |S|+|trans|+|expr|+|d|.
Let n , |N |, the number of features. |expr| ,∑t∈trans |γ(t)| gives the size of
all feature expressions, which is bounded by O(2n|trans|). |d| gives the size of
an FD, |d| , |N | + |Φ|, where |Φ| gives the size of the additional constraint,
which is bounded by O(2n).

Unless otherwise stated, the size of a transition-system-like model is defined in
the same way as the size of a transition system.

4.4.2 Comparing FTS and transition systems
The semantic domain of FTS and transition systems is the same: the set of
all sets of sequences of states. This definition is somewhat inconvenient for
the purpose of this discussion, mainly because states in two different models
are not directly related. The semantic information exploited by algorithms lies
in the labelling of states with atomic propositions. We therefore consider two
sequences of states s1s2 . . . and s′1s′2 . . . equivalent if the respective sequences of
labelings are equal, i.e., if ∀i ≥ 1 • L(si) = L′(s′i). By extension, the semantic
domain can then be considered to be the power set of the set of all sequences
of labelings. A translation is semantics-preserving if for each execution of the
input model, the output model has an equivalent execution, and the other way
round. This corresponds to the notation trace equivalence [Baier and Katoen,
2008]. Given this, a first observation is the following immediate result.

Theorem 4.15. There is a semantics-preserving translation from transition
systems to FTS of succinctness O(x).

Proof. The FTS corresponding to a transition system has an FD that just con-
sists of a root r, and all transitions are labeled with r. It has one product,
whose projection is syntactically equivalent to the transition system. By Defi-
nition 4.3, it is thus semantically equivalent. The translation does not add any
transitions or states.

As expected, FTS are as expressive as transition systems. The two following
results are more interesting.
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Theorem 4.16. There is no semantics-preserving translation from FTS to
transition systems with succinctness lower than O(2nx), where n is the number
of features.

Proof. Consider the class of FTS as shown in Figure 4.3(a). Its parameter is n,
the number of features. For each feature fi, the FTS contains two transitions
labelled with fi and ¬fi respectively. The first transition leads to a state
labelled with the atomic proposition iT , the second to a state labelled with iF .
From those states, transitions labeled with 1 lead to a state in which the same
pattern is either repeated for the next feature, or a transition leads back to the
initial state. The FD of these FTS is so that all feature combinations are valid
products. The size of these FTS is 7n+ 2.

The semantics of such an FTS is a set of 2n executions each corresponding
to a single product, and capturing the truth assignment of the features of this
product. For example, one execution consists in indefinitely repeating

{} → {1T} → {} → {2T} → . . .→ {} → {nT} → {},

which corresponds to the product containing all features. It is impossible to
have a semantically equivalent transition system with less than O(2nx) states
and transitions. The only way to guarantee that each behaviour of the transi-
tion system repeats in the same truth-value pattern is to have 2n loops with
2n+ 1 states each, as shown in Figure 4.3(b). There cannot be sharing between
the loops, as there would have to be a state with two outgoing transitions,
whose non-deterministic choice would allow behaviours that are not patterns
of repeated truth assignments and thus not behaviours of the FTS.

Hence, no semantics-preserving translation from FTS to transition systems
can have a lower succinctness than O(2nx).

Theorem 4.17. There is a semantics-preserving translation from FTS to tran-
sition systems of succinctness O(2nx), where n is the number of features.

Proof. Create a transition system which contains the states and transitions of
every projected transition system for every product. The set of initial states
is the union of the sets of initial states of the projected transition systems.
By construction, it will have the same behaviours as the FTS. Its size is O(2n)
times the states and transitions of the FTS. This corresponds to the translation
used in the proof of Theorem 4.16.

The results of Theorems 4.16 and 4.17 are important, as they show that
reducing FTS model checking to classical model checking of transition systems
will be very costly. In the worst case, the transition system equivalent of an
FTS is exponentially larger than the FTS. Combined with the algorithmic
complexity of LTL and CTL model checking on transition systems given in
Section 2.3, this yields lower bounds for the complexity of LTL and CTL model
checking on FTS.
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1f1 1T

1¬ f1 1F

1f2 2T

1¬ f2 2F

1fn nT

1¬ fn nF

...

1

(a) A class of FTS. Action labels were omitted; all transition labels are feature expres-
sions and all state labels are atomic propositions.

1F 2F nF

1T 2T nT

...

...

...

(b) The corresponding class of smallest equivalent transition systems.

Figure 4.3: The relative succinctness of a class of FTS and transition systems
with parameter n, the number of features.

4.4.3 Comparing FTS and modal transition systems
One of the earliest attempts to modelling variability in behaviour are modal
transition systems (MTS) [Larsen and Thomsen, 1988] or modal I/O automata
[Larsen et al., 2007]. In these models, transitions can be mandatory (required
transitions) or optional (allowed transitions). As expected, the approaches
proposing the use of these models for SPL behaviour use allowed transitions
to model variability [Fischbein et al., 2006, Larsen et al., 2007, Fantechi and
Gnesi, 2007, Fantechi and Gnesi, 2008, Lauenroth et al., 2009, Asirelli et al.,
2009, Asirelli et al., 2010b, Asirelli et al., 2010a]. The following definition is
based on [Larsen and Thomsen, 1988].

Definition 4.18. A model transition system is a tuple (S, Act, →�,→♦),
where

• S is a set of states,

• Act is a set of actions,

• →♦⊆ S ×Act× S is a set of allowed transitions,

• →�⊆→♦ is a set of required transitions,

A refinement relation can be defined for MTSs, so that an MTSm′ refines an
MTSm if it allows only transitions that were allowed inm, and if all mandatory
transitions of m are mandatory. Note that refinement in Larsen et al. [Larsen
and Thomsen, 1988,Larsen, 1989,Larsen et al., 2007] and also [Fischbein et al.,
2006] is defined at the level of executions, whereas Fantechi and Asirelli et
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al. [Fantechi and Gnesi, 2007, Fantechi and Gnesi, 2008, Asirelli et al., 2009,
Asirelli et al., 2010b, Asirelli et al., 2010a] also define it syntactically. An
implementation of an MTS is a refinement in which all allowed transitions are
required, that is, essentially a transition system. An MTS thus specifies a
(possibly infinite) family of transition systems, those that implement it.

The main distinction between FTS and MTS is that the allowed transitions
in an MTS are all independently optional. In an FTS they are not. Con-
sider the vending machine example from Figure 4.2. The transitions À free−−−→Â,
À pay−−→Á and Æ open−−−→Ç, Æ take−−−→À are not independent, on the contrary, the
transition taken in state À determines the transition to be taken in Æ. In
an FTS, the choice of a transition depends on the features (and hence the
transitions taken before), whereas in an MTS the choice of taking an allowed
transition is non-deterministic each time it comes up. This means that the
succinctness argument from the proof of Theorem 4.16 can be made for MTS,
too. A formal comparison of the expressiveness of FTS and MTS, however,
cannot be done. They would need to have the same semantic domain, which
is not the case. FTS always represent finite sets of transition systems, whereas
the set of transition systems that an MTS represents is possibly infinite.

Another distinction between FTS and MTS, of course, is the lack of features
or an FD in MTS. While the MTS does specify a family of transition systems,
it offers no means to record the product to which a given transition system
belongs. For this, for example, an MTS would need to have information about
which features influence which allowed transitions. This is a key limitation. As
a consequence, when the model check of a property on an MTS fails, it cannot
reveal anything about the problematic products. In terms of variability, MTS
do not carry more information than transition systems.

The most common use of MTS and other formalisms with allowed/required
modalities is to abstract large systems or systems with infinitely many states.
There, the modalities are used for over-approximating (allowed) and under-
approximating (required) the state space [Wei et al., 2009]. This problem is
fundamentally different from SPL model checking. In fact, it is an orthogonal
problem, and we could imagine to extend FTS with allowed/required modalities.

Almost all model checking approaches for MTS and similar formalisms tar-
get the case in which the modalities are used to abstract large or infinite state
spaces. They are generally three-valued model checking approaches, meaning
that they can return ‘unknown’. (In the case of an SPL, such a result would
mean that it is unknown whether there are products that violate a property.)
Model checking of MTS is discussed in [Godefroid et al., 2001]. It can be
reduced to model checking two particular implementations of the MTS, in a
method similar to the one used in generalised model checking [Bruns and Gode-
froid, 2000], discussed in Section 2.4.2. An example of a model checker for MTS
is MTSA [D’Ippolito et al., 2008], which allows to check MTS against fluent
LTL [Giannakopoulou and Magee, 2003].

The original papers studying MTS in the context of SPLs did not consider
model checking. Instead, they focussed on refinement and related notions [Fis-
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chbein et al., 2006, Larsen et al., 2007]. There are alternate model checking
techniques, in which a temporal logic is interpreted directly over the MTS.
Larsen [Larsen, 1989] originally proposed Hennessy-Milner logic [Hennessy and
Milner, 1980], Asirelli et al. [Asirelli et al., 2010a] propose a variation thereof
called MHML.

4.4.4 Different variants of FTS

When we initially proposed FTS in [Classen et al., 2010b], they did not have
feature expressions on transitions. In [Classen et al., 2010b], the situation
in which a feature f causes a transition t to be replaced by t′ was modelled
by labelling t with f and specifying that t′ has priority over t. In the red
lights example of Figure 4.1(b), transition À yellow−−−−→Ã would have priority over
À red−−→Á. The FTS as defined in Definition 4.1 were only introduced later,
in [Classen et al., 2011c], under the name ‘FTS+’. FTS+ dropped priorities in
favour of feature expressions which allow for more flexibility and simplify the
notation. As we shall see later, both formalisms are expressively equivalent; we
thus renamed ‘FTS+’ back to ‘FTS’.

To avoid ambiguity, we use the following generic definition, GenFTS.

Definition 4.19. GenFTS(L), where L ⊆ {FD,Exp, Prior} is a parameter,
denotes the language of tuples (S, Act, trans, I, AP, L, d, γ, >) where

• (S,Act, trans, I, AP,L) is a transition system as defined in Definition 2.3,

• d is an FD as defined in Definition 1.1; depending on the ‘FD’ parameter:

– if FD ∈ L, then d is an arbitrary FD,

– if FD 6∈ L, then [[d]]
FD

= {p ∈ P(N) | r ∈ p}, i.e., the FD allows
all combinations, as if there were no FD at all but just a list of
features,1

• γ : trans → B(N) is a total function, labelling transitions with feature
expressions; depending on the ‘Exp’ parameter:

– if Exp ∈ L, then arbitrary feature expressions are allowed,

– if Exp 6∈ L, then feature expressions have to be single positive liter-
als, i.e., transitions are labelled with single features,

• > ⊆ trans × trans is a partial order, defining priorities between transi-
tions; depending on the ‘Prior’ parameter:

– if Prior ∈ L, there is no restriction on >,

– if Prior 6∈ L, then > must be empty, i.e., no priorities are allowed.

1We cannot write P(N) instead of {p ∈ P(N) | r ∈ p}. Following Definition 1.1, it is
impossible to construct an FD in which r, the root feature, does not appear in every product.
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Definition 4.20. The size of a GenFTS fts of any type is |fts| , |fts′|+ |> |
where fts′ is the FTS obtained by removing the > element from the tuple.

With this generic definition, we can study which parts of the definition
contribute to expressiveness or succinctness. FTS as defined in this thesis
(Definition 4.1) and in [Classen et al., 2011c] correspond to GenFTS(FD, Exp),
whereas those defined in [Classen et al., 2010b] correspond to GenFTS(FD,
Prior).

Projection for the languages in GenFTS has to take priorities into account.
It can be defined as follows.

Definition 4.21. Given a GenFTS fts of any type, its projection to a product
p ∈ [[d]]

FD
, noted fts |p, is the transition system (S, Act, trans′, I, AP, L)

where
trans′ =

{
(s, α, s′) | s α→ s′ ∈ trans ∧ p ∈ [[γ(s α→ s′)]]

∧ (@s α′

→ s′′ ∈ trans • p ∈ [[γ(s α′

→ s′′)]]
∧ s α′

→ s′′ > s α→ s′)
}
.

The definition states that a transition is removed if (i) its feature expression
is not satisfied by the product, or (ii) there is a higher-priority transition of
which the feature expression is also satisfied. Except for the different projection
operation, the semantics of GenFTS is as for FTS (i.e., Definition 4.3 applies).

Let us start with the straightforward observation that for each L,L′ ⊆
{FD,Exp, Prior}, L ⊆ L′ implies that a model of GenFTS(L) is also a model
of GenFTS(L′). That is, models from languages with less constructs can always
be translated into models of languages with more constructs. In terms of
languages, GenFTS(L) is a subset of GenFTS(L′).

A first interesting observation is that priorities do not increase expressive-
ness or succinctness when feature expressions are allowed.

Theorem 4.22. Any GenFTS(FD, Exp, Prior) can be translated into a Gen-
FTS(FD, Exp) by a translation of succinctness O(x).

Proof. Let fts = (S, Act, trans, I, AP, L, d, γ, >) be a GenFTS(FD, Exp,
Prior) and fts′ = (S, Act, trans, I, AP, L, d, γ′, ∅) with γ′ such that

∀s α→ s′ ∈ trans • γ′(s α→ s′) = γ(s α→ s′) ∧
¬(∨

s α
′

→ s′′∈trans • s α′

→ s′′>s α→ s′
γ(s α′

→ s′′)
)

is a GenFTS(FD, Exp). For all p ∈ P(N) and s α′

→ s′ ∈ trans, γ′ is so that

p ∈ [[γ′(s α′

→ s′)]] =⇒ @s α′

→ s′′ ∈ trans • p ∈ [[γ(s α′

→ s′′)]] ∧ s α′

→ s′′ > s α→ s′

which is equivalent to the condition on priorities in Definition 4.21. The trans-
lation thus preserves the semantics: [[fts]]

FTS
= [[fts′]]

FTS
. The translation

does not affect the size because data is just moved from > to γ.
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Due to the subset relation discussed before, this result implies that any
GenFTS(FD, Prior) can be translated into a GenFTS(FD, Exp). Our decision
to change the definition of FTS in [Classen et al., 2011c] was thus without loss
of generality, expressiveness or succinctness. For example, the GenFTS(FD,
Prior) in Figure 4.4 is equivalent to the GenFTS(FD, Exp) introduced at the
beginning, in Figure 4.2.

The two following observations establish the mutual redundancy of FDs and
features expression in GenFTS. The first observation is that any GenFTS(FD,
Exp) can be translated into a GenFTS(Exp). That is, the FD can be omitted
without loss of expressiveness.

Theorem 4.23. Any GenFTS(FD, Exp) can be translated into a GenFTS(Exp)
by a translation of succinctness O(x+2n|trans|), where trans is the transition
relation of the first fts and n the number of features.

Proof. Let fts = (S, Act, trans, I, AP, L, d, γ, ∅) be a GenFTS(FD, Exp). An
equivalent GenFTS(Exp) is given by fts′ = (S, Act, trans, I, AP, L, d′, γ′, ∅).
Let d′ be so that [[d′]]

FD
= {p ∈ P(N) | r ∈ p}. The feature expression of each

transition is conjoined with B(d), the Boolean encoding of the FD: ∀t ∈ trans,
γ′(t) = γ(t) ∧ B(d). Although fts′ admits more products, the condition added
to all transitions means that the projections of products invalid in d do not
have transitions and thus a singleton state. Hence [[fts]]

FTS
= [[fts′]]

FTS
.

The second observation is that any GenFTS(FD, Exp) can be translated into a
GenFTS(FD). In other words, restricting feature expressions to single features
(i.e., consisting of a single positive literal) does also not affect expressiveness.

Theorem 4.24. Any GenFTS(FD, Exp) can be translated into a GenFTS(FD)
by a translation of succinctness O(x + |trans|), where trans is the transition
relation of the first fts.

Proof. Let fts = (S, Act, trans, I, AP, L, d, γ, ∅) be a GenFTS(FD, Exp).
An equivalent GenFTS(FD) is given by fts′ = (S, Act, trans, I, AP, L, d′,
γ′, ∅). Let d′ = d. For each transition t ∈ trans, a new feature xt is added to
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Figure 4.4: GenFTS(FD, Prior) of the vending machine SPL.
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d′ so that [[d]] = [[d′]], t is labeled by xt: γ′(t) = xt, and a constraint xt ⇔ γ(t)
is added to d′. By construction, [[fts]]

FTS
= [[fts′]]

FTS
.

Note the regularity in these three proofs. The proof of Theorem 4.22 gives
a method for eliminating priorities, by incorporating their information into the
feature expressions. The proof of Theorem 4.23 gives a method for eliminating
the FD, again by incorporating its information into the feature expressions.
Finally, Theorem 4.24 gives a method for eliminating feature expressions by
encoding them with new features in the FD.

Those steps can be reused and chained, leading to the following corollaries.

Corollary 4.25. Any GenFTS(FD, Prior) can be translated into GenFTS(FD)
by a translation of succinctness O(x+ |trans|).
Proof. Transform to GenFTS(FD, Exp) following Theorem 4.22, and then into
GenFTS(FD) following Theorem 4.24.

Corollary 4.26. Any GenFTS(FD, Exp) can be translated into a GenFTS(FD,
Prior) by a translation of succinctness O(x+ |trans|).
Proof. Transform to GenFTS(FD) following Theorem 4.24, which is a Gen-
FTS(FD, Prior) by language inclusion.

A question which remains open is whether it is possible to translate feature
expressions to priorities, and how it can be accomplished. However, what can
be shown is that the translation from GenFTS(Prior) to transition systems
causes at least the same exponential blowup as for the other kind of GenFTS.
More generally, the exponential blowup is incurred for any kind of GenFTS.
The following result thus generalises Theorem 4.16.

Theorem 4.27. There is no semantics-preserving translation from any Gen-
FTS to transition systems with succinctness lower than O(2nx), where n is the
number of features.

Proof. For GenFTS(Exp) and all related variants, the proof of Theorem 4.16
applies immediately. For the other GenFTS(FD) and GenFTS(Prior), a class of
models similar to the one used in the proof of Theorem 4.16 can be constructed.

For GenFTS(FD), consider a class of models in which the FD has 2n fea-
tures, each feature fi is paired with a feature f ′i and a constraint fi ⇔ ¬f ′i .
The FD thus has 2n products despite having 2n features. The states and tran-
sitions of this class of models are like those in Figure 4.3(a). The ¬fi labels
are replaced by f ′i , to conform to the restriction that transitions can only be
labelled by positive literals. This class of models only contains GenFTS(FD)
and is semantically equivalent to the one used in Figure 4.3(a). From here on,
the proof of Theorem 4.16 can thus be followed.

For GenFTS(Prior), consider the class of models shown in Figure 4.5. The
priorities between transitions are expressed graphically with a bold ‘v’ (i.e., >
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in top-down direction). The r in this model refers to the root feature. The
transition combination of s → s′ labelled with f1, s → s′′ labelled with r,
and s → s′ > s → s′′ corresponds to the feature expressions γ(s → s′) = f1
and γ(s → s′′) = r ∧ ¬f1. Since the root feature is mandatory and thus
always 1, the latter annotation is equivalent to ¬f1. From here on, the proof
of Theorem 4.16 can be followed, as the family of models used in this proof is
semantically equivalent to the class of GenFTS(Prior) given in Figure 4.5.

rf1 1T

rr 1F

2T

2F

nT

nF

...

r

>

rf2

rr

>

rfn

rr

>

Figure 4.5: A class of GenFTS(Prior). The parameter n denotes the number
of features; action labels were omitted; all transition labels are features and all
state labels are atomic propositions; bold ‘v’s indicate priority.

4.4.5 Discussion and summary
Figure 4.6 gives an overview of the expressiveness and succinctness results
obtained in this section.

An important result of this section is that FTS are exponentially more
succinct than transition systems, and that this succinctness can be attributed
to priorities, feature expressions and FDs alike. Furthermore, all three types of
construct can be translated to each other (except for translations to priorities),
which means that they can be considered as syntactic sugar for each other.
However, as the overview in Figure 4.6 demonstrates, the most succinct way
of specifying SPL behaviour is with GenFTS(FD, Exp), which corresponds to
the definition of FTS used in the thesis.

While it is possible to argue about the utility of language constructs, it is
often difficult to provide formal evidence. For example, in the past [Classen
et al., 2011c], we argued for feature expressions because they allow for greater
expressiveness, more intuitive models and simpler definitions. While the last
two points might be correct, the first was just shown to be false. Feature
expressions do not add expressiveness. They increase succinctness.

Similarly, in [Classen et al., 2011d] we remarked that both, priorities and
feature expressions, can be encoded as part of the FD. We argued that this is
not very intuitive and requires the introduction of a dummy feature for each
feature expression. Moreover, it becomes hard to interpret the FTS without
the FD. Again, these arguments rely more on intuition than evidence. In the
previous section, we showed that feature expressions do increase succinctness.
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Figure 4.6: Overview of the expressiveness and succinctness results.
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Priorities can be added to FTS without impacting succinctness. We can
thus only argue that they might help to make models more intuitive and un-
derstandable. If a transition overrides another transition, this is more apparent
when expressed with priorities than with feature expressions. A disadvantage
of priorities, however, is that parallel composition as specified in Definition 4.7
requires conjunction of feature expressions. It cannot be easily defined for
priorities, except for the case when the priority relation of one FTS is empty.

4.5 Examples
Before we conclude this chapter, we present two more illustrative examples.

4.5.1 The wiper system
The car wiper system example was proposed in [Gruler et al., 2008b]. It consists
of two subsystems: a sensor unit, able to detect rain, and the wiper itself. Both
the sensor and the wiper come in two qualities, high and low. A low quality
rain sensor can only distinguish between rain and no rain, whereas the high
quality sensor can also discriminate between heavy and little rain. Similarly,
the high quality wipers can operate at two speeds, whereas the low quality
wiper only operates at one speed. In addition, the low quality wipers can be
set to wipe permanently. The FD in Figure 4.7 models this situation.

Gruler et al. propose the process algebra PL-CCS [Gruler et al., 2008b], a
variant of Milner’s Calculus of Communicating Systems (CCS) [Milner, 1980] to
which a new operator ⊕ was added to represent alternative choice between two
processes. The whole wiper system is modelled with the PL-CCS expression
WipFam in Figure 4.8. It is the parallel composition of the sensor and the
wiper subsystem. The sensor subsystem is defined as being either the low or
the high quality sensor subsystem. The wiper subsystem is defined similarly.

The PL-CCS definition of the two sensor subsystems is given in Figure 4.9.
The low quality sensor will either sense no rain, or it will sense heavy/little rain
in which case it sends the message Rain. As expected, the high quality sensor

WiperFamily
r

High
sH

Wiper
w

Low
sL

Sensor
s

High
wH

Low
wL

Figure 4.7: The FD for the wiper system.
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4 Specification and Verification of a Sample Product-Line

Let us now demonstrate our approach on a simplified version of an industrial case study

we have been working on. We consider a product line whose configurations realize

different versions of a windscreen wiper system.

Specification At first, we specify the family of systems, using the formalism introduced

in Section 2. The windscreen wiper systems that we specify in our family WipFam
are each built of two subcomponents: a rain sensor, Sensor , and a windscreen wiper,
Wiper . Both subcomponents can be realized by two variants, a high and a low one,
respectively:

WipFam def= Sensor ‖ Wiper (E1)

Sensor def= SensL⊕1 SensH (E2)

Wiper def= WipL⊕2 WipH (E3)

The low variant SensL of the sensor is specified as follows:

SensL def= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL (E4)

Raining def= non.SensL + ltl .Raining + hvy .Raining + rain.Raining (E5)

The low variant SensL only detects two different environmental conditions—dry
and raining—even though the environment can stimulate the sensor with three differ-

ent conditions: hvy for heavy rain, ltl for little rain and non for no rain. However,

this sensor cannot differ between heavy and little rain, i. e. for this sensor, hvy and ltl
have the same effect, as the sensor reaches a process Raining and provides an action
rain, indicating solely the fact that it is raining (without precisely characterizing the
intensity). As long as no rain has been detected, the sensor provides the action noRain,
respectively.

The high version of the sensor can distinguish between different degrees of rain

intensity, i. e. SensH additionally differentiates heavy rain from little rain. Its PL-CCS

specification is given in the following:

SensH def= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH (E6)

Medium def= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium (E7)

Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)

In this product line, the sensors can be arbitrarily combined with two variants of

windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
tional non-functional dependencies between the possible variants which would restrict

the set of combinatorially possible configurations.

The low versionWipL offers two operation modes: (i) a manual mode with perpet-
ual wiper arm movement (action permWip), which has to be activated explicitly by the

16

Figure 4.8: The wiper system in PL-CCS, taken from [Gruler et al., 2008b].
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Heavy def= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy (E8)
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windscreen wipers,WipL andWipH . In particular, for this example we have no addi-
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Figure 4.9: The sensor subsystem in PL-CCS, taken from [Gruler et al., 2008b].
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Figure 4.10: The FTS for the sensor subsystem.
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Low quality.

driver, (ii) and a semi-automatic interval mode in which thewiper arm moves at a lower

frequency triggered by the rain sensor (via the action rain).

WipL def= off .WipL + manualOn.Permanent + intvOn.Interval (E9)

Interval def= noRain.Interval + intvOff .WipL + intvOn.Interval (E10)

+ rain.Wiping + hvyRain.Wiping

Wiping def= slowWip.Interval + intvOn.Interval (E11)

Permanent def= permWip.Permanent + off .WipL + intvOn.Interval (E12)

The high variantWipH can operate at two speeds: slow (action: slowWip) and fast
(action: fastWip). Here, the wiper arm movement is fully controlled by the rain sensor
and adjusts its frequency automatically to the current rain intensity.

WipH def= off .WipH + intvOn.AutoIntv (E13)

AutoIntv def= noRain.AutoIntv + intvOn.AutoIntv + rain.Slow (E14)

+ intvOff .WipH + hvyRain.Fast

Slow def= slowWip.AutoIntv + intvOn.AutoIntv (E15)

Fast def= fastWip.AutoIntv + intvOn.AutoIntv (E16)

The PL-CCS program specifying the entire product line WipFam is given by the

equations E1–E16. The whole programWipFam is well-formed, which allows a unique

numbering of all (two) variation points as shown by Equations E2 and E3.

Verification From our example system familyWipFam, we can derive four different
individual systems, as we can combine the subsystem variants arbitrarily. Having spec-

ified the family in PL-CCS, we can now apply the model checking approach described

in Section 3, in order to verify functional properties for configurations in the system

family.

Thinking of a relevant property, for instance, one could possibly be interested in

verifying for a windscreen wiping system whether or not a driver is always able to

switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).

Another property could demand the windscreen wiper to wipe fast, once it is raining

heavily (Property 2, formalized in Equation 15).

µX.〈.〉X ∨ 〈intvOn〉true (14)

νY.[.]Y ∧ (¬〈intvOff 〉true ∨ [hvy ]〈fastWip〉true) (15)

In our example, Property 1 holds for the set of all possible configurations 〈L,L〉,
〈R,L〉, 〈L,R〉 ,and 〈R,R〉, which can be denoted by the single vector 〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which the high variants of both

subsystems are used, i. e. the result of applying the proposed model checking algorithm

is the set containing the single configuration vector 〈R,R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,

it never provides the output action fastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of
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verifying for a windscreen wiping system whether or not a driver is always able to

switch to automatic windscreen wiping mode. (Property 1, formalized in Equation 14).

Another property could demand the windscreen wiper to wipe fast, once it is raining

heavily (Property 2, formalized in Equation 15).
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〈R,L〉, 〈L,R〉 ,and 〈R,R〉, which can be denoted by the single vector 〈?, ?〉. However,
Property 2 is only satisfied in the configuration, in which the high variants of both

subsystems are used, i. e. the result of applying the proposed model checking algorithm

is the set containing the single configuration vector 〈R,R〉. Intuitively, it is easy to see
why: As the low version of the windscreen wiper does not provide a fast wiping mode,

it never provides the output action fastWip. In consequence, the wind screen wiper
can never wipe fast if the low version is used. However, even if the high version of
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Figure 4.11: The wiper subsystem in PL-CCS, taken from [Gruler et al., 2008b].
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Figure 4.12: The FTS for the wiper subsystem.
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Figure 4.13: A FD for the wiper system in which permanent wiping is explicitly
represented as a feature.

behaves differently: in case of heavy rain it sends the message HvyRain. An
immediate observation is that both subsystems are quite similar and that the
sending of the Rain message is the same in both cases. Still, the corresponding
part has to be duplicated inside both subsystems. An equivalent description
in FTS is given in Figure 4.10. As before, the colour of a transition matches
its feature label; if colours are unavailable on the medium being used, the
feature label is always written behind the action label, separated by a slash.
Transitions with no feature label are labelled implicitly by true. Since the part
dealing with the detection of little or no rain is the same for both qualities, the
corresponding actions in the FTS are part of the base system instead of being
duplicated. Both features only differ visibly in the handling of the heavy rain
condition. Note that in Figure 4.10 and subsequent figures, labels in bold font
highlight transitions which are synchronised in a parallel composition.

As to the two wiper subsystems, their PL-CCS definition is given in Fig-
ure 4.11. Both subsystems have an interval switch, which will switch interval
wiping on. During interval wiping, both subsystems wipe if the sensor sub-
system reports rain; the high quality subsystem will wipe faster in case of
heavy rain. In addition, the low quality wiper can be set to permanent wip-
ing, which ignores the rain sensor. Here again, both subsystems are almost
identical (except for the permanent wiping function), the sole difference being
that the high quality variant reacts differently to a HvyRain message. As a
consequence, the definitions for both subsystems are almost duplicates. This
duplication is not needed in FTS. Consider the FTS representation of the wiper
subsystem shown in Figure 4.12. Note that two action labels on a transition,
e.g., intvOn, slowWipe, is a shorthand notation for two transitions. The FTS
in Figure 4.12 clearly shows that (except for the permanent wiping function)
the high and low quality subsystems only differ in their handling ofHeavyRain.

We conclude this example with an extension that is not part of the original
paper [Gruler et al., 2008b]. Consider the case in which the permanent wiping
feature can also be supported by high quality wipers (in fact, there is no reason
why it should not). That is, permanent wiping will become an individual
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Figure 4.14: The modified FTS for the wiper system with permanent wiping
as a separate feature.

feature which is optional. A revised FD that accommodates the new feature is
presented in Figure 4.13. To make the corresponding change in the behavioural
model, in FTS it is sufficient to relabel the transitions pertaining to the wiping
feature, as shown in Figure 4.14. In PL-CCS, on the other hand, one will have
to duplicate the definition of the permanent wiping mode in both subsystems.

All these models are distributed with the Haskell FTS library [Classen,
2010b], our first FTS implementation, briefly discussed in Part III.

4.5.2 The mine pump system

The mine pump system is a specification exemplar for distributed systems
originally introduced in [Kramer et al., 1983]. The purpose of the system is
to keep a mine shaft clear of water while avoiding the danger of a methane
explosion. It consists of a water pump, a sensor measuring the water level and
a sensor measuring the concentration of methane in the mine. The system
should activate the pump once the water level reaches a preset threshold, but
only if the methane is below a critical limit.

The system consists of three high-level features, shown in Figure 4.15: (i) a
command interface c, which can be used to switch the water regulation function
on or off; (ii) a methane alarm interface m, which can receive alarm messages
from the methane sensor in case of critical methane, and (iii) the water regu-
lation subsystem l. The system is distributed: the controller and sensors are
individual subsystems which communicate by message passing. Although the
system was not designed as an SPL, these components play the same roles as
features in an SPL and can be modelled as such.
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MinePumpSys
base

Methane detect.
m

Command
c

Water regulation
l

Figure 4.15: The FD for the mine pump controller.

Following the CONIC code included in [Kramer et al., 1983], we created an
FTS of the mine pump system. The controller manipulates a variable repre-
senting the system state, and its reactions to events such as a methane alarm or
high water depend on this state. In order to keep the model size reasonable, the
controller is modelled by two FTS. The logic of the controller is modelled by the
FTS in Figure 4.16 (the system FTS ), whereas the system state is maintained
by the FTS in Figure 4.17 (the state FTS ). As before, when there are several
transitions with different action labels between two states, only one transition
is drawn, and the action (and feature) labels of the transitions are listed above
or below the transition. In this FTS, we make use of action labels, which are
specified next to a state in curly braces. In Figure 4.17 and subsequent figures,
the transitions without feature labels are implicitly labelled by 1 (and coloured
black). These transitions are synchronised during parallel composition and take
the feature of the transition with which they are synchronised.

Basically, the system FTS describes the actions on the system state, but
does not record it explicitly. The actual FTS of the controller is the parallel
composition of the system FTS and the state FTS. Intuitively, each time the
FTS executes a set∗ action, e.g., setReady, it will be synchronised with the
corresponding transition in the state FTS. The result is that the state in which
the transition arrives receives the atomic propositions of the state FTS, e.g.,
ready. The state FTS will thus add an atomic proposition with the system state
to each state of the system FTS. This causes a small blowup; the resulting FTS
will have hundreds of states. There are five system states:

• stopped means that the water regulation function is off (controlled via
the command interface). The system will avoid switching on the pump.

• ready means that the water regulation function is on (controlled via the
command interface). The system will switch the pump on if there is no
methane and the water level is high.

• running means that the pump is currently running.

• lowstopped means that the pump was stopped because the water level
was low. The pump will resume in case the water rises again.

• methanestopped means that the pump was stopped because of a critical
methane level. The pump will not resume until explicitly switched on via
the command interface.
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Figure 4.16: The system FTS of the mine pump controller.
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s5

s1

s4

isRunning
isNotReady

isReady
isNotRunning
setReady

isStopped
isNotRunning
isNotReady

s2

isMethaneStop
setMethaneStop
isNotRunning
isNotReady

s3

isLowStop
isNotRunning
isNotReady

{stopped}

{methanestopped}

{lowstopped}

{ready}

{running}

Figure 4.17: The state FTS of the mine pump controller. The action labels of
transitions between states were omitted to avoid overload. They depend on the
state in which the transition arrives. For instance, all transition arriving in s4
have the action label setReady, those arriving in s1 have setStop, and so on.

The system operates as follows. It will observe three types of events: com-
mands, methane alarm messages and water readings. There are two types of
command: stop and start. In case of a start command, the system state is
changed and set to ready. In case of a stop command, the pump is stopped,
and the system state set to stopped. In case of a methane alarm, the system
stops the pump and sets the system state to methanestopped. The system can
distinguish between three different water levels: in case of normal water, the
system does nothing; if the water is high and the pump not yet running, the
system will first check whether it is ready or whether it just stopped because
of low water (lowstopped), if yes, it will check the methane level, and if there is
no methane (that is, if after the check it is still ready), it will start the pump
and set the state to running, otherwise it will do nothing. Once the water is
low, the system switches off the pump and sets the system state to lowstopped.

The system interacts with its environment, which is modelled with three
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other FTS that are put in parallel with the FTS of the system. The methane
level is modelled with the FTS in Figure 4.18. Methane can rise and lower
at will, represented by the methaneRise and methaneLower transitions. The
pAlarmMsg and setMethaneStop transitions will synchronise with the system
FTS, meaning that the system FTS will receive the alarm message only in case
of high methane.

The water pump is represented by the FTS in Figure 4.19. The pump can
be in two states, running or stopped. The actions pumpStart and pumpStop,
synchronised with the system FTS, will cause this state to change. The action
pumpRunning is used to model the interaction between pump and water. It is
synchronised with the water FTS shown in Figure 4.20: a running pump will
cause the water level to decrease. The level can rise at will. The low, high
and normalLevel actions are synchronised with the main FTS, meaning the
system will only observe low, high or normal water if this is indeed the case.

When the command interface and the methane alarm interface are consid-
ered optional, as in the first FD in Figure 4.15, there are four different products.
We can add further variability by considering the start and stop message types
as well as the three water level readings as individual features. A revised FD
is shown in Figure 4.21. The product line now has 64 products. The revised
system FTS is given in Figure 4.22. The other FTS do not change. These
models are also distributed with the Haskell FTS library [Classen, 2010b]. We
used these in [Classen et al., 2010b] to conduct the first experiments assessing
the efficiency of the FTS algorithms.

4.6 Conclusion
FTS are a formalism designed to describe the combined behaviour of a whole
system family. FTS are transition systems in which transitions are linked to
the features of an SPL by the means of feature expressions (in addition to
being labelled with actions). This allows us to model very detailed behavioural
variations of the product line. In addition, features as treated as first-class
abstractions, which allows both explicit variability management and separation
of concerns, since a global view of the variability is available in an FD. FTS
are the formal foundation for all further developments of this thesis.

FTS are exponentially more succinct than similar models, such as transition
systems. However, they also require new model checking algorithms. Before we
get to the model checking algorithms, we need to discuss what model checking
in the context of SPLs means, and give a formal definition of the problem. We
do this in the following chapter.
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s2

palarmMsg

s1

methaneRise

methaneLower

setMethaneStop

{} {methane}

Figure 4.18: An FTS modelling the environment: the methane level.

s2

pumpRunning

s1

pumpStart

pumpStop

{pumpoff} {pumon}

Figure 4.19: An FTS modelling the environment: the pump.
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s1

normalLevel

s2

lowLevel

waterRise waterRise
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pumpRunning

{lowwater} {normalwater} {highwater}

Figure 4.20: An FTS modelling the environment: the water level.

MinePumpSys
base

Methane detect.
m

Command
c

Water regulation
l

Stop
cp

Start
ct

High
lh

Low
ll

Normal
ln

Figure 4.21: The refined FD for the mine pump system.
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Figure 4.22: The refined FTS for the mine pump system.



Chapter 5

The Model Checking Problem

“ It is not from the benevolence of the butcher, the brewer, or the
baker that we expect our dinner, but from their regard to their own
interest. ”Adam Smith, The Wealth of Nations, 1776

With FTS, we have a formalism for describing the behaviour of an SPL. Model
checking is a technique for checking whether such a model exhibits certain
desirable, or undesirable properties. Before we can introduce model checking
techniques for FTS, however, we need to provide a formal description of the
problem that these techniques are meant to solve. We also need to investigate
what kinds of properties are of interest in SPLE.

We will start with a general introduction and contextualisation in Sec-
tion 5.1. In Section 5.2, we then discuss what kind of temporal properties
can be checked on an SPL. The model checking problem itself is formalised in
Section 5.3. In Section 5.4, we discuss a number of common model checking
techniques and their application in the context of SPL model checking, before
concluding in Section 5.5.

5.1 Introduction

We have introduced the problem of model checking for single systems in Chap-
ter 2. In a nutshell, the model checking problem consists in determining
whether a behavioural model satisfies a given property. If the behavioural
model describes just a single system, it is clear that model checking will pro-
vide information about this system.

In the case of SPLs, however, the behavioural model describes several sys-
tems (the products). The Boolean response of the model checking problem is
thus insufficient. While a satisfied property (the positive answer) is, by Defi-
nition 4.3, satisfied by each product, a negative answer carries no information
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about products. To be helpful, the answer should at least identify one violating
product. But even this is not satisfactory. Reporting a single violating product
allows no conclusion as to which features are responsible for the violation. Fur-
thermore, it might be the case that all but a few products satisfy a property,
which is hard to determine if a check just reports one violating product.

Ideally, model checking in SPLs should thus determine satisfaction or vio-
lation for all products in the SPL. Furthermore, it should present its result in
terms of features. First, providing lists of violating products does not scale due
the potentially huge number of products. Second, and more importantly, if fea-
tures are treated as first-class concepts in the modelling language, they should
be first-class concepts in decision procedures computed over the modelling lan-
guage. If engineers think in terms of features when modelling a system, they
most certainly think in terms of features when they verify it. Furthermore,
reporting a violation in terms of features gives valuable clues as to the origin
of the violation.

This leads us to the question whether and how features should be first-class
concepts in the properties that are checked.

5.2 Expressing properties in fLTL and fCTL

Classical logics such as LTL and CTL can readily be used to express properties
of SPLs. Such logics express properties about the existence and about the
ordering of states in the executions of a system. From the previous chapter, it
is clear that the choice of features may affect the existence and the ordering
of states in an execution significantly. (In fact, the only effect of features.)
However, features do not have to appear in these properties to make them
relevant to SPL model checking. Features cannot even be used to characterise
states. States are indirectly referred-to by assertions about atomic propositions.

Another way to look at this is that an SPL is a set of systems which are
not fundamentally different from systems developed as single systems from
the outset. The properties that one would like individual products to satisfy
(deadlock freedom, respect of a critical section, request/answer patterns, and
so on) are the same as those that have been subject to model checking in single
systems for the last thirty years. We view model checking as orthogonal to other
activities in SPLE. If model checking an SPL against a property corresponds
to model checking all its products against this property, it would seem quite
natural that the properties of interest to us are those that are used for single
systems. And just as in single systems, we expect properties to be expressed
with temporal logic formulae.

However, as a property might not be relevant to all products, a means
to express the products for which a property holds should be added to tem-
poral logics. This quantifier does not affect the semantics of the temporal
property, but rather limits the range of products over which it holds. As an
example, consider the property for the vending machine example, discussed in
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Section 2.2.2: “After selecting a beverage, the machine will always open the
beverage compartment to allow the customer to collect her beverage.” The
property is independent of all but the FreeDrinks feature, as products with
this feature do not have a closing beverage compartment. That is, the prop-
erty is irrelevant for products with the FreeDrinks feature; it should only hold
for those without the feature.

To specify the quantifier, we chose to use feature expressions. They are
already prevalent in all of FTS and fully expressive wrt. the set of products.
This leads us to define feature LTL (fLTL) and feature CTL (fCTL) as follows.

Definition 5.1. An fLTL (resp. fCTL) property φ is an expression φ := [χ]φ′

where φ′ is an LTL (resp. CTL) property and χ ∈ B a feature expression. An
FTS with FD d satisfies φ, noted fts |= φ, iff

∀p ∈ [[χ]] ∩ [[d]] • fts |p |= φ′.

That is, each product of the FD that is included in the quantification yields a
transition system that satisfies the LTL (resp. CTL) property.

In fLTL, the example formula can be expressed as follows:

[¬FreeDrinks] �(selected⇒ ♦open).
Suppose that state Æ of the FTS in Figure 4.2 is labelled with the proposition
selected and state Ç with the proposition open. It is clear that if the freeDrinks
feature is selected, state Ç is never reached and the property violated. The
quantifier eliminates such behaviours, and the quantified property is indeed
satisfied by the FTS.

An LTL (resp. CTL) property (without quantifier) is interpreted over an
FTS as the fLTL (resp. fCTL) property quantified over all products.

Definition 5.2. For an LTL or CTL property φ, fts |= φ , fts |= [1]φ.

Note that quantifiers in these logics cannot be nested. A formula can only
have one quantifier at the root. The reason for this that in practice, there is
no need for the nesting of such quantifiers. In this regard, our definition of
fCTL differs from the one we gave in [Classen et al., 2011c] where nesting of
quantifiers was allowed. Since we did not find any use for nesting, we decided
to limit our logics to a single quantifier.

Recall that the logics LTL and CTL are subsets of CTL∗. We do not
consider CTL∗ here since its fragments LTL and CTL are generally treated
separately. An algorithm for CTL∗ can be easily obtained from those for LTL
and CTL [Emerson and Lei, 1987]. Nevertheless, one could define the logic
feature CTL∗ (fCTL∗) similarly to the way fLTL and fCTL are defined in
Definition 5.1. fLTL and fCTL would then be subsets of fCTL∗, and a model
checking algorithm for fCTL∗ over FTS could be obtained by combining those
given for fLTL and fCTL in the following two chapters.
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5.3 The model checking problem in SPLs

Following the above discussion, the SPL model checking problem is not a deci-
sion problem, where the answer would be Boolean, but a function problem [Pa-
padimitriou, 1994]. It requires that a negative answer is accompanied by at
least one example of a violating product.

Definition 5.3. For a logic L ∈ {fLTL, fCTL}, given a property [χ]φ in L
and an FTS fts, McL(fts, [χ]φ) returns true iff fts |=L [χ]φ. If fts 6|=L [χ]φ,
it returns false and a non-empty set of products px ⊆ [[χ]] ∩ [[d]]

FD
such that

∀p ∈ px • fts |p 6|=L φ.

This is analogous to classical model checking, which returns false if it finds
a single violating execution. There might be other executions that violate the
property, but a single one is sufficient to prove the violation. In our case too,
there might be other products that violate the property, but a single one is
sufficient to prove that it does not hold for those specified by the quantifier.

However, because it does not say anything about the other products, such
a model check is only of limited use. As said before, it does not reveal much
about the features required for the violation to occur. Furthermore, if all other
products satisfy the property, it might be easier to just exclude the violating
product in the FD, rather than fix the problem. This leads us to propose an
SPL-specific model checking problem: to determine for each product whether
or not it satisfies the property.

Definition 5.4. For a logic L ∈ {fLTL, fCTL}, given a property [χ]φ and
an FTS fts, ExtMcL(fts, [χ]φ) returns true iff fts |=L [χ]φ. If fts 6|=L [χ]φ,
it returns false and a non-empty set of products px ⊆ [[χ]] ∩ [[d]]

FD
such that

∀p ∈ px • fts |p 6|=L φ and ∀p ∈ ([[χ]] ∩ [[d]]
FD

) \ px =⇒ fts |p |=L φ. To
simplify the notation, we write px 6|=φ (resp. px|=φ) to denote the set of products
that violate (resp. satisfy) φ.

In addition to the set of products, model checkers generally give an ex-
ample of an execution that violates the property. This is crucial in prac-
tice, as it helps the engineer locate the error, or reproduce the problem in
a simulation environment. For instance, the result of Mc(fts,�(selected ⇒
♦open)), where fts denotes the FTS of Figure 4.4, would be false, the set{{v, b, s, f, cur, eur}, {v, b, s, f, cur, usd}} and the counterexample:

À free−−−→Â soda−−−→Ä serveSoda−−−−−−−→Æ skip−−−→À −→ . . .

Note that the decision problem consists in calculating the full set of violating
products, even when these products have different counterexamples. We did
not include the generation of such counterexamples in the decision problems, as
this will make it easier to study their computational complexity. Especially in
the case of CTL (hence fCTL), the generation of a counterexample is generally
treated as a separate problem [Clarke et al., 1995].
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Also note that in practice, the set of products is expected to be given as a
feature expression. This is illustrated by the example we just gave, where the
features cur, eur and usd are irrelevant, as they do not influence the behaviour.
The feature expression s∧f∧¬t∧¬c would expand into the same set of products,
and only mentions features relevant to the property.

5.4 Practical aspects of SPL model checking

Having covered the fundamental model checking problems, we now look at
more practical aspects, vacuity and deadlock detection, and how they apply to
model checking of SPLs.

5.4.1 Vacuity detection

In practice, it is often necessary to check properties under certain assump-
tions. For example, if the system consists of several processes, it is reasonable
to assume that each process gets scheduled fairly. Formally, an infinite exe-
cution should contain infinitely many steps of each process. When checking
the property, only such executions should be taken into account, as others are
deemed irrelevant. This is an example of a fairness property. Properties for the
mine pump example discussed in Section 4.5.2 also have several assumptions.
For instance, the system can receive different kinds of message. A reason-
able assumption there is that it will read each kind of message infinitely often.
Moreover, there is an assumption that the system actually does something,
which weeds out executions in which only the environment changes. This is an
example of a progress assumption.

Most of these assumptions can be specified as fairness properties. E.g.,
the progress assumption could be formulated as �♦progress, where progress
is an atomic proposition that holds in every state that is considered to be
indicative of the system doing something. In LTL, a fairness property is itself
an LTL property. This means that model checking an LTL property φ under
the assumption ψ is equivalent to model checking the LTL property ψ ⇒ φ.
In CTL, the treatment of fairness properties is different, as they cannot be
expressed in CTL. Instead, a preprocessing is done to identify states from
which a fair path can leave, and the algorithm is adapted in order to restrict
it to paths which only contain such states.

An important consideration when reasoning with assumptions is to avoid
vacuous satisfaction. Assumptions have to be discharged ; that is, there has
to be at least one execution in which the assumption holds. Otherwise, any
property under the assumption is trivially satisfied. Vacuous satisfaction not
only applies to explicit assumptions, such as those given above. Other kinds
of property can also be vacuously satisfied. A common example is antecedent
failure, i.e., if the left-hand side of an implication does not become true in any
execution, the right-hand side will never be checked and the property vacuously
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satisfied [Beer et al., 2001]. A vacuously satisfied property is most likely an
error in the property or the model. It is thus important to detect vacuous
satisfaction and report it to the engineer.

As expected, vacuity detection in SPL model checking needs to take vari-
ability into account. In an FTS, vacuous satisfaction of a property may depend
on the product. Discharging an assumption in an FTS should thus produce a
set of products for which the assumption can be discharged. As for transition
systems, this problem can be reduced to a model checking problem. Let us
illustrate this for the case of an LTL property. In this case, the assumption ψ
is discharged by model checking the system against its negation, ¬ψ. If this
check fails, then there is at least one execution that satisfies the assumption,
and reasoning under the assumption is sensible.

In the case of FTS model checking, the set of products for which an as-
sumption ψ can be discharged is computed with an extended model check,
ExtMc(fts,¬ψ). This set is then intersected with the set of products satis-
fying ψ⇒φ, yielding those that are non-vacuously satisfied. ExtMc(fts,¬ψ)
will yield all products px 6|=¬ψ that violate ¬ψ, meaning that each of them has
a behaviour that satisfies the assumption.

Theorem 5.5. For a property φ and an assumption ψ, the set of products that
non-vacuously satisfy φ under the assumption ψ is px 6|=¬ψ ∩ px|=ψ⇒φ.

This extends to more general vacuity detection methods, for both CTL and
LTL, such as the one by Beer et al. [Beer et al., 2001]. The proposed method
derives a property witness(φ), which should be violated for φ to be satisfied
non-vacuously. This leads to a similar treatment as above.

5.4.2 Deadlock detection

Deadlocks are a common problem in systems consisting of several parallel pro-
cesses. In a typical scenario, some process has acquired a lock on resource X
and waits for resource Y , while another process holds the lock on resource Y
and waits for the lock onX to be released. In this case, both processes mutually
block each other. Coffman et al. give the necessary and sufficient conditions
for a deadlock to occur [Coffman et al., 1971].

In a transition system, a deadlocked state is a reachable state with no
outgoing transition. In terms of transition systems, deadlock checking thus
boils down to checking whether such a state is reachable from an initial state.
We thus define absence of deadlocks in an FTS as absence of deadlocks in the
transition system of every product. This yields the following decision problem.

Definition 5.6. Given an FTS fts, CheckDeadlock(fts) returns true iff
∀p ∈ [[d]]

FD
, fts |p is free from deadlocks. Otherwise it returns false and px

a non-empty set of products which contain deadlocks. Analogous to ExtMc,
ExtCheckDeadlock returns the full set of products with deadlocks.
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In classical transition systems, deadlock checking is mainly used when the
transition system was obtained through parallel composition, as by definition,
deadlocks need several processes competing for resources [Coffman et al., 1971].
It is interesting to observe that in FTS, deadlock checking is also sensible when
there is no parallel composition involved. This is because in an FTS, a deadlock
can also stem from an erroneous feature expression on a transition.

Consider the vending machine example from Figure 4.2. State Â has three
outgoing transitions, labeled with features Soda, Tea and Cancel. If there were
a product without these features in which state Â were reachable, it would be a
state without outgoing transitions, hence a deadlock state. This problem does
not occur since Soda or Tea are included in every product.

Deadlock detection algorithms for FTS thus have to account for the fact
that each transition is labelled with an arbitrary feature expression. Clearly,
states with no outgoing transition in the FTS will have none when projected to
a product. However, since projection can remove transitions, there might also
be states that lack outgoing transitions in certain products only. For a state s,
the set of products for which it has an outgoing transition is given by

out(s) , [[
∨
s α→ s′∈trans γ(s α→ s′)]].

A state s thus lacks an outgoing transition in products [[d]]
FD
\ out(s). This

is not a problem as long as s is not reachable in these products. Let in(s)
be the products in which s is reachable. Deadlocked states are thus those for
which in(s) 6⊆ out(s). This generalises the classical notion of deadlock, in which
out(s) = ∅.

5.5 Conclusion
We discussed the problem of model checking in the context of SPLs. We found
that model checking can be seen as orthogonal to other concerns in SPLE, and
that temporal logics can be nearly reused as-is. We proposed the logics fLTL
and fCTL, which extend their almost-namesakes with the ability to specify the
set of products over which a property holds.

We defined two model checking problems. One problem is to find at least
one violating product and report it. The other is to find all violating products.
In the next chapter, we provide algorithms for solving these problems.





Chapter 6

Explicit Algorithms for FTS
Model Checking

“ What worries me about religion is that it teaches people to be sat-
isfied with not understanding. ”Richard Dawkins, BBC interview, 1996

After having established the modelling language in Chapter 4 and its deci-
sion problems in Chapter 5, we can now provide algorithms for solving these
problems. As a first step, we will introduce basic algorithmic principles for
FTS model checking, and derive semi-symbolic fLTL model checking algorithms
based on a depth-first search. In the following chapter, we will proceed to fully
symbolic fixed-point based algorithms for fCTL model checking.

The algorithms will be introduced in several steps. After giving a straight-
forward (but potentially inefficient) algorithm in Section 6.1, we describe how to
compute reachability in an FTS more efficiently in Section 6.2. We then study
the skeleton of the FTS model checking algorithm in Section 6.3. Following
this, we present algorithms that check reachability-based properties (such as
absence of deadlocks, or safety) and fLTL in Section 6.4. Finally, we discuss
optimisations in Section 6.5 and the computational complexity of these algo-
rithms Section 6.6, before concluding in Section 6.7.

6.1 Introduction
As we have seen in Theorem 4.4, the classical model checking algorithm cannot
be used immediately for FTS. It would find false positives, i.e., executions
which do not exist in the FTS, and thus be incomplete. To use it for FTS
model checking, the FTS has to be projected to a product first.

A straightforward algorithm for FTS model checking would thus be to iter-
ate through the set of products (which can be computed from the FD), and to
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model check each product separately using the model checking algorithm for
single systems. We call this the naïve algorithm.

Algorithm 6.1 (Mc([χ]φ, fts)). Iterate through p ∈ [[χ]]∩ [[d]]
FD

and compute
SMc(φ, fts |p); if it is 0, halt and return 0 and p. After the last p, return 1.

Algorithm 6.2 (ExtMc([χ]φ, fts)). The Boolean variable r is initialised to
1. Iterate through p ∈ [[χ]] ∩ [[d]]

FD
and compute SMc(φ, fts |p); if it is 0, add

p to the output and set r to 0. After the last p, return r.

This approach appears to be rather inefficient. Indeed, exponentially many
products will be explored in spite of their great similarity.

6.2 Reachability in FTS
Model checking algorithms perform a search in the state space and produce
information about states. As shown by Definition 4.2, each product of the FTS
can have a different state space. Therefore, the model checking algorithm has
to keep track of the states as well as the products in which they exist.

6.2.1 Introduction
The reachability relation R is the structure computed by the algorithm as the
FTS is explored. It is not merely a set of states, but a set of couples. A couple
(s, px) means that state s is reachable in the products in px.

Definition 6.3. A reachability relation of an FTS is a function, R : S →
PP(N), so that ∀s ∈ S, p ∈ R(s), s is reachable in fts |p: ∃π ∈ [[fts |p]]TS , i ∈
N • head(πi) = s (remember that πi denotes the state at position i of the execu-
tion π). A reachability relation R is full when there is no state s ∈ S reachable
in a product p ∈ [[d]]

FD
and p 6∈ R(s). We assume that R(s) = ∅ if s 6∈ dom(R).

Computing R efficiently is the key of our algorithms. As shown before, the
naïve way would be to explore the transition system of each product separately.
This will yield a set of reachable states for each product, from which R can
easily be obtained. Instead, we propose an algorithm that computes R by
exploring the FTS. The starting point of this algorithm is the observation that
the initial states of the FTS are part of all products.

Definition 6.4. Initially reachable states of an FTS are

Init ,
{

(s, [[d]]
FD

) | s ∈ I}.
A transition t is part of the products that satisfy its feature expression,

[[γ(t)]]. Assuming that its source state is reachable by products in px, the
transition can be fired by products in px∩ [[γ(t)]]. This yields a set of products
for which the target state is reachable.
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Definition 6.5. The successors of a state s ∈ S reachable by products in px ∈
PP(N) are Post(s, px) ,

{
(s′, px′) | s α→ s′ ∈ trans ∧ px′ = px∩ [[γ(s α→ s′)]]

}
.

Let us illustrate this with the vending machine FTS of Figure 4.2. State À
is an initial state, and thus reachable by all products, [[d]]

FD
. From there,

the transition À pay−−→Á can only be fired by products in [[¬f ]]. In consequence,
state Á is reachable by products in [[d]]

FD
∩[[¬f ]]. Transition Á change−−−−→Â can be

fired for the same products. Transition Â soda−−−→Ä can be fired for all products
in [[s]], and so state Ä is reachable by products in [[d]]

FD
∩ [[s ∧ ¬f ]], and so on.

Post is defined for single states, but can easily be extended to reachability
relations, where Post(R) stands for

⋃
s∈S Post(s,R(s)). Since a state s can be

a successor to several states in R, Post(R) is not necessarily a function. To
this end, the result of Post is always compacted as follows.

compact(x) , {(s, px) | s ∈ S ∧ px =
⋃

(s,px′)∈x px
′}.

The full reachability relation of an FTS, Rfull is then given by a fixed point.

Theorem 6.6. Rfull = µX.Init ∪ Post(X).

Proof. (⊆) Assume that ∃s ∈ S, p ∈ [[d]]
FD
• p 6∈ Rfull(s) with s reachable in

fts |p. That is, an execution π ∈ [[fts |p]]TS visits s. Let i ∈ N be the smallest
index such that head(πi) = s. Since Rfull is a fixed point of λX.Init∪Post(X),
we have p 6∈ Rfull(head(πi−1)) for otherwise p ∈ Rfull(s) since (s, {p}) ∈
Post(head(πi−1), {p}) by our hypothesis. This recursive argument leads to p 6∈
Rfull(head(π)), which is impossible as head(π) ∈ I and ∀si ∈ I • Rfull(si) =
[[d]]

FD
since Rfull is a fixed point of λX.Init ∪ Post(X). Hence, no such state

s exists.
(⊇) Assume that ∃s ∈ S, p ∈ [[d]]

FD
• p ∈ Rfull(s) with s not reachable in

fts |p. By definition of Rfull, it contains some predecessor of s, say s′ with
p ∈ Rfull(s′). If s is not reachable in p, then neither is s′. This observation
recursively applies to all its predecessors, pre, none of which can be in Init.
The relation R′ = {(s′, Rfull(s′)) | s′ 6∈ pre} ∪ {(s′, Rfull(s′) \ {p}) | s′ ∈ pre}
is thus a smaller fixed point of µX.Init ∪ Post(X), which is impossible by our
hypothesis.

As an illustration, the full reachability relation of the vending machine
example is shown in Figure 6.1. Each box with a dashed border describes the
set of products in which its corresponding state is reachable.

Reachability relations can be ordered.

Definition 6.7. R1 � R2 ⇔ ∀s ∈ S • R1(s) ⊆ R2(s).

It is immediate that Post preserves this order. Following [Tarski, 1955], the
fixed point from Theorem 6.6 can thus be computed by repeated application of
Post. The full reachability relation of the FTS is also the maximal reachability
relation computed from the initial states of the FTS.



76 Chapter 6 Explicit Algorithms for FTS Model Checking

87

6

5

1 3

cancel / creturn / c
free / f soda / s serveSoda / s

tea / t

2

4

serveTea / t

pay / ¬f
9

all products

all that do 
not have f

all that 
have c

all that 
have s

all that 
have t

all that 
have s or t

all that 
have s or t 
and not f

all products

close / ¬f

open / ¬f

take / f

take / ¬fchange / ¬f

Figure 6.1: Full reachability relation of the vending machine.

6.2.2 Encoding sets of products

The main distinction between FTS and classical transition system model check-
ing is that in FTS model checking, information about products has to be kept
along with the states.

In practice, of course, it would be rather inefficient to record sets of products
explicitly as suggested by Definition 6.3, that is, by enumerating them (e.g.,
using an array of bits). Here, we study two symbolic encodings for sets of
products, which reduce the overhead caused by having to store sets of products.

The rf/ef encoding, C(N)

One such encoding consists in representing sets of products by recording which
features they must have (required features, rf) and which they cannot have (ex-
cluded features, ef). This symbolic data structure is defined as follows.

Definition 6.8. Let C(N) , P(P(N)× P(N)). The rf/ef encoding of a set
of products is a set c ∈ C(N) with [[c]] , {p ∈ PP(N) | (rf, ef) ∈ c ∧ rf ⊆
p ∧ ef ∩ p = ∅}. We sometimes write [[rf, ef ]] as a shorthand for [[{(rf, ef)}]].
For example, let N = {a, b, c}, then [[{a}, {b}]] =

{{a}, {a, c}}.
A couple (rf, ef) can be seen as a conjunction of literals; positive literals

for the elements in rf and negative for those in ef , e.g., a∧¬b for the previous
example. A set of such couples is thus isomorphic to a Boolean expression in
disjunctive normal form. Since any expression in propositional logic can be
translated into disjunctive normal form, the FD and any feature expression
can be represented by a set of (rf, ef) couples. Let C(d) denote the rf/ef
encoding of an FD d. Given two sets of couples c1 and c2, the union (resp.
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intersection) of the two sets they represent can be calculated with an operation
of disjunction (resp. conjunction) defined as follows.

Definition 6.9. For c1, c2 ∈ C(N), disjunction is c1 ∨ c2 , c1 ∪ c2 and con-
junction c1 ∧ c2 , {(rf1 ∪ rf2, ef1 ∪ ef2) | (rf1, ef1) ∈ c1 ∧ (rf2, ef2) ∈ c2}.
Theorem 6.10. For c1, c2 ∈ C(N), c1∨c2 = [[c1]]∪[[c2]] and c1∧c2 = [[c1]]∩[[c2]].

With this encoding, the initially reachable states Initc and the successors
Postc (the ‘c’ subscript stands for the rf/ef encoding) are defined as follows.

Definition 6.11. In the rf/ef encoding, Rc is a function S → C(N). The
initially reachable states are Initc ,

{
(s,C(d)) | s ∈ I

}
; the successors of a

state s ∈ S reachable by products symbolically given by c ∈ C(N) are

Postc(s, c) ,
{

(s′, c′) | s α→ s′ ∈ trans ∧ c′ = c ∧ γ(s α→ s′)
}
.

Where the conjunction of two symbolic sets is calculated as in Definition 6.9.

As before, Postc is defined for single states but extends to reachability
relations, where Postc(R) stands for

∨
s∈S Postc(s,R(s)). Furthermore, Postc

does not necessarily produce a function, since a state s′ can be a successor to s
via several transitions. To this end, application of Postc is always followed by:

compact(x) , {(s, c) | s ∈ S ∧ c =
∨

(s,c′)∈x c
′}.

The symbolic successor function is equivalent to its explicit counterpart:

Theorem 6.12. For any (s, c) ∈ S → C(N),
Post(s, [[c]]) = {s′, [[c′]] | (s′, c′) ∈ Postc(s, c)}

Proof. This follows from the observations that any set of products can be
rf/ef -encoded and that conjunction of two such sets corresponds to the in-
tersection of their semantics, or ∀c1, c2 ∈ C(N) • [[c1 ∧ c2]] = [[c1]] ∩ [[c2]].

Let us illustrate this with the vending machine FTS of Figure 4.2 (and
repeated in Figure 6.2). State À is an initial state, and thus reachable by
all products, C(d). From there, the transition À pay−−→Á can only be fired by
products not containing the feature f (the label of À pay−−→Á). State Á is thus
reachable by these products only, that is, the feature f is added to the ex-
cluded features: {(∅, {f})} ∧ C(d). From state Á, transition Á change−−−−→Â can
be fired for the same products. From state Â, transition Â soda−−−→Ä can be
fired for the products containing s. State Ä is thus reachable by all products
containing s and not containing f, that is, s is added to the required transi-
tions: {({v}, {f})}∧C(d). Figure 6.2 shows the full reachability relation of the
vending machine in rf/ef encoding, except for the ∧ C(d).

The rf/ef encoding can be optimised in several ways. The most important
optimisation is based on anti-chains [De Wulf et al., 2006]. A couple (rf, ef) in
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Figure 6.2: Full reachability relation of the vending machine in rf/ef encoding.

a symbolic encoding c represents a set of products [[rf, ef ]]. If another couple
(rf ′, ef ′) ∈ c is so that [[rf ′, ef ′]] ⊆ [[rf, ef ]], then (rf ′, ef ′) can be removed
from c without loss of information. More generally, it is sufficient to keep the
maximal elements (an anti-chain) of the partial order induced by the subset
relation ⊆ over the sets of products represented by each couple. Fortunately,
the partial order has a correspondence in the symbolic encoding:

Definition 6.13. For singletons in C(N), the relation v is defined as a partial
order: (rf, ef) v (rf ′, ef ′) , (rf ⊇ rf ′) ∧ (ef ⊇ ef ′). For two sets c, c′ ⊆
C(N), c v c′ , ∀(rf, ef) ∈ c,∃(rf ′, ef ′) ∈ c′ • (rf, ef) v (rf ′, ef ′).

Theorem 6.14. For any c, c′ ⊆ C(N), c v c′ ⇔ [[c]] ⊆ [[c′]].

It can be shown that the partially ordered set of products and the one of
symbolic couples are related by a Galois connection.

Theorem 6.15. The semantic function, [[]], and the following abstraction func-
tion: symb(px) =

(⋂
px,N \⋃ px), are a Galois connection of the explicit and

the symbolic encoding with their partial orders; symb is the lower adjoint of [[]].

Proof. Let L1 = PP(N) and L2 = C(N), then symb : L1 → L2 and [[]] : L2 →
L1 are so that ∀px ∈ L1

px ⊆ [[symb(px)]]
px ⊆ [[

⋂
px,N \⋃ px]]

px ⊆ {p ∈ L1 |
⋂
px ⊆ p ∧ (N \⋃ px) ∩ p = ∅}

∀p′ ∈ px • ⋂ px ⊆ p′ ∧ (N \⋃ px) ∩ p′ = ∅
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and ∀(rf, ef) ∈ L2

symb([[rf, ef ]]) v (rf, ef)
(
⋂

[[rf, ef ]], N \⋃[[rf, ef ]]) v (rf, ef)
(rf,N \ (N \ ef)) v (rf, ef)

(rf, ef) = (rf, ef)

Given this partial order, the optimisation consists in filtering out couples
that are smaller than other couples wrt. v. More importantly, testing whether
a state s is reachable by products in [[rf, ef ]] should not be done by just checking
whether Rc(s) = (rf, ef). Rather, one has to check whether a larger or equal
couple exists: ∃(rf ′, ef ′) ∈ Rc(s) • (rf, ef) v (rf ′, ef ′).

Further, for each couple (rf, ef), rf ∩ ef 6= ∅ ⇒ [[rf, ef ]] = ∅, which means
that such couples can be removed. These optimisations can be incorporated
into the compact function.

The Boolean function encoding, B(N)

An alternative encoding for sets of products are Boolean functions, such as
those used already for feature expressions. Such functions can be represented
by BDDs, a symbolic representation on which propositional operators can be
computed efficiently [Bryant, 1992]. Boolean functions have the advantage of
being applicable in all cases and being close to the definitions we already have.

Recall that for a set of features N , B(N) denotes the set of all Boolean func-
tions over the variables N , and given an FD d, B(d) denote its Boolean function
encoding (see Section 1.2). In the case of the Boolean function encoding, the
elements of the reachability calculation are defined as follows.

Definition 6.16. Rb is a function S → B(N). The initially reachable states
are Initb ,

{
(s,B(d)) | s ∈ I}; the successors of s ∈ S reachable by products

χ ∈ B(N) are

Postb(s, χ) ,
{

(s′, χ′) | s α→ s′ ∈ trans ∧ χ′ = χ ∧ γ(s α→ s′)
}
.

Given Initb and Postb, the fixed point computation for Rbfull is the same
as in Theorem 6.6. The compact function uses disjunction instead of set union:

compactb(x) , {(s, χ) | s ∈ S ∧ c =
∨

(s,χ′)∈x χ
′}.

Again, let us illustrate this with the vending machine FTS of Figure 4.2 (and
repeated in Figure 6.3). State À is an initial state, hence Rb(À) = B(d).
Firing transition À pay−−→Á yields R(Á) = B(d) ∧ ¬f , of Á change−−−−→Â yields
R(Â) = B(d) ∧ ¬f , of Â soda−−−→Ä yields R(Ä) = B(d) ∧ ¬f ∧ s, and so on.
This is very similar to the calculation of the explicit reachability relation. The
difference from the explicit reachability relation is that the function B(d)∧¬f∧s
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Figure 6.3: Full reachability relation of the vending machine in the Boolean
function encoding.

is stored instead of the set of products that it represents. Figure 6.3 shows
the full reachability relation of the vending machine in the Boolean function
encoding, except for the ∧ B(d).

The subset relation ⊆ is a partial order over sets of products. It has a
correspondence in B(N).

Definition 6.17. For χ, χ′ ∈ B(N), χ v χ′ , χ⇒ χ′.

Theorem 6.18. For χ, χ′ ∈ B(N), χ v χ′ ⇔ [[χ]] ⊆ [[χ′]].

This relation is used to test whether a state s is already known to be reach-
able in products [[χ]], i.e., χ v Rb(s). In practice, it can be implemented with a
satisfiability check: χ v Rb(s) is equivalent to UNSAT χ∧¬Rb(s). All compu-
tations involving sets of products can thus be performed on symbolic sets. The
anti-chain optimisations required for the rf/ef encoding are immediate here.

An alternative to using BDDs is to store Boolean functions directly as parse
trees. This has some disadvantages, such as the difficulty of keeping the formula
concise and the necessity of transforming it into a different format for analysis.
Formulas could also be stored directly in Conjunctive Normal Form (CNF).
This allows for some degree of minimisation, but suffers from blowup when
using disjunction, a rather common operation in our algorithms.

Comparison and usage

The Boolean function encoding is polyvalent, in that it can ensure a rather
concise representation for most sets of products. Furthermore, the abundance
of freely available BDD implementations allows for reuse when implementing
an algorithm using this encoding. Our tool SNIP (see Chapter 9) thus uses the
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Boolean function encoding, implemented with both BDDs and CNFs. Experi-
ments showed that the use of CNFs is rather inefficient when no minimisation
techniques are used. An avenue which has not yet been explored is to store
Boolean functions as parse trees. This can be efficient when the Boolean func-
tions can be minimised so that most functions that come up are identical. This
would allow the use of caching, e.g., for SAT results.

The rf/ef encoding is less polyvalent. A close look at Definition 6.9 shows
that the size of the conjunction of two symbolic sets c1 and c2 is |c1|.|c2|.
Although the optimisations discussed above can somewhat mitigate this, the
repeated application of conjunction will quickly lead to large sets of couples.
Eventually, this will bring any algorithm using this encoding to a crawl. How-
ever, whenever conjunction is used in the algorithm, one member is a transition
label (see Definition 6.11). If the rf/ef encoding of all feature labels were sin-
gleton sets, one factor in |c1|.|c2| could be reduced to one each time, thereby
avoiding the blowup. In terms of feature labels, singleton rf/ef couples cor-
respond to conjunctions of literals. This means that the rf/ef encoding can
actually be used for FTS restricted to such feature labels. In fact, GenFTS(FD,
prior) is such an FTS language—hence our use of the rf/ef encoding in the
first FTS implementation, the Haskell FTS library [Classen et al., 2010b].

The rf/ef encoding has another more serious limitation: it is hard to
derive a compact rf/ef encoding for the FD. The Boolean function encoding
of an FD naturally leads to a CNF, whose size will increase exponentially when
transformed into a DNF (which would correspond to the rf/ef encoding).
Moreover, |C(d)| = O(2n). This means that Initc would potentially be huge,
and since Rc is derived from Initc, it would be huge too. Strictly speaking, the
worst-case size is the same for the Boolean function encoding, |B(d)| = O(2n).
However, BDDs tend to be small in practice, and have been used successfully
in the context of FDs [Mendonca et al., 2009,Mendonca, 2009]. A solution to
this problem is to use over-approximation, which we discuss in the next section.

6.2.3 The role of the FD

As Initb is initialised (henceforth called seeded) with the symbolic encoding
of the FD, all subsequent computations will only consider valid products. A
potential drawback of this (in addition to the one pointed out just before) is
that the symbolic encoding of the FD will eventually be repeated for every
state in Rc or Rb. Since it does not change over the course of the verification
and is part of any state, it could as well be factored out. This would lead to
smaller symbolic encodings for the products of each state.

An alternative is thus to initialise Initc or Initb with the set of all possible
products, i.e., ∅ for the rf/ef encoding and 1 for the Boolean function encoding.
This way, the reachability relation captures the products that can reach a state,
without the guarantee that these products are indeed valid. An additional check
is thus required to prevent the computation from considering invalid products,
as this might lead to false positives (i.e., an error state found to be reachable,
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but in an invalid product) and unnecessary calculations (i.e., calculating the
reachable states of invalid products).

However, this cannot be done by explicitly excluding invalid products from
the symbolic sets. This would lead back to the problem we are trying to solve.
Instead, it is sufficient to make sure that each symbolic set of products contains
at least one valid product. This way, no computation over symbolic sets will
lead to false positives. In practice, the symbolic sets whose intersection with
the set of valid products is empty can be removed as part of the compact
function. The non-emptiness of the intersection of these and the FD can easily
be checked with SAT (for the rf/ef encoding), or BDD manipulations.

The FD not only influences the reachable states. It also plays a role when
testing subset relations between sets of products. E.g., for the Boolean function
encoding, when testing whether a state s is reachable in products [[χ]], we test
whether χ v Rb(s). The result of this can depend of the FD. For instance,
let χ = a and Rb(s) = b, clearly χ 6v Rb(s), meaning that s is not reachable.
However, if the FD had a constraint saying that b requires a (i.e., b =⇒ a),
then s would in fact be reachable.

Theorem 6.19. For two symbolic sets of products χ, χ′ ∈ B(N), χ v χ′ =⇒
[[χ]] ∩ [[d]]

FD
⊆ [[χ′]] ∩ [[d]]

FD
. The reverse implication does not always hold.

Proof. Follows from Theorem 6.18 and the example.

Not using the FD during this calculation is thus an over-approximation and
has to be accounted for in the algorithms. For instance, it is fine to use it for the
reachability test described above. While it might happen that a state is visited
even though it is already known to be reachable, Theorem 6.19 guarantees that
an unexplored state will be recognised as such. The algorithm will still be
sound. The inefficiency due to unnecessary state visits is hoped to be offset by
the gain in efficiency when performing the subset test.

Note also that the use of this approximation might result in an unsound or
incomplete algorithm. This is the case for the deadlock test, in(s) 6⊆ out(s),
discussed in Section 5.4.2. A corollary of Theorem 6.19 is that whether or
not in(s) 6⊆ out(s) cannot be determined correctly when in(s) and out(s) are
approximations. To correct for the approximation, both symbolic sets have
to be intersected with the FD first. Note that in the case of the algorithm,
in(s) corresponds to Rb(s) whereas out(s) corresponds to a Boolean function
χ, calculated locally for a state. For the Boolean function encoding, the test
whether [[χ]]∩ [[d]]

FD
6⊆ [[Rb(s)]]∩ [[d]]

FD
is equivalent to SAT B(d)∧χ∧¬Rb(s).

Similarly, the test whether [[χ]] ∩ [[d]]
FD
⊆ [[Rb(s)]] ∩ [[d]]

FD
is equivalent to

UNSAT of the same expression.
For the rf/ef encoding, tests like this are most efficiently implemented by

SAT checks. This leads to a hybrid approach where the rf/ef encoding is used
for sets attached to states, while the FD is represented in a format that can be
readily analysed, e.g., as CNF. For non-emptiness checking, an rf/ef set can
then be transformed into the format of the FD for the purpose of the analysis.
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6.2.4 Product quantification
Before proceeding to the algorithms, let us discuss how product quantification
can be handled. Recall, from Section 5.2, that the set of products for which
a property should hold can be expressed by a product quantifier, that is, a
Boolean function.

The net effect of a quantifier is to restrict the set of products. It can be
seen as an additional constraint over the FD.

Theorem 6.20. Verification of a quantified property [χ]φ over an FTS with
FD d is equivalent to verifying the non-quantified property φ over the FTS with
a changed FD d′, obtained by adding χ as a constraint to d.

Proof. Follows from Definition 5.1.

Verification of quantified properties can thus be reduced to verification of
non-quantified properties, e.g., fLTL to LTL and fCTL to CTL. We therefore
only need to give algorithms for properties without product quantification.

6.3 Computing R with a depth-first search
Our algorithms are based on computing R. While Theorem 6.6 could be im-
plemented right away with set operations [Clarke et al., 1999], this is inefficient
unless data structures such as BDDs are used to represent all sets. This would
result in a fully symbolic algorithm, which we cover in the following chapter.
Here, we are are interested in semi-symbolic algorithms, where products are
represented symbolically but states are explored explicitly, one by one.

Explicit state space exploration is similar to graph exploration, and the two
types of algorithm generally used are Depth-First Search (DFS) and Breadth-
First Search (BFS). Procedure Reachables given below computes R with a
DFS. Its output is equivalent to the result of Theorem 6.6. This procedure
serves as the basis for all subsequent algorithms. It is therefore kept simple,
and abstracts away from the symbolic encodings discussed previously.

Our algorithm generalises the standard DFS algorithm for transition sys-
tems, by marking states with sets of products, rather than Boolean visited flags.
In contrast to the DFS algorithm for transition systems, where no state is vis-
ited twice, our algorithm can visit states multiple times. This follows directly
from Theorem 6.6 and is due to the fact that reachability is defined wrt. a set
of products. When R(s) = px and the DFS arrives at s for the second time
with px′ 6⊆ px, then s, although already visited, has to be re-explored. This is
because transitions that were disallowed for px might be allowed in px′.

The algorithm maintains R and a stack of states, the execution stack. Line 1
mimics Init from Definition 6.4, modulo the discussion of Section 6.2.3: the
initial states are reachable in all feature combinations (not only the valid prod-
ucts), and a DFS is started for each of them (line 6). At each iteration, the
DFS calculates the set new of unvisited successors of the current state (line 9).
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Input: fts = (S,Act, trans, I, AP,L, d, γ).
Output: The full reachability relation of fts.

R← {(s0,PP(N)
) | s0 ∈ I};1

Stack ← [];2

while I 6= ∅ do3

Take s0 from I;4

I ← I \ {s0};5

push
(
(s0,PP(N)), Stack

)
;6

while Stack 6= [] do7

(s, px)← top(Stack);8

new ←


(s′, px′′) | (s′, px′) ∈ Post(s, px) ∧

px′′ = px′ \R(s′) ∧
px′′ ∩ [[d]]

FD
6= ∅ ∧

px′′ 6= ∅

;

9

if new = ∅ then10

pop(Stack)11

else12

Take (s′, px′) ∈ new;13

R(s′)← R(s′) ∪ px′;14

push((s′, px′), Stack)15

end16

end17

end18

return R19

Procedure Reachables(fts)

It uses the Post operator from Definition 6.5 (first condition), and only con-
siders products that are not yet visited (second condition) and that are valid
(third condition). It also makes sure that at least one valid product is among
the remaining products. If all successors were visited, the procedure back-
tracks (line 11). Otherwise it proceeds with one of the successor states, which
is added to R (line 15).

An illustration of the Reachables procedure based on the vending machine
example is shown in Figure 6.4. As in Figure 6.3, we use the Boolean func-
tion encoding. The algorithm completes the illustration started in Section 6.2,
except that it follows the Reachables procedure and does not seed the initial
states with B(d). State À is thus labelled with 1. Firing transition À pay−−→Á
yields ¬f for state Á, and so on.1 Each Boolean function in Figure 6.4 is num-
bered, which represents the succession of Boolean functions uncovered along
the DFS executed by Reachables. When execution reaches state Ã in step 4,

1The order chosen for transitions in the DFS is to start with the transition leading to the
lower indexed state, e.g., first Â cancel−−−−→ Ã, then Â soda−−−→ Ä, and finally Â tea−−→ Å.
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Figure 6.4: Computing the full reachability relation with a DFS.

the set new at line 9 is empty. This is because the only outgoing transition,
Ã return−−−−→À, would lead to feature expression ¬f∧c for state À, with R(À) = 1.
The procedure thus backtracks to state Â, where transition Â soda−−−→Ä is the
next transition that can be fired (step 5 in Figure 6.4). At some point (step 12),
execution will backtrack to state À, from which transition À free−−−→Â leads to
state Â for the second time, with feature expression f . Since R(Â) = ¬f and
[[f ]] 6⊆ [[¬f ]], it has to be re-explored. Hence R(Â) becomes 1 (step 13), and
states Ä, Å and Æ are re-explored as well.

Let us study some properties of the algorithm. A starting observation is
that the sets of products decrease monotonically along the execution stack, and
that the sets of products on an execution stack are always subsets of those in R.

Theorem 6.21. Given an execution stack [(s0, px0), . . . , (sk, pxk)], always
∀i ∈ [1, k] • pxi ⊆ pxi−1.

Proof. This follows from the observation that Post never expands the set of
products passed to it.

Theorem 6.22. For any state s on an execution stack [. . . , (s, px), . . .] with
reachability relation R: px ⊆ R(s).

Proof. For the initial states, this follows immediately from lines 1 and 6 and
otherwise from lines 14 and 15. That not necessarily px = R(s) follows from
the observation that s might be re-explored.

A consequence of these theorems is that even with re-explorations, a state
cannot appear twice on an execution stack. Intuitively, a re-exploration hap-
pens when reaching a state with new products. Because any state that is
already on the stack will be reached with less products than before, the re-
explored state cannot be on the stack already.
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Theorem 6.23. Given an execution stack [(s0, px0), . . . , (sk, pxk)], always
∀i ∈ [0..k − 1] • si 6= sk.

Proof. Let us assume that ∃i ∈ [0..k − 1] • si = sk. Theorem 6.21 implies
that pxk ⊆ pxi; furthermore, pxi ⊆ R(si). Hence, pxk ⊆ R(si) meaning that
(sk, pxk) cannot have been in new, contradicting the hypothesis.

These considerations are particularly helpful when implementing the algo-
rithm. They allow to make certain assumptions (e.g., a state is only once on
the stack) and write more efficient code.

Another interesting observation is that the execution stack does not need
to contain the sets of features for which each state was visited. In fact, it is
sufficient to use those in R.

Theorem 6.24. Let (s, px) be the top of the execution stack and R the reach-
ability relation at this point,

{(s′, px′) ∈ Post(s, px) | px′ 6⊆ R(s′)}
= {(s′, px′) ∈ Post(s,R(s)) | px′ 6⊆ R(s′)}

Proof. By Theorem 6.23, s only appears once on the stack. Hence, the DFS
for products in R(s) \ px is finished and ∀(s′, px′) ∈ Post(s,R(s) \ px) • px′ ⊆
R(s′).

While this approach might reduce the memory needed for the stack, it slows
down the calculation of new, since more states are generated and checked than
necessary. This is a memory/speed trade-off.

A DFS can also be used to check whether a certain state is on a cycle, i.e.,
whether it can be reached from itself. This DFS is generally nested inside a DFS
that identifies the states for which this check is to be performed. Intuitively, it
corresponds to calculating a reachability relation R′ starting with an arbitrary
state (s, px) instead of an initial state. Recall that a reachability relation is
maximal when it cannot be expanded anymore. The maximal reachability
relations that can be computed from different initial states can be different.
More precisely, if the computation of R′ is seeded with a subset of R, the
maximal R′ will be smaller than the maximal R.

Theorem 6.25. For two maximal reachability relations R and R′, when R′ is
computed from Init′⊆ R, then R′ � R.
Proof. Because R and R′ are both maximal, the computation that started form
Init′ was also part of the computation of R. Its result, R′, is thus part of R.

Note that the above theorem is independent from the algorithm used to
implement the calculation. Nevertheless, it is important for the case of nested
DFSs. Suppose that a DFS is started from a state deep in the stack, and the
algorithm then backtracks and starts a DFS from a state not as deep. By
Theorem 6.25, the second DFS does not have to start from scratch, but can
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extend the results that were found earlier. Whatever the first DFS found would
be found by the second as well.

In the context of nested DFSs, an important corollary of Theorem 6.21 is
that any set of products that comes up along an execution has a non-empty
intersection with those before it. When checking whether a state s is on a
cycle, it is sufficient to check whether any state on the execution stack up to s
can be reached. The set of products for which it can be reached is necessarily
a subset of the set of products for which it could be reached the first time.

6.4 Model checking algorithms

With the basic techniques covered, we can now turn to the algorithms. We
proceed in two steps. We start with reachability properties, i.e., rather easy
properties which can be expressed without a temporal logic. The algorithm
for reachability is based on a single DFS. We then proceed to the algorithm
for LTL, which is based on a nested DFS. By Theorem 6.20, the algorithm for
fLTL is an immediate derivative of this algorithm.

6.4.1 Model checking reachability properties

Assertions, safety properties or absence of deadlocks are reachability properties.
They can be expressed as properties that should hold for each state. To verify
them, it is thus sufficient to check whether violating states are reachable. Let
us first specify what violating states, denoted bad hereafter, are in each case.

Assertions. An assertion specifies a condition φ on the atomic propositions
that should hold in all states, i.e., bad is given by {s ∈ S | L(s) 6|= φ}.

Safety properties. A safety property expresses a prefix of behaviour that
a system should not have. They can be expressed in LTL, or as automata.
In automata-based model checking [Vardi and Wolper, 1986], safety properties
are known as regular properties. All violations of a safety property φ can be
expressed by an automaton A¬φ, which accepts exactly the bad behavioural
prefixes. To check an FTS against such a property, their synchronous product
has to be calculated. In terms of languages, the synchronous product represents
the intersection of the language of the FTS and the language of the automaton.
Model checking a regular property amounts to checking whether this intersec-
tion is empty. If it is not, there are executions that violate the property. The
synchronous product of the automaton and the FTS yields an FTS with readily
identifiable bad states. The synchronous product of an FTS and an automaton
is similar to that of a transition system and an automaton [Baier and Katoen,
2008]. A transition s α→ t of the FTS synchronises with a transition q apx→ p
when the transition is labeled with the atomic propositions of the target state,
apx = L(t). The only difference from the standard definition is that it has to
preserve the feature expressions of the original FTS.



88 Chapter 6 Explicit Algorithms for FTS Model Checking

Definition 6.26. For an FTS fts = (S, Act, trans, I, AP, L, d, γ) and an
automaton a = (Q, P(AP ), δ, Q0, F ), the synchronous product is an FTS
fts⊗ a = (S ×Q,Act, trans′, I ′, AP ′, L′, d, γ′), where
• AP ′ = Q and L′(s, q) = q, i.e. the new FTS is labeled with the states of
the automaton,

• (s, q) α→′ (t, p) iff s α→ t ∧ q L(t)→ p,

• I ′ = {(s0, q) | s0 ∈ I ∧ ∃q0 ∈ Q0 • (q0, L(s0), q) ∈ δ}, i.e. the initial
states are those that can be reached from an initial state of the automaton,

• γ′((s, q) α→′ (t, p)
)

= γ(s α→ t),

The violating states in the resulting FTS are those that are labelled with
an accepting state of the automaton, i.e. bad = {s ∈ S × Q | L′(s) ∈ F}.
The relation between safety properties and automata is well known [Baier and
Katoen, 2008] and will not be further explored here.

Deadlocks. Absence of deadlocks in an FTS is defined as absence of dead-
locks in the transition system of each product, cfr. Definition 5.6. As noted
before, projection can remove transitions, which means that states might lack
outgoing transitions in certain products only. A deadlocked state is thus one
in which R(s) 6⊆ out(s), where out(s) , [[

∨
s α→ s′∈trans γ(s α→ s′)]]. Hence,

bad = {s ∈ S | R(s) 6⊆ out(s)}. R(s) is calculated when computing reach-
ability, and out(s) can be determined locally for each state. This is thus a
reachability property. When s is a deadlock state, the set of deadlocked prod-
ucts is given by R(s)\out(s). This is different from the previous cases, in which
the bad products are always R(s), i.e., those in which the state is reachable.

Algorithms. Once the set of bad states is known, the algorithm is the
same in all three cases: compute the reachability relation R as discussed in
Section 6.3, and each time a state s is added or has its set of products updated,
test whether s ∈ bad. This leads to the following algorithms.

Algorithm 6.27 (Mcreach(φ, fts) or CheckDeadlock(fts)). Compute R (us-
ing the Reachables procedure) until the first bad state s is found. At this
point, return 0, the current execution stack (which is the counterexample), and
the set of products px for which the state is bad. For asserts and safety proper-
ties, px = R(s) whereas for deadlocks, px = R(s) \ out(s). When the maximal
R is computed and no bad state is found, return 1.

Algorithm 6.28 (ExtMcreach(φ, fts) or ExtCheckDeadlock(fts)). Maintain
a set of counterexamples c while computing the maximal R. Each time a bad
state is encountered, the couple (e, px) with the current execution stack e and
the set of bad products px is added to c. When the algorithm finishes and c is
empty, return 1. Otherwise, return 0 and c. In this case, the set of violating
products is given by [[d]]

FD
∩⋃(e,px)∈c px.

Again, these algorithms abstract away from the symbolic encoding used to
implement the sets of products; they can be implemented with either one. The
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sets px will then be in the form of a symbolic set. To present a symbolic set
to the user, it is generally formatted as a Boolean expression. Note that this
is only user-friendly because we follow the approach discussed in Section 6.2.3,
that is, because Initc or Initb are not initialised with the encoding of the FD.
Otherwise, the expression shown to the user would contain the entire encoding
of the FD, which would look rather obscure. Instead, the output just mentions
the features that were essential for the particular violation.

One could further simplify the returned expression based on information
contained in the FD. Assume that the bad products are a ∧ b and that the
feature a appears in all products. In this case, the expression could be simplified
to just b. However, such a simplification would require additional computation
and might mislead the user into thinking that a is not involved in the problem
at hand. Therefore, we do not implement such simplifications in our tools.

For the ExtMcreach and ExtCheckDeadlock algorithms, another con-
sideration for user-friendliness is to present a summary of the results at the
end of the execution. For instance, the set of all violating products is easy to
calculate during the algorithm, and should be included as part of the summary.

It is important to note that these algorithms produce a counterexample
for each product reported in the violation. Although there is a counterexam-
ple for each product, the number of counterexamples is generally much lower,
as the algorithm associates counterexamples to sets of products (i.e., given a
set of violating products, the given counterexample is an execution in all of
these products). However, as presented above, Algorithm 6.28 might return
multiple counterexamples for the same product. In Section 6.5 we describe an
optimisation of the algorithm that prevents this.

Furthermore, note that unlike Algorithm 6.1, the naïve algorithm, Algo-
rithm 6.27 can provide a set of violating products, not just a single product.
This is an important advantage, as it gives hints about which features cause
a problem. For example, if a certain feature does not come up on any of the
transitions in the execution, the algorithm provides this information to the
user. Furthermore, the algorithm will automatically ignore features that do
not appear in the FTS, such as the currency related features in the vending
machine example. The naïve algorithm will require some sort of preprocessing
to determine those features, in order to avoid checking products with identical
transition systems.

6.4.2 Model checking LTL properties

LTL properties are part of the class of ω-regular properties for which we use
the technique of automata-based model checking given in [Vardi and Wolper,
1986]. The treatment is similar to that of safety properties. Given an LTL
property φ, it consists in constructing a Büchi automaton, a¬φ, that accepts
all the executions that violate φ. Büchi automata accept infinite behaviours.
The synchronous product (Definition 6.26) of this automaton and the FTS
yields the FTS that is explored.
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The resulting FTS, fts⊗ a¬φ, has labeled accepting states: accept , {s ∈
S × Q | L′(s) ∈ F}. If one of them can be visited infinitely often (the Büchi
acceptance condition), a violating execution is found. Otherwise the property is
satisfied. Converting LTL properties to Büchi automata is well studied [Gastin
and Oddoux, 2001] and all existing results extend to FTS model checking.

The algorithm proceeds in a similar fashion as the one for transition sys-
tems: find an accepting state and when one is found, find a path back to itself.
The identification of accepting states is done by computing R. For each accept-
ing state s, a new reachability relation R′s is computed, with Init′s , {(s,R(s))}
and Post′s , Post. The violating products (or an empty set, if s could not be
reached from itself) are then given by R′s(s).

This computation can be implemented in several ways. Of course, one
could compute the fixed points directly as described above. This yields an
algorithm that is quadratic in the number of states. A more efficient approach,
proposed in [Courcoubetis et al., 1992], is to perform a nested DFS : the outer
DFS identifies all accepting states. For each one, in postorder, an inner DFS is
launched that tries to find a path back to itself. Because the states are explored
starting with the last, each inner DFS can ignore the states that were already
visited by previous inner DFSs [Courcoubetis et al., 1992]. This results in an
algorithm that is linear in the number of states.

This optimisation can be used for FTS model checking as well. Basically, it
corresponds to using the reachability relation R′ for all inner DFSs, instead of
computing it from scratch for every state. This yields the following algorithms.

Algorithm 6.29 (McLTL(φ, fts)). First, compute fts⊗a¬φ. Compute R with
a DFS, the outer DFS, and each time an accepting state s is popped from the
execution stack, compute R′ with a DFS starting with (s,R(s)), the inner DFS.
As soon as it reaches a state s′ that is on the execution stack of the outer DFS,
return 0, a counterexample and the set of violating products R′(s′). When the
maximal R′ is computed and no such state was found, continue with the outer
DFS. When the maximal R is computed, return 1.

Algorithm 6.30 (ExtMcLTL(φ, fts)). First, compute fts ⊗ a¬φ. Maintain
a set of counterexamples c while computing the maximal R. Follow the algo-
rithm for Mc(φ, fts) and each time a violation is found, (e,R′(s′)) with the
counterexample e and the set of bad products R′(s′) is added to c. When the
algorithm finishes and c is empty, return 1. Otherwise, return 0 and c.

The optimisation relies on the assumption that states found during the
earlier inner searches cannot lead back to the source state of the current inner
search. The following theorem establishes that this is also a safe assumption
in our case.

Theorem 6.31. When a reachable accepting state is on a cycle for some non-
empty set of products, then the algorithm will return 0.

Proof. This is analogous to [Courcoubetis et al., 1992]. Let s (with products px)
be the deepest reachable accepting state that is on a cycle in products pxcycle.
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Let π be an execution from s back to itself that exists in products pxcycle. The
central observation is that no state of π can be reached from a deeper accepting
state, s′ (with products px′). If this were the case, then s′ could also reach s
in products pxcycle, meaning that s would be deeper than s′, which is not the
case. Hence, for every state scycle in π, pxcycle ∩R′(scycle) = ∅ at the time the
inner DFS starts, and thus the path π back to s will be found.

6.5 Optimisations

An important optimisation concerns the algorithms for ExtMc, which compute
maximal reachability relations. After having found a violating state, those
algorithms will continue exploration until a maximal reachability relation is
computed. Since the purpose of the algorithm is just to identify all violating
products, it can ignore products that are already known to violate. Formally,
given the set of counterexamples c maintained by the algorithm, the set of
violating products is pxbad =

⋃
(px,e)∈c px. Any state s with products px ⊆

pxbad can be ignored, for all violations that would be found through s would be
for products that are already known to violate (by Theorems 6.21 and 6.25).

In a DFS procedure, such as Reachables, this can be achieved by filtering
out such states as part of the calculation of new. However, this can only
eliminate newly discovered states, not those that are already on the stack. E.g.,
when a violation is found for products px, and the top i states on the stack
are reachable only in products px, then they can all be popped immediately,
since each attempt at exploring them would yield an empty set new. Filtering
out states on the stack can be done efficiently by popping off elements (s, px)
until px 6⊆ pxbad. Following Theorem 6.21, the remaining states have sets of
products that are all greater than pxbad.

A natural extension of this is to stop the search once all valid products are
found to be violating. Also note that checking whether a new state is already
known to be bad, and checking whether it is reachable in a valid product can
be combined into a single check. In SNIP, this optimisation is implemented by
adding a constraint to the formula representing the FD.

While these optimisations have clear benefits in all cases, we can also en-
vision some optimisations that are more speculative (which we wave not yet
implemented in any of our tools). They are based on the observation, from
Theorem 6.21, that the sets of products shrink along an execution. Assume
that two disjoint executions π1 and π2 lead to the same bad state. Further,
assume that π1 is longer than π2. It is likely that the set of products in which
π1 exists is smaller than the set of products in which π2 exists. Intuitively, the
longer the path, the higher the likelihood to encounter new features, and thus
shrink the set of products for which the path exists. If the algorithm explores
π1 first, it is likely to find a larger set of violating products, thus excluding a
larger set of products from future searches, being more efficient.

A BFS will reach each state in the shortest possible path. Given the previous
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observation, a BFS should thus have an advantage over a DFS when computing
a maximal reachability relation for ExtMc. On the other hand, with a DFS,
the algorithm for detecting cycles can be realised in a runtime that is linear in
the number of states. A disadvantage of a BFS is the necessity to explore many
states if the violating states are deep in the state space. It might outweigh the
advantage when computingMc. The question of the better exploration method
is thus still left open. However, there are indications that BFS might be useful
in FTS model checking, at least for reachability properties.

Another optimisation based on the same premise, but which could also
work for a DFS based search, would be to fire the transitions leaving a state
by starting with the least discriminating one. For a state s with products
px and outgoing transitions t1, . . . , tk, the target states would be reachable in
px∩ [[γ(t1)]], . . . , px∩ [[γ(tk)]]. These sets can be partially ordered by inclusion,
and the maximal elements correspond to the least discriminating transitions.
Assuming that all transitions lead to a bad state, firing the least discriminating
ones first is likely to result in a larger set of violating products than first firing
the other transitions. A practical obstacle to this optimisation method is the
calculation of the order. So far, it has not been implemented.

6.6 Algorithmic complexity

An overview of the complexity results is given in Table 6.1. In the following,
fts denotes the FTS under verification, n its number of features, and φ the
LTL property. The size of an FTS is defined in Definition 4.14.

We first discuss the algorithmic complexity of the naïve Algorithms 6.1
and 6.2. The time complexity of both algorithms is identical: iterating through
the set of products takes O(2n), projection can be computed in O(|expr|),
and model checking a single transition system takes O(|fts|) for a reachability
property and O(2|φ||fts|) for an LTL property (see, e.g., [Baier and Katoen,
2008]). Similarly for the space complexity. An important observation is that
the naïve algorithms never have to maintain a structure of size O(2n). The
iteration through the set of products can be achieved by generating a potential
product, testing whether it is valid, and then performing model checking, all
in O(|fts|) space for reachability and in O(2|φ||fts|) for LTL properties.

The time complexity of Reachables is O(4n|fts|). In the worst case, the
algorithm will visit every state for every product, i.e., the loop at line 7 will be
executed O(2n|fts|) times. Calculating new at line 9 is then O(2n). Observe
that the calculation at line 9 is O(4n) if taken in isolation. It requires set
intersection and subset relation tests, which are O(4n) in all three encodings
(explicit, rf/ef and Boolean function). It can be shown, however, that one
member taking part in these operations is inversely proportional in size to the
number of iterations in the loop at line 7. If the loop visits O(2n−k) products
with k ∈ [0..n], then line 9 is O(2n+k); e.g., when |[[γ(s α→ s′)]]| = O(2n) then
|px| = O(2k). Note that the procedure requires a preprocessing step that
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Table 6.1: Algorithmic complexity of reachability and of fLTL model checking.

Reachability Time Space
Naïve algorithm Mc O(2n|fts|) O(|fts|)

ExtMc O(2n|fts|) O(|fts|)
FTS algorithm Mc O(4n|fts|) O(2n|S|+ |fts|))

ExtMc O(4n|fts|) O(2n|S|+ |fts|))
fLTL Time Space
Naïve algorithm Mc O(2n2|φ||fts|)) O(2|φ||fts|))

ExtMc O(2n2|φ||fts|)) O(2|φ||fts|))
FTS algorithm Mc O(4n2|φ||fts|) O(2n2|φ||S|+ 2|φ||fts|))

ExtMc O(4n2|φ||fts|) O(2n2|φ||S|+ 2|φ||fts|))

converts the FD as well as all feature expressions into the chosen encoding.
This step is O(2n|d| + 2n|expr|), i.e., less than O(4n|fts|). Our computation
assumes that insertion and lookup in the reachability relation is implemented
in linear time, e.g., using hash tables as in SNIP. In [Classen et al., 2010b],
we reported a complexity of O(9n|fts|), based on the theoretical maximum
size of the rf/ef encoding being O(3n). Any efficient implementation of this
encoding, however, will have at most O(2n) couples. The space complexity
of Reachables is linear in the size of the state space and exponential in the
number of features.

The algorithmic complexity of FTS LTL model checking, Algorithms 6.29
and 6.30, can be derived from this. The Büchi automaton corresponding to an
LTL property φ is of size O(2|φ|). Its synchronous product with the FTS yields
an FTS of size O(2|φ||fts|). The double DFS, as shown in Theorem 6.31, is of
the same complexity as Reachables.

With regards to computational complexity, the naïve algorithms seem to
be superior to the FTS algorithms. The higher exponential factor in the FTS
algorithms reflects the costs of the symbolic encodings. However, the symbolic
encodings were chosen explicitly in order to yield concise representations for
sets of products. Therefore, we believe that this factor is not an indicator
for performance in practice. In contrast, the naïve ExtMc algorithm cannot
avoid the exponential factor. It has to iterate through all products. This
also holds for the naïve Mc algorithm, in case a property is satisfied by all
products. The naïve Mc algorithm only works well when the relative number
of violating products is high, as this raises the probability of quickly finding
a violating product. Furthermore, an important difference between the naïve
Mc algorithm and the FTS algorithm is that the former only returns a single
violating product. The FTS Mc algorithm, in contrast, can return a set of
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products (not necessarily complete) characterised by the interacting features.
Another measure of efficiency, independent from algorithmic complexity,

is the reduction in state space achieved by our algorithms. It is clear that
the naïve algorithms, when not using other optimisation techniques such as
partial order reduction, will achieve no reduction of the state space. State
space reduction is the purpose of our FTS algorithm, and thus an important
measure of success. In this regard, we know that the FTS algorithm for ExtMc
will explore at most the number of states explored by the naïve algorithm. The
experiments in Chapter 9 will shed more light on this.

We conclude by studying the complexity of the decision problems.

Definition 6.32 (Reachability). Given an FTS and one of its states, is
there a product in which it is reachable?

Theorem 6.33. Reachability for FTS is NP-Complete.

Proof. Reduce SAT to Reachability: each variable of SAT is a feature. The
FTS has two states s1 and s2 with I = {s1}. A transition labelled with the
SAT expression leads from s1 to s2. The FD is so that it allows any product.
SAT now corresponds to Reachability of s2. This reduction is in constant
time and space. The reverse reduction is also possible; it is well known that
reachability and FDs can be encoded with SAT.

By comparison, Reachability in transition systems is NL-Complete [Pa-
padimitriou, 1994]. This shows that the succinctness from allowing Boolean
expressions (or priorities, or just FDs, by Theorem 4.27) comes at a cost.

For both logics L ∈ {LTL,CTL}, the problems McL and ExtMcL are
function problems [Papadimitriou, 1994]. To compare them to the LTL model
checking problem for transition systems, we define McL (D) as the decision
problem corresponding to McL and ExtMcL.

Definition 6.34 (McL (D)). Given an FTS and a property in the logic L (∈
{LTL,CTL}), is there a product whose transition system violates the property?

Theorem 6.35. McLTL (D) is PSPACE-Complete.

Proof. LTL model checking can be reduced to McLTL (D); it is thus PSPACE-
Hard. McLTL (D) can be computed in NPSPACE (hence PSPACE) by guess-
ing a product, computing its transition system, and then following [Sistla and
Clarke, 1985].

In contrast to Reachability, the FTS model checking problem is not inher-
ently harder than the one for transition systems. The complexity of the function
problems is derived from this. Interestingly, both are of equal complexity.

Theorem 6.36. McLTL and ExtMcLTL are FPSPACE-Complete.
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Proof. A procedure for McLTL and ExtMcLTL in polynomial space is given
by the naïve algorithm, when SingleMc is computed following [Sistla and
Clarke, 1985]. They are FPSPACE-Hard as McLTL (D) can be reduced to
both McLTL and ExtMcLTL.

6.7 Conclusion
We just presented and studied a series of semi-symbolic model checking algo-
rithms for FTS. The algorithms solve the decision problems defined in Chap-
ter 5 for fLTL, and for deadlock checking. We also gave two naïve solutions to
the same problems, which will serve as benchmark baselines in all the experi-
ments we conduct.

The algorithms are semi-symbolic, because states are explored explicitly one
by one, but products are represented symbolically. We presented two symbolic
data structures: the rf/ef encoding, and the Boolean function encoding. In
the following chapter, we will give a fully symbolic model checking algorithm,
this time for fCTL. This will allow us to clarify the relation between FTS model
checking and classical model checking.





Chapter 7

Symbolic Algorithms for FTS
Model Checking

“ Society in every state is a blessing, but government even in its best
state is but a necessary evil. ”Thomas Paine, Common Sense, 1776

So far, we have introduced FTS, and model checking algorithms that search the
state space with a depth-first search. A different kind of algorithm commonly
used in symbolic model checking, relies on a fixed-point computation imple-
mented on symbolic data structures, which roughly corresponds to a breadth-
first search. In this chapter, we show that the fundamental principles for com-
puting reachability in FTS also apply to this kind of algorithm, and use it for
fCTL model checking. The main motivation for this that symbolic algorithms
can, to some extent, address the state explosion problem and allow to verify
large state spaces [McMillan, 1993].

The chapter will proceed as follows. In Section 7.1, we introduce a semi-
symbolic fCTL model checking algorithm, using the principles established in
the previous chapter. We then convert this algorithm into a fully symbolic
algorithm in Section 7.2. In Section 7.3, we show how this algorithm can, in
part, be reduced to classical symbolic model checking. In Section 7.4 we study
its computational complexity, before concluding in Section 7.5.

7.1 Introduction
The algorithms presented in the previous section enumerate and visit system
states one by one. Their aim is to mitigate the additional complexity that is
due to the use of features in FTS. They still face the state explosion problem
as they do visit all states of the system one by one. An existing solution to
this problem in single system model checking is symbolic model checking, that
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is, the use of symbolic representations of the state space (see Section 2.4.1). In
this chapter, we combine FTS and symbolic model checking to tackle both the
aforementioned sources of complexity at once.

Symbolic model checking algorithms are based on fixed-point computations,
making them rather different from the depth-first search approach of the pre-
vious chapter. As CTL (and hence fCTL) lends itself well to this kind of
algorithm, we focus here on fCTL. As an introduction, let us briefly give an
overview of fCTL model checking for FTS, independent of the encoding used.

Following Theorem 6.20, fCTL model checking can be reduced to CTL
model checking of an FTS with a modified FD. In the following, we thus just
consider CTL. The model checking algorithm for CTL is based on the recursive
computation of satisfaction sets along the parse tree of the formula (see also
Section 2.3). A satisfaction set is a set of states that satisfy a particular sub-
formula. A full algorithm for CTL model checking of FTS is given by the
parse-tree computation and a recursive definition of the satisfaction sets.

The principles established so far for FTS model checking can be applied to
this procedure, too: a satisfaction set has to keep track of states as well as the
products in which they satisfy the formula. Its structure is thus the same as
that of the reachability relations of Section 6.2.

Definition 7.1. For an FTS fts and a CTL formula φ, a satisfaction set is a to-
tal function, Sat(φ) : S→PP(N), so that ∀s ∈ S, p ∈ Sat(φ)(s) • fts |p, s |= φ.

Another point in which the CTL algorithm differs from the automata-based
LTL algorithm is that it uses backward instead of forward searches. However,
the execution method from Section 6.2 works both ways. Instead of the Post
function, calculating successors, we use Pre, calculating predecessors.

Definition 7.2. The predecessors of a state s ∈ S reachable by products in
px ∈ PP(N) are

Pre(s, px) ,
{

(s′, px′) | s′ α→ s ∈ trans ∧ px′ = px ∩ [[γ(s′ α→ s)]]
}

Similar to Post, Pre can easily be extended to reachability relations, where
Pre(R) stands for

⋃
s∈S Pre(s,R(s)) followed by compact.

For instance, consider state À of the vending machine FTS in Figure 4.2. Its
predecessors in the product with all but the FreeDrinks feature, i.e., Pre(Â,{v, b
s, t c, cur, eur}), are states Ã and È. Its predecessors in a product with the
FreeDrinks feature, e.g., Pre(Â, {v, f, s, cur, eur}), are states Æ and È. This
might seem incorrect, as state È is not supposed to be reachable in these prod-
ucts. However, the meaning of (s, px) ∈ Pre(s′, px′) is that s′ (or state À)
can be reached from s (or from state È) in products px. Whether state È is
reachable in products px can only be determined by continuing the backwards
computation to the initial state, state À. During this computation, the prede-
cessors of state Ç are calculated, at which point the set of products is shrunken
to those in [[¬f ]], the label on Æ open−−−→Ç. The result will thus be that state È
is not reachable in products with the FreeDrinks feature; as expected.
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To complete the model checking algorithm for fCTL, it is sufficient to give
a recursive definition of Sat(φ). The satisfaction sets of state formulae are
recursively defined as follows.

Definition 7.3. CTL state formulae satisfaction sets, s ∈ S:

Sat(true)(s) = [[d]]
FD

Sat(a)(s) = [[d]]
FD

if a ∈ L(s), ∅ otherwise
Sat(φ1 ∧ φ2)(s) = Sat(φ1)(s) ∩ Sat(φ2)(s)

Sat(¬φ)(s) = [[d]]
FD
\ Sat(φ)(s)

The two first rules mimic the initial states from Definition 6.4: seeding the
algorithm with the set of valid products. The rules for conjunction and negation
should be clear. Note that this algorithm does not consider the symbolic set
encodings. They were discussed at length before and can be applied here as
well. Depending on the type of symbolic set used, it might be more efficient to
use approximated product sets as discussed in Section 6.2.3, i.e., seeding the
algorithm with PP(N) instead of [[d]]

FD
.

With the definition of Pre, computing E© is rather straightforward:

Definition 7.4. Sat(E© φ) = Pre(Sat(φ)).

That is, if a state s satisfies φ for a set of products px, then all its predecessors
s′ with s′ α→ s satisfy E© φ in products px ∩ γ(s′ α→ s).

The computations of EU and E� are based on fixed point algorithms. In
standard CTL model checking, E(φ1Uφ2) is characterised by the least fixed
point: µT • φ2 ∨ (φ1 ∧ E© T ). Basically, any state that satisfies φ2 satisfies
E(φ1Uφ2), and so do all its predecessors if they also satisfy φ1. The correspond-
ing algorithm therefore starts with the states satisfying φ2 and then searches
backwards for all predecessors satisfying φ1. Of course, the predecessors only
exist in certain products, say px1, and φ1 is only satisfied in certain products,
say px2, which have to be intersected.

Definition 7.5. Sat(E(φ1Uφ2)) = Ti • Ti = Ti+1,

where T0 = Sat(φ2)
Ti+1 = Ti ∪ {(s, px1 ∩ px2) | (s, px1) ∈ Pre(Ti)

∧ (s, px2) ∈ Sat(φ1)
∧ (@(s′, px′) ∈ Ti

• s = s′ ∧ (px1 ∩ px2 ⊆ px′))}
Another way to look at this procedure is as a backwards computation of a max-
imal reachability relation, or satisfaction set, from Sat(φ2) that only considers
states in Sat(φ1). Of course, an efficient implementation of such an algorithm
does not compute Pre(Ti) for the whole set of Ti, but rather for the elements
that were added in the previous iteration. The smaller this delta, the faster
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the computation. This is why the last condition in the calculation makes sure
that the algorithm does not reconsider states that were already explored.

The algorithm for E� is similar to the one for EU , except that a greatest
fixed point has to be computed. E�φ is characterised by: νT • φ∧E© T . So
basically, any state satisfies T if one of its successors also satisfies T , and the
same for its successors, and so on. The algorithm thus starts with Sat(φ), and
progressively shrinks it by removing states that are not in Pre(Sat(φ)).

Definition 7.6. Sat(E�φ)) = Ti • Ti = Ti+1,

where T0 = Sat(φ)
Ti+1 = {(s, px1 ∩ px2) | (s, px1) ∈ Ti

∧ ∃(s, px2) ∈ Pre(Ti)}

Given these definitions, an algorithm for model checking an FTS fts against
an fCTL property [χ]φ is simply to transform the FTS into fts′, which con-
tains the additional FD constraint χ (Theorem 6.20), and then compute Sat(φ)
recursively. This yields the set of products that satisfy the property. If
Sat(φ) = ∅, the property is violated.

An interesting difference between this fixed-point based algorithm and the
DFS-based algorithm of Section 6.4.2 is that the fixed-point algorithm always
computes maximal reachability relations. This means that it will always pro-
duce an answer to both decision problems Mc and ExtMc.

7.2 Symbolic model checking of fCTL properties

Let us now turn the semi-symbolic algorithm given in Section 7.1 into a fully
symbolic algorithm. In the symbolic setting, sets of states and the transition
relation are encoded directly with their characteristic functions. As we already
said, characteristic functions can be represented by BDDs.

We proceed in two steps. First, we describe a symbolic encoding for FTS,
before we proceed to the algorithms.

7.2.1 Encoding FTS symbolically

We use the same notation as the one defined in Section 2.4.1. Recall that
we assume the existence of a binary encoding of states, that is, a function
enc : S → {0, 1}k, where k is chosen large enough to encode all states. Given
a product p, we also use the notation enc(p) to denote the encoded product.
With this encoding, {0, 1}k implicitly denotes the sets of all (encoded) states
and {0, 1}n the set of all (encoded) products.

With the notation in place, we now show how an FTS can be encoded
symbolically. The set of states is represented by a Boolean function χS and
the set of initial states by χI . As usual, the labelling of states with atomic
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propositions L is represented by recording for each atomic proposition a ∈ AP
the set of states χa that are labeled by the proposition:

χa(s) : {0, 1}k → {0, 1} • χa(enc(s)) = 1 ⇐⇒ a ∈ L(s).

The transition relation is represented by a function that takes two encoded
states (start and end) and an encoded product, and returns 1 iff some transition
s α→ s′ exists in the product. The feature expression of a transition is implicitly
embedded in the encoding.1 Formally,

χtrans(s, s′, p) : {0, 1}k × {0, 1}k × {0, 1}n → {0, 1},
such that χtrans(enc(s), enc(s′), enc(p)) = 1 iff some s α→ s′ in fts |p. The fea-
ture expression on the transition is the cofactor for the encoding of both states:

χ∨
α
γ(s α→ s′)(p) : {0, 1}n → {0, 1} , χtrans[s←enc(s),s′←enc(s′)](p).

Transitions with the same start and end states are implicitly merged (with a
disjunction of their Boolean function labels).

This yields a symbolic encoding for FTS covering all of Definition 4.1.

Satisfaction sets are also encoded by their characteristic function,

χSat(φ)(s, p) : {0, 1}k × {0, 1}n → {0, 1},
so that χSat(φ)(enc(s), enc(p)) = 1 iff fts |p, s |= φ.

The heart of our fixed point algorithms is the predecessor calculation. All
the information it needs is contained in the transition relation, and calculating
the predecessors of a single sate in a single product amounts to instantiating
two arguments of the characteristic function of the transition relation:

χPre(s,p)(x) : {0, 1}k → {0, 1} , χtrans[s′←enc(s),p←enc(p)](x),

i.e., the cofactor of the transition relation χtrans for the product p and state s.
Of course, this calculation has to be very efficient since it is executed at

each step of the algorithm. Therefore, the computation cannot rely on single
state/product predecessor computations to accomplish this. We rather need
to compute it on a set of such couples, generally a satisfaction set of some
property φ. This leads us to define the operator SetPre as follows.

Definition 7.7.
χSetPre(Sat(φ))(s, p) : {0, 1}k × {0, 1}n → {0, 1}

, ∃s′ • χSat(φ)(s′, p) ∧ χtrans(s, s′, p).
Intuitively, SetPre(Sat(φ)) is the set of couples (s, p) such that there exists a
state s′ that satisfies φ in product p and to which s has a transition in product
p. Since the operation is computed on the symbolic encoding of the sets, it
does not consider states or products individually.

1Which is natural as both the transitions and the feature expression are Boolean functions.
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7.2.2 Symbolic algorithms

Having the fundamentals covered, we can proceed to the model checking al-
gorithms. As before, we rely on Theorem 6.20 to reduce fCTL to CTL by
transforming the FD, and define the satisfaction set calculation for CTL.

The satisfaction sets for state formulae are again rather straightforward:

Definition 7.8. CTL state formulae satisfaction sets:

χSat(true)(s, p) = 1
χSat(a)(s, p) = χa(s)

χSat(φ1∧φ2)(s, p) = χSat(φ1)(s, p) ∧ χSat(φ2)(s, p)
χSat(¬φ)(s, p) = ¬χSat(φ1)(s, p)

Note that this is not equivalent to the way we defined the satisfaction sets in
Definition 7.3. Here, we do not seed the initial states with the valid products
of the FD. We follow the approach discussed in Section 6.2.3. In consequence,
we need another way to make sure that only valid products are considered. We
do this as part of the last step of the algorithm.

Let us now define the satisfaction sets for CTL path formulae. These can
be obtained almost immediately from the definitions in Section 7.1. To obtain
Sat(E © φ) it is sufficient to calculate the predecessors of Sat(φ), that is, to
apply the SetPre operator from Definition 7.7 to Sat(φ).

Definition 7.9. χSat(E©φ)(s, p) , SetPre(Sat(φ))(s, p)

The algorithm for Sat(Eφ1Uφ2) proceeds in the same way as the semi-
symbolic algorithm of Definition 7.5. It starts with the states and products
satisfying φ2 and works backwards, searching for predecessors which satisfy φ1.

Definition 7.10. χSat(E(φ1Uφ2) =χTi • χTi = χTi+1 ,

where χT0(s, p) = χSat(φ2)(s, p)
χTi+1(s, p) = χTi(s, p) ∨

(
χSat(φ1)(s, p)
∧ χSetPre(Ti)(s, p)
∧ ¬χTi(s, p)

)
In each iteration, we add the states (s, p) that satisfy φ1, i.e. χSat(φ1)(s, p), and
are predecessors of a state in Ti, i.e. χSetPre(Ti)(s, p). An optimisation known
in current CTL algorithms, and crucial here, is to only add states that were
not already in Ti, i.e. ¬χTi(s, p). Otherwise, previously visited states would be
re-visited, which would be inefficient due to the added feature variables.

The algorithm for E�φ starts off with all states and products satisfying
φ and progressively shrinks this set by removing states and products whose
successors do not satisfy φ.
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Definition 7.11. χSat(E�φ) = χTi • χTi = χTi+1 ,

where χT0(s, p) = χSat(φ)(s, p)
χTi+1(s, p) = χTi(s, p) ∧ χSetPre(Ti)(s, p)

The final step of the model checking algorithm is to check whether all initial
states satisfy φ, and for which products they do. Given χSat(φ)(s, p), the set of
products that violate φ is obtained by intersecting the complement of Sat(φ)
with the set of initial states, and then projecting on the state variables. This
leaves a Boolean function over the feature variables characterising the set of
violating products. This set has to be intersected with the set of valid products,
unless the calculation was seeded with the valid products.

Definition 7.12. The set of products χpxbad violating a CTL property φ is
χpxbad(p) = ∃s • χI(s) ∧ ¬χSat(φ)(s, p) ∧ B(d)(p).

If χpxbad = 0, the property is satisfied by all products.
The algorithms for calculating satisfaction sets combined with the parse

tree computation lead to a complete model checking algorithm for CTL, and
hence fCTL, over FTS.

Algorithm 7.13 (McCTL(φ, fts), ExtMcCTL(φ, fts)). Compute Sat(φ) re-
cursively along the parse tree of φ following Definitions 7.8, 7.9, 7.10 and 7.11.
Calculate χpxbad following Definition 7.12. If χpxbad = 0, return 1. Otherwise,
return 0 and χpxbad

7.3 Reducing fCTL model checking to classical
model checking

A closer look at the algorithms for calculating satisfaction sets in the previous
section reveals that they do not treat feature and state variables differently.
This means that it might be relatively easy to reduce fCTL model checking
to classical symbolic model checking. However, in classical symbolic model
checking, satisfaction sets only refer to states, not to features. A way to achieve
this is to change our symbolic encoding of FTS slightly, by moving the features
from the transitions to the states:

χS(s, p) : {0, 1}k × {0, 1}n → {0, 1} • χS(enc(s), enc(p)) = 1 ⇐⇒ s ∈ S.
That is, the features are parameters of the characteristic function of the set of
states, but their value does not matter. The initial states and the sets of states
that capture the action labelling are defined similarly:

χI(s, p) : {0, 1}k × {0, 1}n → {0, 1} • χS(enc(s), enc(p)) = 1 ⇐⇒ s ∈ I.
χa(s, p) : {0, 1}k → {0, 1} • χa(enc(s)) = 1 ⇐⇒ a ∈ L(s).
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As features are now part of the states, and the symbolic transition relation
is a function over two copies of the states, it now has two copies of the features
instead of just one:

χtrans(s, p, s′, p′) : {0, 1}k × {0, 1}n × {0, 1}k × {0, 1}n → {0, 1},
such that χtrans(enc(s), enc(p), enc(s′), enc(p′)) = 1 iff some s α→ s′ in fts |p
and p = p′. This version of the symbolic transition relation is only equivalent
to the one of Section 7.2.1 if the feature variables are left unchanged by the
transition relation. This is ensured by the last condition, p = p′.

Given that features are now part of the states, the characteristic function
of the satisfaction sets keeps the same signature as before and the predecessor
calculation becomes:

Definition 7.14. χSetPre(Sat(φ))(s, p) , ∃s′ • χSat(φ)(s′, p)∧χtrans(s, p, s′, p).
This definition coincides with the definition of the predecessors in standard
symbolic CTL model checking algorithms, under the condition that the feature
variables in a transition do not change. Furthermore, satisfaction sets in our
algorithm now coincide with those in standard symbolic CTL model checking
algorithms, and even their calculation is the same. By combining these observa-
tions we can, at least for the calculation of Sat(φ), reduce symbolic FTS model
checking to symbolic model checking of specially crafted transition systems.

It is in the final step of the algorithm, i.e., checking whether all initial
states satisfy the property, where feature variables are treated differently from
the states. This step needs to be adapted as described in Definition 7.12, by
quantifying away the state variables in order to obtain the set of violating
products. If this is not done, the algorithm will just yield false if there are
violating products, without indicating which products are to blame.

The modified encoding has another advantage: it allows to express fCTL
properties in CTL. This is due to the fact that feature variables are state
variables that can be referenced in a property. A set of products χpx can thus
be expressed in the specification language, which means that the fCTL formula
[χpx]φ can be translated to the CTL formula (χpx) =⇒ φ.

7.4 Algorithmic complexity
An overview of the complexity results is given in Table 7.1. In this table, and
in the following paragraphs, complexities are given wrt. an FTS fts (with S
being the set of states and n the number of features) and an fCTL property
[χ]φ, i.e., φ is a CTL property.

For reference, single-system CTL model checking of transition systems has a
computational complexity of O(|S|.|φ|). Let us start with the algorithmic com-
plexity of the naïve fCTL model checking algorithms, Algorithms 6.1 and 6.2
from the previous chapter. As for fLTL, the time complexity of both algorithms
is the same: iterate through the set of products, O(2n), calculate projection,
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Table 7.1: Algorithmic complexity of fCTL model checking.

fCTL Time Space
Naïve algorithm Mc O(2n|φ||fts|) O(|φ||fts|)

ExtMc O(2n|φ||fts|) O(|φ||fts|)
FTS algorithm Mc O(2n|φ||fts|) O(|φ||fts|)

ExtMc O(2n|φ||fts|) O(|φ||fts|)

O(|expr|), and model check the transition system, O(|φ||fts|). This yields a
total time complexity of O(2n|φ||fts|) and space complexity of O(|φ||fts|).

The algorithmic complexity of Algorithm 7.13 for FTS CTL model checking
is O(|fts|.|φ|.2n). Basically, a satisfaction set is calculated for each node in the
formula giving the factor |φ|. This calculation is linear in the size of the state
space for Sat(1), Sat(a), Sat(¬φ), Sat(φ1 ∧ φ2) and Sat(E © φ). The fixed
points of Sat(E(φ1Uφ2)) and Sat(E�φ) both take O(|S|.2n) since, in the worst
case, they proceed monotonically through 2n products for each state.

With regards to computational complexity, the naïve algorithm is equal
to ours. This is consistent with the fact that FTS CTL model checking can
be reduced to the classical symbolic CTL model checking algorithm, used by
the naïve algorithm. The difference between both is that the naïve algorithm
performs O(2n) model checks of models of size O(|fts|), whereas our algorithm
performs a single model check, of a model of size O(2n|fts|). Our hope is that
the similarities between the O(2n) models will cause the BDDs of the single
model to be smaller than the sum of the size of the smaller BDDs in the
naïve algorithm. Furthermore, as variable orderings play a crucial role in the
efficiency of BDD operations, our algorithm has the advantage of requiring only
a single ordering (which can then be tuned).

Note that the additional exponential factor of our algorithm cannot be
avoided unless model checking is restricted to models less powerful than FTS,
as done in [Li et al., 2002b]. Also note that our algorithm remains linear in the
size of the state space and is more efficient than the one presented in [Lauenroth
et al., 2009]. More precisely, the latter is O(|φ|.|S|!) = O(|φ|.|S||S|), and the
models it treats can be transformed to FTS in constant time. The algorithm
of [Lauenroth et al., 2009] is thus in EXPTIME whereas ours is in E, i.e.
DTIME(2O(x)), a class that “captures a more benign aspect of exponential
time” [Papadimitriou, 1994]. Furthermore, it is important to note that in
practice, the size of the state space is much larger than the number of features.

Le us conclude with a study of the complexity of the decision problems.
Reachability and LTL model checking were studied in Section 6.6. Recall
Definition 6.34, where we defined the decision problem McCTL (D), as the
counterpart to the two function problems McCTL and ExtMcCTL.

Theorem 7.15. McCTL (D) is NP-Complete.
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Proof. This can be proven with the same method in which Theorem 6.33 was
proven: reduce SAT to McCTL (D) and the other way around.

By comparison, CTL model checking for transition systems is P-Complete [Sch-
noebelen, 2002]. This result is thus similar to the one for Reachability.

Just as the decision problem Mc (D) can be reduced to and from SAT, the
function problem McCTL function problem can be reduced to and from FSAT.
FSAT is the function problem that consists in finding a satisfying assignment
for the variables of a SAT problem (rather than merely deciding satisfaction).

Theorem 7.16. McCTL is FNP-Complete.

Proof. It is easy to see that McCTL can be reduced to FSAT, by following
the proof of Theorem 7.15, and reusing the variable assignment to produce the
violating product. The reduction in the other direction is trivial.

FNP is the class of function problems that can be solved by a non-deterministic
Turing machine in polynomial time [Papadimitriou, 1994]. According to this
result, the FTS model checking problem is inherently harder than the one for
transition systems. This seems to contradict our earlier result, that fCTL model
checking of FTS can be reduced to CTL model checking of transition systems.
However, these transition systems are larger by a factor of O(2n).

Unlike ExtMcLTL which was part of the same computational complexity
class as McLTL, the ExtMcCTL decision problem is not part of FNP. Since it
needs to determine each violation, and moreover each valid product, it is part
of the class of counting problems #P. It can be reduced to #SAT, the problem
of identifying and counting all satisfying assignments for a SAT problem.

Theorem 7.17. ExtMcCTL is #P-Complete.

Proof. The proof is similar to the preceding proofs. ExtMcCTL can be reduced
to #SAT, by following the proof of Theorem 7.15. It thus produces a list of
violating products. The reduction in the other direction is trivial.

These complexity results are somewhat misleading, because the state space
is given as a set of states directly. In practice, the state space is defined by a set
of variables, which means that its size is exponential in the number of variables.
Since the number of variables is likely to be larger than the number of features,
the size of the state space is likely to be much larger than 2n, which would
mean that O(|S|) = O(2n|S|). In practice, the CTL model checking problem
for FTS is thus not inherently harder than the one for transition systems.

7.5 Conclusion
We presented algorithms for fCTL model checking of FTS. The algorithms were
first given in a semi-symbolic form (comparable to the fLTL algorithms of the
previous chapter), which was then transformed into a fully symbolic algorithm.
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A change in the symbolic encoding of FTS allowed us to reduce the core of this
algorithm to classical symbolic CTL model checking over transition systems.

This progression illustrates the relation of our semi-symbolic algorithm to
existing symbolic model checking algorithms. Conceptually, features are a par-
ticular kind of variable in a symbolic model checking problem. The symbolic
model checking of FTS is thus much closer to the classical symbolic model
checking than the semi-symbolic algorithms of the previous section are to clas-
sical explicit model checking algorithms. Indeed, the algorithms of Chapter 6
are half-way between explicit and symbolic.

This concludes Part II of the thesis, the largely theoretical development of
models and algorithms. In Part III, we show how this can be put into practice.
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Implementation
and Evaluation





Putting FTS into practice

“ Hofstadter’s Law: It always takes longer than you expect, even
when you take into account Hofstadter’s Law. ”Douglas Hofstadter, Gödel, Escher, Bach, 1979

The results presented so far are all foundational and theoretical. In the follow-
ing two chapters, we present our efforts to put these results into practice, by
implementing them as part of model checking tools. While implementing the
algorithms lead by itself to new insights, these tools also allow us to evaluate
the efficiency of our algorithms through experiments. In addition, with the
development of the tools, we can assess the feasibility of our theories, and we
can examine them from a different perspective.

Over the past years, a number of model checkers have been implemented.
All of them are available (open source) at the FTS website [Classen, 2010b].
In this brief introduction to Part III, we provide an overview, and discuss the
motivation and the various implementation choices.

On the use case of SPL model checking
Let us quickly recall to what extent the use case of SPL model checking differs
from the one in model checking of single systems. This is one of the motivations
for us to implement new model checking tools, or change (rather than reuse)
existing model checkers.

The principal difference between SPL model checking and single systems
model checking is the presence of variability. Variability in SPLs is typically
expressed in terms of features. Since features serve as the central unit of dif-
ference in SPLs, it is imperative that model checking tools recognise them as
a first-class concept, that is, inputs and outputs should be expressed in terms
of features. There are, however, currently no model checkers that do this, ex-
cept for those developed during the course of this thesis. Furthermore, FDs
are commonly used to capture known dependency or exclusiveness relations of
features. They have to be integrated into the model checking approach. Other-
wise, the model checker might identify problems in products that are not valid
in the first place, or discover information that is already known.
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Having features as a first-class concept means that results of a model checker
have to be provided in terms of features. This is not the case if just a single
product is verified, or a list of products one by one (as done by the naïve algo-
rithm). Either case yields information about specific products, which is limit-
ing as problematic features cannot readily be inferred from violating products.
This is not only limited as a verification result, but also inappropriate for the
engineer who thinks in terms of features when specifying the model. Without
knowing which features are responsible, it is much more difficult to locate an
error, especially if it involves several interacting features. Extending classical
model checkers to SPLs almost inevitably leads to this situation. The model
checkers developed as part of the thesis are currently the only tools that present
their results in terms of features.

In addition to these user interface considerations, the SPL model checking
problems are slightly different from those addressed by classical model checkers.
First, in SPL model checking, we distinguish two model checking problems, Mc
and ExtMc. While the first of these is rather similar to what is done in model
checking of single systems, the second is a use case which is not supported by
model checkers for single systems. Secondly, the logics fLTL and fCTL offer
the ability to specify properties for a relevant subset of the valid products.
Naturally, this is also not supported by existing tools.

Modelling language

Our first proof-of-concept implementation of the FTS algorithms was written
in the functional programming language Haskell. The tool comes in the form of
a library that can be loaded into a Haskell interpreter to be accessed through
a command line interface, or compiled to perform verifications in batch mode.
Using Haskell has some advantages, such as its pervasive use of lazy evaluation
and the natural translation of mathematical formulae into program code. The
tool implements the explicit LTL model checking algorithm of Chapter 6 using
the rf/ef encoding. It interfaces with ltl2ba,2 to automate the translation
from LTL to Büchi automata, and uses Graphviz3 to render FTS graphically.
We conducted benchmarks that show that our algorithm is up to seven times,
and in average three times, faster than the naïve algorithm.

The biggest inconvenient of this tool is that its models have to be specified
directly in FTS. While it is not impossible to specify models in FTS, as the
examples in Chapter 4 show, as soon as the complexity of the system grows it
becomes very hard. This can be seen in the mine pump example of Section 4.5.2,
where we use parallel composition even for the non-parallel parts of the system,
in order to keep the size of the models reasonable. This is because FTS are not
at the appropriate level of abstraction to be used for modelling. This is not
a failure in the design of FTS. As we and others pointed out [Classen et al.,

2www.lsv.ens-cachan.fr/~gastin/ltl2ba
3www.graphviz.org

www.lsv.ens-cachan.fr/~gastin/ltl2ba
www.graphviz.org
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2010b, Kim et al., 2010], FTS are a foundational formalism. They describe
semantics and are not meant to be used as a modelling language directly.

While the Haskell FTS library served its purpose as a proof-of-concept
implementation of our algorithms, it can barely be used for larger benchmarks.
Furthermore, its interface being essentially a set of Haskell functions, it is hard
to learn or use by a third party. We thus decided to implement a new tool, with
a focus on ease of use. A first step towards this goal is to define a high-level
modelling languages on top of FTS.

As we have seen before (Section 1.3), there are two types of language in
FOSD: those in which features are expressed in the form of annotations, and
those in which features are independent modules that are composed with a base
system. Both types have their benefits, and so we decided to use both of them.
We thus propose two different languages. The first one, fSMV [Plath and Ryan,
2001], is a feature-oriented extension of the (Nu)SMV input language [McMil-
lan, 1993,Cimatti et al., 2000,Cavada et al., 2004]. The other is fPromela, an
extension of the Promela language from SPIN [Holzmann, 2004]. fSMV is based
on superimposition: features are specified modularly as changes to be done to
a base system. A product is constructed by composition of features. fPromela,
in contrast, follows an annotative approach in which statements can be guarded
by features. There, products are constructed by pruning non-selected features.
This corresponds to the common way of implementing features in industrial
SPLs (e.g., with #ifdefs [Kästner et al., 2008, Liebig et al., 2010], or other
annotations [Boucher et al., 2010b,Kästner et al., 2008]).

Other implementation choices

The modelling language is one of many choices that have to be made when
implementing model checking algorithms. Another important choice is the kind
of algorithm to be used in the tool, i.e., either the semi-symbolic algorithms
of Chapter 6 or the fully symbolic algorithms of Chapter 7. Both choices are
closely linked, as models have to be translated into the format required by the
algorithm. Finally, there is the choice of the logic, fLTL or fCTL.

As shown in Chapter 7, the symbolic FTS algorithm can be reduced to
the classical symbolic model checking algorithm, requiring only a well isolated
step to be changed. It therefore lends itself well to being implemented as part
of an existing model checker. To change an existing explicit model checking
algorithm into our semi-symbolic algorithm, in contrast, changes to almost
every step of the algorithm would be required.

In consequence, we decided to implement fSMV as part of the NuSMV
model checker [Cimatti et al., 2000,Cavada et al., 2004] with a fully symbolic
algorithm for fCTL. In contrast, the model checker for fPromela, SNIP, uses
the semi-symbolic fLTL algorithms and was implemented from scratch. An
overview of the developed tools, and their key characteristics is given in Ta-
ble 7.2. With this combination of tools, we cover all of the theory discussed so



114 Putting FTS into practice

far. In Chapter 8, we present fSMV and fNuSMV and in Chapter 9, fPromela
and SNIP.

Table 7.2: FTS model checkers developed as part of the thesis.

Haskell FTS Lib fNuSMV SNIP

Release date September 2009 January 2010 November 2010

Language FTS fSMV fPromela

– Style Automata,
expressed as
Haskell data
structures

Declarative,
boolean
transition
relation is
specified directly

Procedural, very
intuitive

– Features Annotation Composition Annotation

– Supports FDs No No4 Yes,
TVL [Classen
et al., 2011a]

Logic LTL fCTL fLTL

Algorithm Semi-symbolic Symbolic Semi-symbolic,
on-the-fly

– Products rf/ef BDDs BBDs

– Variables Explicit BDDs Explicit

Platform Haskell (Hugs or
GHC)

NuSMV (C++) C

4Note that it would be rather easy to implement this. The reason why this was not
implemented is that, at the time, we did not have a suitable FD language.



Chapter 8

fNuSMV and fSMV

“ The hopes which inspire communism are, in the main, as admirable
as those instilled by the Sermon on the Mount, but they are held
as fanatically and are as likely to do as much harm. ”Betrand Russel, The Practice and Theory of Bolshevism, 1920

In this chapter, we present fNuSMV, a model checker that implements the
fully symbolic algorithms of Chapter 7. fNuSMV was the first model checker
we developed after the experimental Haskell FTS library. It gave us access to
existing models and the ability to model more substantial systems. As a result,
we used it to conduct an experiment to assess the efficiency of the symbolic FTS
algorithms. The modelling language used by our toolset is fSMV, a feature-
oriented extension of the SMV language proposed in [Plath and Ryan, 2001].

After an introduction and overview in Section 8.1, we present fSMV, the
specification language, in Section 8.2. In Section 8.3, we describe the toolset
and discuss implementation details. In Section 8.4, we report on the experiment
conducted with the toolset. We conclude in Section 8.5.

8.1 Introduction
As we have shown in Chapter 7, the fully symbolic model checking algorithm for
FTS can largely be reduced to the classical algorithm for transition systems. To
implement it, we decided to extend the state-of-the-art symbolic model checker
NuSMV [Cimatti et al., 2000].1 Thereby, we can take advantage of its existing
infrastructure. We refer to the extended NuSMV as ‘fNuSMV’.

The input language of NuSMV can be used as-is to create models that corre-
spond to the symbolic encoding required for FTS model checking. However, to
make modelling more intuitive, we reuse a language by Plath and Ryan [Plath
and Ryan, 2001], which is specifically designed for specifying features. The

1http://nusmv.irst.itc.it

http://nusmv.irst.itc.it
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language, which we call ‘fSMV’, is a feature-oriented extension of the input
language of NuSMV.2 It is based on the compositional FOSD paradigm: fea-
tures are specified independently, and a product is created by composition.

In addition to fNuSMV, the toolset comprises a script that implements the
feature composition mechanism of fSMV [Plath and Ryan, 2001]. The common
use case of the toolset takes as input a list of features specified in fSMV, a
NuSMV model that represents the base system (i.e., the common core of all
products), and one or more fCTL properties. First, the composition tool is
used to compose the base system with a number of features. The result of this
composition is then passed on to fNuSMV. To activate FTS model checking,
the new command line parameter -fbdd has to be set, otherwise, fNuSMV will
behave as NuSMV. For each violated property, it prints a Boolean expression
characterising the products that violate the property. The modifications made
to NuSMV are available as a patch for NuSMV 2.5.0 [Classen, 2010b].

8.2 The fSMV modelling language
In this section, we first provide a brief overview of the fSMV syntax. We then
show that its models are in fact FTS and that it can hence serve as a high-level
language for FTS. Finally, we discuss its expressiveness.

8.2.1 Syntax
Essentially, a NuSMV model consists of a set of variable declarations and a
set of assignments. The variable declarations define the state space and the
assignments define the transition relation. In each assignment, the value of a
variable in the next state is defined in function of the variable values in the
present state. For each variable, there can also be an assignment that defines
its initial value. Alternatively, the value of a variable can be defined directly in
function of the other variables. Modules can be used to encapsulate and factor
out recurring elements. Henceforth, we will refer to this language as ‘SMV’.

The typical example of an SMV model (taken from [Cavada et al., 2004])
is the following.

Listing 8.1: Controller base system.

1 MODULE main
2 VAR
3 request: boolean;
4 state: {idle , busy};
5 ASSIGN
6 i n i t (state) := idle;
7 next(state) := case state = idle & request: busy;

2More precisely, they used the earlier SMV model checker. The input language of NuSMV
is almost identical.
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8 1: {idle , busy};
9 esac;

The above model describes a controller that is either idle or busy treating
a request. The VAR section defines variables, and the ASSIGN section defines
their values (and thereby the transition relation). Requests are modelled by the
variable request. The absence of any assignments for this variable means that
its value is chosen non-deterministically in each state, which models the fact
that requests are controlled by the environment. The state variable represents
the state of the controller. It is of an enumerated type. The init assignment
defines its initial value (initially, the system is idle). The next assignment,
defines the transition relation: when the controller is idle and there is a request,
it will treat the request and be busy (line 7), otherwise, it may continue to be
busy for a while and return to idle once the request is treated (line 8). A case
statement is a conditional expression where each line is of the form condition:
value;. The conditions are evaluated in the order in which they are specified,
and the value of the first true condition is taken. The 1 at line 8 means true,
i.e., it acts like an ‘else’ in programming languages such as C or Java. The
{idle, busy}; at line 8 is the non-deterministic choice between those values.

The semantics of such a model is a transition system. Its state space is the
product of the domains of the variables. The state space can be narrowed with
the keyword INVAR, which is used to define a constraint which has to hold in
all states. The initial states of the transition system are those whose variable
values satisfy the init statements. Similarly, there is a transition between a
pair of states when their variable values satisfy the next statements. SMV has
other ways to define the transition relation. In this work, we restrict ourselves
to the ASSIGN syntax. In addition to the transition system, an SMV model
also contains CTL properties. These are called ‘specifications’ and follow the
SPEC keyword.

Of course, NuSMV never constructs this transition system explicitly. In-
stead, it constructs a symbolic transition relation, i.e., a Boolean function with
two copies of each variable, one for the start state and one for the end state.
This Boolean function can be derived almost immediately from the assignment
statements: when var refers to a variable in the start state, next(var) refers
to the variable in the end state. The Boolean function is thus the conjunction
of all assignment statements.

An fSMV model consists of a base system, such as the one shown above,
a list of features and an FD in TVL [Classen et al., 2011a] syntax.3 A base
system is specified in SMV, whereas features are specified in a dialect of SMV.
The whole language is called ‘fSMV’. Features in fSMV are based on super-
imposition [Francez and Forman, 1990]: a feature describes the changes to be
made to the base system. A feature declaration consists of three parts [Plath

3Note, however, that FDs are not part of the original definition in [Plath and Ryan, 2001]
and are currently not implemented by our toolset.
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and Ryan, 2001]:

(1) REQUIRE defines variables that the feature needs. These have to be defined
in the base system, or by other features. The REQUIRE clauses define
constraints on the order in which features can be composed.

(2) INTRODUCE defines new variables or specifications that the feature adds
to the system.

(3) CHANGE defines changes made to existing variables. Types of change are:

(3.1) IMPOSE a new definition of an existing variable. This means that the
feature replaces the init or next state definition of the variable. An
IMPOSE clause can be guarded with an IF clause, meaning that it
only has an effect if a certain condition holds.

(3.2) TREAT existing variables differently. When the value of the variable
is read inside the definition of some other variable, the read value is
modified. TREAT clauses can also be guarded, but this is syntactic
sugar [Plath and Ryan, 2001].

As an example, consider a feature Sleep which adds a switch to the system
that causes it to discard any further request. The switch is modelled with a new
non-deterministic variable sleep (using INTRODUCE). The system is changed in
such a way that if the system is sleeping and finished treating requests, then it
will stay idle, not accepting any new requests (using IMPOSE).

Listing 8.2: The Sleep feature of the controller system.

1 FEATURE sleep
2
3 REQUIRE
4 MODULE main
5 VAR state: {idle , busy};
6
7 INTRODUCE
8 MODULE main
9 VAR sleep: boolean;

10
11 CHANGE
12 MODULE main
13 IF sleep & state = idle THEN
14 IMPOSE next(state) := idle;

Given a base system and a feature whose REQUIRE constraints are satis-
fied by the base system, the feature composition operation creates a new base
system. Feature composition is syntactic, and consists in replacing existing
assign or init statements, and adding new variables. It is performed in three
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steps: first, TREAT assignments are applied, then IMPOSE and then INTRODUCE
assignments.

The composition of the base system and the preceding Sleep feature yields
the following system.

1 MODULE main
2 VAR
3 request: boolean;
4 state: {idle , busy};
5 sleep: boolean;
6 ASSIGN
7 i n i t (state) := ready;
8 next(state) :=
9 case sleep & state = idle: idle;

10 1: case state = idle & request: busy;
11 1: {idle , busy};
12 esac;
13 esac;

To make it possible to structure large models and to reuse model fragments,
SMV and fSMV have the MODULE syntax. A module encapsulates variables and
assignments and can be used as a type inside other modules. The main module
defines the behaviour of the system. Any other module must be used in the
main module (or in a module used in the main module). Modules can be
parameterised. A parameter is a reference to a variable to which the module
would otherwise not have access. Modules can be considered syntactical sugar
and can easily be eliminated by a syntactic procedure. When we give formal
definitions, we thus abstract away from modules.

NuSMV also allows to use parallel composition by declaring a variable
(whose type is a module) as a process. The executions of processes are in-
terleaved. In fSMV, parallel composition can be used at the level of the base
system. Regarding the discussion of Section 4.3, parallel composition in fSMV
is thus inherently Intra-SPL composition.

8.2.2 Semantics

As described above, the semantics of a normal SMV model (or an fSMV base
system) is a transition system. Furthermore, as the composition of a base sys-
tem and a feature yields another base system, the semantics of a product (i.e.,
a base system composed with several features) is a transition system as well.
This is consistent with FTS, where the behaviour of a product is also a transi-
tion system. However, if fSMV is to serve as a high-level language for FTS, we
need to express its semantics in terms of FTS. We do this by giving a trans-
lation from fSMV to symbolic FTS as defined in Chapter 7. To be able to do
this in a precise manner, we need to formalise the description of fSMV.
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Let us start by defining an fSMV base system.

Definition 8.1. Let V be a set of variables, D a set of (finite) domains
or types, and E(V ) the set of all SMV expressions over V . Let A(V1, V2)
be the set of assignments where variables in V1 can be on the left-hand side
and expressions over variables in V2 can be the left-hand side. Formally,
A(V1, V2) ⊆ {-, init, next}×V1×E(V2), that is, a set of triples (s, d, e) where s
distinguishes between d (the -), init(d) or next(d) for d ∈ V1, and e ∈ E(V2)
is an expression.4 A base system m is a tuple m = (v, τ, a, p), where

• v ⊆ V is a set of variables,

• τ : V → D a function assigning a domain to each variable,

• a ⊆ A(v, v) is a set of assignments, and

• p ⊆ P(v)×P(v) is a (possibly empty) set of processes. A process is a cou-
ple (vp, wp) where vp denotes the set of variables read by the process and
wp ⊆ vp denotes the set of variables written by the process. Furthermore,
SMV requires that the sets of written variables do not overlap.

For a model without parallel composition, the set p is empty. The semantics of
a base system is a transition system [McMillan, 1993].

As said before, for the purpose of this discussion, we abstract away from
modules without loss of generality. An fSMV model is defined as follows.

Definition 8.2. An fSMV model is a pair (b, d,G), where b is a base model
as defined in Definition 8.1, d is an FD as defined in Definition 1.1 and G an
(ordered) list of features. Let N be the set of features in the FD, we assume
there to be a bijective function impl : N → G with codomain G, that associates
features from the FD and their implementations in the model. When it is clear
from the context, we write f instead of impl(f) or impl−1(f). Each feature
f ∈ G is a tuple consisting of

• vf ⊆ V , a set of new variables;

• τf : vf → D, a type function;

• pf : p → P(vf ) × P(vf ), a function that tells for each process whether
the new variables belong to it (read and write respectively); sets of written
variables cannot overlap;

• af ⊆ A(vf , v ∪ vf ), a set of INTRODUCE assignments;

• mf ⊆ E(v∪vf )×A(v, v∪vf ), a set of guarded IMPOSE assignments. The
first element is the guard, the second is an assignment where the left-hand
side is the variable that is affected, and the right-hand side the value it
takes if the guard is true;

4An expression alone is not an assignment, it just defines a value.
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• tf ⊆ A(v, v ∪ vf ), a set of TREAT assignments. The left-hand side is the
variable that is affected, and the right-hand side the value substituted by
the feature.

This definition does not formalise the REQUIRES constraint which has no effect
on the behaviour of the products.

Since feature composition is a syntactical operation, composing features
in a different order might lead to a different result, i.e., two features do not
necessarily commute. Intuitively, features composed later can override changes
made by earlier features. Strictly speaking, this means that a product in fSMV
is a list of features, not a set. This is incompatible with the way products are
defined in FTS and FDs. A way around this mismatch would be to assume
that condition IV of [Plath and Ryan, 2001] is met: that the order of features
is irrelevant, i.e., all features commute: fi ⊗ fj = fj ⊗ fi. This assumption
would allow us to consider a product as a set of features. However, it would
also exclude any model in which two features change the same variable. We
thus opted for a different solution, which is to assume that a total ordering of
the features is given as part of the model. With this assumption, a product
can be also be given by a set of features. Note that this drastically reduces the
number of products, from O(

∑n
i=0

n!
(n−i)! ) to O(2n).

Feature composition can be formally defined as follows.

Definition 8.3. Composition of a base system b = (v, τ, a, p) and a feature
f = (vf , τf , pf , af ,mf , tf ) is noted b⊗ f and produces a new base system b′ =
(v′, τ ′, a′, p′), where

• v′ = v ∪ vf and τ ′ = τ ∪ τf
• a′ is obtained by first applying tf to a, then mf , and finally adding af ,
formally:

a′ = am ∪ af
am =

{
(s, d, e′) | (s, d, e) ∈ at ∧

if ∃(g, (s′, d′, e′′)) ∈ mf • s = s′ ∧ d = d′

then e′ = case g : e′′; 1 : e esac;

else e′ = e
}

at =
{

(s, d, e′) | (s, d, e) ∈ a ∧ e′ = treat(e, tf )
}

where treat(e, tf ) transforms e so that for all (s, d, e′′) ∈ tf , the occur-
rences of s(d) are replaced by e′′.

• p′ = {(v ∪ vf , w ∪ wf ) | (v, w) ∈ p ∧ pf (v, w) = (vf , wf )}
The definition of a′, the set of assignments of the composed system, is somewhat
cryptic. It is defined with three intermediate results. The first is at, i.e., after
the TREAT assignments were applied. A TREAT assignment changes the right-
hand side of all assignments by replacing the occurrences of a variable by an
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expression. The second intermediate result is am, i.e., after TREAT and IMPOSE
were applied. An IMPOSE assignment replaces the right-hand side of a single
assignment (the variable it concerns) by a case statement: if the guard is true,
the replacement expression is used, otherwise, the previous expression.

Note that we intentionally keep these definitions at a high level of abstrac-
tion. They are sufficiently detailed to make the following discussion precise and
abstract enough to make it intuitive. In particular, we do not detail the syntax
or semantics of expressions and types. There are a number of rules on what
constitutes a valid model (wrt. types, variable names, etc.) which we also omit.
The interested reader is referred to [McMillan, 1993,Cavada et al., 2004,Plath
and Ryan, 2000] for a detailed formal definition of SMV, NuSMV and fSMV.

As said before, given a base system b and a list of features, b⊗ f1⊗ . . .⊗ fn
denotes a symbolic transition system. To produce a symbolic FTS, we can
use the lifting technique of [Post and Sinz, 2008]. The idea is to introduce
a new Boolean variable for each feature. Furthermore, all changes made by a
feature are guarded by its feature variable. This leads us to define lifted feature
composition as follows (the changes wrt. Definition 8.3 are shown in colour).

Definition 8.4. Lifted composition of a base system b = (v, τ, a, p) and
a feature f = (vf , τf , pf , af ,mf , tf ) is noted b� f and produces a new base
system b′ = (v′, τ ′, a′, p′), where

• v′ = v ∪ vf ∪ {var(f)} and τ ′ = τ ∪ τf ∪ {var(f), {0, 1}}, where var(f)
denotes the feature variable associated to f ,

• a′ is obtained by first applying tf to a, then mf , adding af , and finally an
assignment that requires the feature variable to remain constant formally:

a′ = am ∪ af ∪
{

(next, var(f), var(f))
}

am =
{

(s, d, e′) | (s, d, e) ∈ at ∧
if ∃(g, (s′, d′, e′′)) ∈ mf • s = s′ ∧ d = d′

then e′ = case var(f) & g : e′′; 1 : e esac;

else e′ = e
}

at =
{

(s, d, e′) | (s, d, e) ∈ a ∧ e′ = treat(e, tf )
}

where treat(e, tf ) transforms e so that for all (s, d, e′) ∈ tf , the occur-
rences of s(d) are replaced by case var(f) : e′; 1 : e esac;.

• p′ = {(v ∪ vf , w ∪ wf ) | (v, w) ∈ p ∧ pf (v, w) = (vf , wf )}
Guarding a change made by a feature with the corresponding feature variable
means that the behaviour with (resp. without) the feature can be obtained by
setting the feature variable to 1 (resp. 0). For example, the lifted composition
of the controller base system and the Sleep feature yields the following.

1 MODULE main
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2 VAR
3 sleepFeature: boolean; -- added feature variable
4 request: boolean;
5 state: {idle , busy};
6 sleep: boolean;
7 ASSIGN
8 next(sleepFeature) := boolean;
9 i n i t (state) := idle;

10 next(state) :=
11 case sleepFeature & sleep & state = idle: idle;
12 1: case state = idle & request: busy;
13 1: {idle , busy};
14 esac;
15 esac;

The lifted composition of a base system and a list of features, b�f1�. . .�fn
denotes a symbolic FTS. It corresponds to the symbolic encoding given in Sec-
tion 7.3: the features are part of the states because each has a Boolean feature
variable, the feature variables are initialised non-deterministically, and they do
not change their value as part of a transition. Since this lifted composition is
also a valid SMV model, and given that symbolic FTS model checking can be
reduced to model checking of symbolic transition systems, we can feed it as-is
into NuSMV and reuse the result of the satisfaction set computation.

Recall that an fSMV model is a base system and a list of features. The
lifted composition of the base system and all features in the given order is thus
always well-defined. To simplify the notation, we therefore write fts(m) ,
b � f1 � . . . � fn, for an fSMV model m = (b, {f1, . . . , fn}), to denote the
corresponding symbolic FTS. A symbolic FTS can be projected to a product
by fixing the values of the feature variables according to the product:

Definition 8.5. Given an fSMV model m with features G, the projection of
fts(m) = (v, τ, a, p) to a product p ∈ [[d]]

FD
is the model fts(m) |p , (v, τ, a′, p)

where a′ = a ∪ {(init, var(f), f ∈ p) | f ∈ G}.
We have shown that lifted feature composition indeed yields a symbolic

FTS. What is left to be shown is that it preserves the semantics of the nor-
mal feature composition as it was defined by [Plath and Ryan, 2001]. This
is indeed the case. The following theorem establishes that lifted composition
(Definition 8.4) is trace equivalent [Baier and Katoen, 2008] to normal fea-
ture composition (Definition 8.3) modulo projection, if restricted to variables
shared by both. Trace equivalence was already discussed in Section 4.4.2. It
means that both have the same executions, where two executions are equiv-
alent if the variables shared by both are identical. The last bit is important
since the projection of a lifted composition can have more variables than the
normal composition: those added by non-selected features. When comparing
both systems, these variables are of course irrelevant.
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Theorem 8.6. For any fSMV m = (b, d, {f1, . . . , fn}) and product p = {fi, . . . ,
fj}, where the indexing from i to j corresponds to the feature order given in m,

[[b⊗ fi ⊗ . . .⊗ fj ]] ≡ [[(b� f1 � . . .� fn) |p]]

where [[smv]] denotes the set of executions of an SMV model, and ≡ denotes
trace equivalence.

Proof sketch. First, observe that lifted feature composition does not remove
any of the code in the base system; rather, it wraps changed code inside case
statements. In a projection, the values of the features are all fixed. This means
that references to features can be replaced everywhere by their value. Any
changes by non-selected features will be of the kind case 0 & . . . : exp1; 1 :
exp2 esac;, where exp2 is the expression that was there before the feature was
added. Such case statements can be simplified to exp2;. For selected features,
the simplification is similar, except that the change made by the feature is
preserved. Intuitively, these semantics-preserving transformations correspond
to unwrapping of case statements introduced by lifted composition. The result
is syntactically equivalent to b ⊗ fi ⊗ . . . ⊗ fj , with the exception of added
variables (and their assignments), which are irrelevant anyway.

We define the semantics of fSMV in terms of SMV, i.e., as a symbolic FTS.
In this case, the parallel composition is defined as it is for SMV. An alternative
would be to define the semantics in terms of explicit FTS (Definition 4.1). This
would make it possible to define the semantics of fSMV compositionally, where
each process translates to an FTS. We have done this in [Classen, 2010a].

8.2.3 Expressiveness
We evaluate the expressiveness of fSMV to assess the extent to which it covers
the FTS language. This is done wrt. explicit FTS, as defined in Chapter 6.

The results of the previous section already established that any fSMV can
be translated to an FTS, i.e., that the fSMV language is a subset of the FTS
language. The following theorem establishes that the converse also holds, i.e.,
that both languages are expressively equivalent.

Theorem 8.7. Any FTS can be translated into fSMV.

Proof. Given an FTS (S, Act, trans, I, AP, L, d, γ), construct an fSMV model
(b, d, F ) with b = (v, τ, a, ∅), where
(1) One variable of the fSMV, state, is used to encode all the states of the

FTS: τ(state) = S. For every feature f ∈ N , the fSMV will have a
variable f with τ(f) = {0, 1}. Hence, v = {state} ∪N ;

(2) In the base system, the feature variables are always 0. The assignments
related to the feature variables are thus aF = {(-, f, 0) | f ∈ N}. The ini-
tial value of the state variable is the non-deterministic choice between the
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initial state of the FTS, and its next value is derived from the transition
relation of the FTS. The assignments for the state variable are

as =
{

(init, state, I), (next, state, case case1 . . . casek esac;)
}

where the casei are given by {state = s & γ(s α→ s′): s′; | s α→ s′ ∈ trans}.
The set of assignments is then a = aF ∪ as;

(3) Each feature imposes that its associated variable (which is part of the
base system) takes the value 1, i.e.,

F =
{

(∅, ∅, ∅, ∅, {(1, (-, f, 1))}, ∅) | f ∈ N}.
In consequence, feature composition of a base system with a set of features
yields a transition system of which all transitions whose γ(s α→ s′) evaluates to
0 for the feature variables have been removed. This corresponds exactly to
projection as defined in Definition 4.2.

Note that Theorem 8.7 does not have to take parallel composition into account
directly. Any parallel composition of two FTS is an FTS itself, and can hence
be translated into an fSMV model.

8.3 fNuSMV

We now give an overview of our model checking toolset. First, we present
it from the user perspective. We then discuss more technical details of the
implementation.

8.3.1 User interface and illustration

Like NuSMV, our toolset is command-line based. This is rather natural, espe-
cially since the composition scripts lend themselves well to pipe-based chaining
of commands.

The input to the tool is a model expressed in fSMV. Concretely, this means
at least one file containing the base system and one file for each feature. The
feature order is not explicitly part of the syntax, it is specified when using
the composition script. The composition script, compose.php, is indeed the
first tool to be used in a normal use case. Let us illustrate this with the
running example of the chapter, the controller. Assume that there are two
files base.smv corresponding to Listing 8.1 and sleep.feat corresponding to
Listing 8.2. The feature composition (following Definition 8.3) of the base
system and the Sleep feature is given by:

$ php compose.php sleep.feat < base.smv > ts.smv
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The composition script is written in PHP, which is why the command starts
with php. The result, ts.smv, is the behaviour of the product consisting of
the base system and the sleep feature. It can be analysed using NuSMV. To
produce the lifted feature composition (Definition 8.4) instead of the normal
feature composition, the command-line parameter -l has to be set, i.e.:

$ php compose.php -l sleep.feat < base.smv > fts.smv

The script thus has one parameter, the file name of the feature to be com-
posed, and reads the base system from stdin (hence the input redirection < in
the previous two examples). This means that when there are several features
to compose, the calls can be chained with pipes, e.g.:

$ php compose.php -l sleep.feat < base.smv
| php compose.php -l other.feat > fts.smv

When chaining multiple calls, the -l parameter has to be set for all of them or
for none of them.

The heart of our toolset is fNuSMV, which is a modified version of NuSMV.
It is distributed as a patch (created using the standard Unix diff tool) which
has to be applied to the NuSMV codebase before NuSMV is compiled. When
this is done, a new command-line parameter -fbdd is available in NuSMV.

Let us illustrate the use of fNuSMV with the controller example. A property
for such a system would be that “every request eventually results in the con-
troller being busy”. In CTL, this becomes A�(request⇒ A♦ state = busy), or
in NuSMV syntax SPEC AG (request -> AF state=busy). In NuSMV, the
temporal operators are written with letters: © becomes X, � becomes G and
♦ becomes F (the U for until remains). Checking this property using fNuSMV
would look as follows.

$ ./ NuSMV -fbdd fts.smv
*** This is NuSMV 2.5.0 [...]
-- Computing fbdd init.. done.
-- specification AG (request -> AF state = busy) is false

5 -- (fbdd) specification is false for products satisfying:
f.fSleep

-- (fbdd) specification is true for products satisfying:
!f.fSleep

-- as demonstrated by the following execution sequence
10 Trace Description: CTL Counterexample

Trace Type: Counterexample
-> State: 1.1 <-

f.fSleep = TRUE
request = FALSE

15 state = idle
sleep = FALSE

-- Loop starts here
-> State: 1.2 <-

request = TRUE
20 sleep = TRUE
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-> State: 1.3 <-

The global result, printed at line 4, is that the property is violated. At line 6,
fNuSMV prints a feature expression characterising the products that violate
the property, in this case all those containing the Sleep feature. At line 8, the
negation of this feature expression is shown (this helps in the case of larger
expressions). This is followed by a counterexample at lines 10 to 21. As we
said before, the generation of counterexamples in the case of CTL was not
studied, and so fNuSMV will not print counterexamples for every product, but
just one for the first violating product. The counterexample shows that indeed,
the Sleep feature can cause the system to indefinitely stay idle. Furthermore,
line 8 says that without the Sleep feature, this is impossible.

As a comparison, if we use NuSMV without the -fbdd parameter, the result
will be the following.

$ ./ NuSMV fts.smv
*** This is NuSMV 2.5.0 [...]
-- specification AG (request -> AF state = busy) is false
-- as demonstrated by the following execution sequence

5 Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-

f.fSleep = TRUE
request = FALSE

10 state = idle
sleep = FALSE

-- Loop starts here
-> State: 1.2 <-

request = TRUE
15 sleep = TRUE

-> State: 1.3 <-

This corresponds to the McCTL decision problem, as it just identifies a single
violating product, given by the initial values of the feature variables in the
counterexample (line 8). The question whether other products violate or satisfy
the property is left open by this check.

In addition to compose.php and fNuSMV, our toolset comprises a quan-
tification script, quantify.php. This script allows to create parameterised
models. In the case of the controller, for example, one could imagine that the
controller is capable of treating several requests in parallel. The parameter
of the model would be the number of requests. For the value two, the model
would be the following:

1 MODULE main
2 VAR
3 request1: boolean;
4 request2: boolean;
5 state: {idle , busy};
6 ASSIGN
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7 i n i t (state) := idle;
8 next(state) :=
9 case state = idle & request1 & request2: busy;

10 1: {idle , busy};
11 esac;

In the SMV (and thus fSMV) syntax, it is not possible to specify the model
for a number of requests n. This capability is added with the quantification
script which acts as a preprocessor. Inside a preprocessed model file, the syntax
[forall p=i..j]body[/forall] can be used:

i and j are integers that define a range. Instead of an integer, the letter n can
be used, which will be substituted by a user-defined value when running
the script. The bounds can also be given with expressions, e.g. p=n-1..n.

body is the piece of text to be repeated.

p is the name of the index. It can be referenced inside body by writing %p%
(the index enclosed by percent signs). Simple expressions such as %p-1%
are also supported.

In the case of the controller example, this would be used as follows.

1 MODULE main
2 VAR
3 [forall i=1..n]
4 request%i%: boolean
5 [/ forall]
6 state: {idle , busy};
7 ASSIGN
8 i n i t (state) := idle;
9 next(state) :=

10 case state = idle [forall i=1..n] & request%i%
11 [/ forall ]: busy;
12 1: {idle , busy};
13 esac;

To produce the example with two requests, the quantification script is used to
process the above file.

$ php quantify.php 2 base.smv > base -2 requests.smv

Quantifiers have to be instantiated before a file can be used in the composi-
tion script. This can make the use of the tools rather cumbersome. In practice,
it is helpful to encapsulate all quantification and composition commands in a
shell script. Moreover, most models do not require quantifiers.
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8.3.2 Implementing composition

The composition script implements feature composition and lifted feature com-
position as specified in Definitions 8.3 and 8.4. It is slightly more involved than
the definitions suggest, mainly because it has to deal with modules. In both
cases, the composition script has to respect the scope of the module to which
a change is applied. Moreover, for lifted feature composition, the composition
script has to add feature variables so that they can be referenced in all mod-
ules uniformly. NuSMV does not allow access to variables in parent modules.
This is only possible by parameterising modules. To make the feature variables
available in all modules, the composition script therefore creates a new module
with all features, instantiates it in the main module, and adds it as a parameter
to all other modules.

The module containing the features is called features, which means that
‘features’ cannot be used as an identifier in the fSMV files. To each feature
corresponds one variable in this module, the variable name being the feature
name (with the first letter in uppercase) prefixed by the letter f. The feature
module is declared in the main module as a variable named f. Therefore, f is
also a reserved keyword which should not be used inside fSMV models. The
parameter added to all other modules is also called f, so that the features can
be referenced the same way inside the whole model.

For the controller example in Listings 8.1 and 8.2, the lifted feature com-
position would result in the following SMV model.

1 MODULE features
2 VAR
3 fSleep: boolean;
4 ASSIGN
5 i n i t (fSleep) := {0 ,1};
6 next(fSleep) := fSleep;
7
8 MODULE main
9 VAR

10 f: features;
11 request: boolean;
12 state: {idle , busy};
13 sleep: boolean;
14 ASSIGN
15 next(state) :=
16 case f.fSleep & sleep & state = idle: idle;
17 1: case state = idle & request: busy;
18 1: {idle , busy};
19 esac;
20 esac;

Note that the feature variables are initialised non-deterministically and that
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their value is defined to be constant.
Naming conventions allow us to easily distinguish feature variables from

other Boolean variables. All feature variables have the prefix f.f: the first f
identifies the variable of the main module that holds the feature module and
the second f is the one prefixed to every feature variable. We need to be able
to distinguish feature variables from the other variables when calculating the
products for which a certain property holds. An alternative to the naming
convention would have been to extend the SMV language. We chose a naming
convention as this necessitates far less changes to the NuSMV codebase.

Furthermore, the naming convention means that fCTL properties can be
written and attached to any module in the same way. E.g., in the case of the
controller, the property that every request will eventually result in a busy con-
troller might not be relevant for controllers with the Sleep feature. In fCTL,
this can be written [!sleep]A� request ⇒ A♦ state = busy. In SMV, this be-
comes SPEC !f.fSleep -> AG (request -> AF state=busy). As expected,
the property is satisfied by all products:

$ ./ NuSMV -fbdd fts.smv
*** This is NuSMV 2.5.0 [...]
-- Computing fbdd init.. done.
-- specification (!f.fSleep -> AG (request -> AF state = busy))

5 is true

8.3.3 Implementing FTS model checking

The output of the composition tool is a normal SMV model and can be model
checked directly by NuSMV. However, as shown before, standard NuSMV
model checking does not fully exploit the feature encoding. Since NuSMV
executes the standard CTL model checking algorithm, it will report false if it
finds a counterexample. More precisely, it will return false if just one of the
products violates the property.

Basically, given a property φ, the algorithm will compute a Boolean function
χSat(φ)(s, p), where s (resp. p) is the Boolean encoding of some state (resp. some
product). χSat(φ) is true for all states and products that satisfy the property.
The normal model checking algorithm will just check whether there exists some
initial state for which χSat(φ)(s, p) is false. Unable to distinguish between
feature variables (belonging to p) and normal variables (belonging to s), the
test will existentially quantify over the feature variables which corresponds to
considering a single product only.

As discussed in Section 7.3, there is sufficient information to determine
exactly which products violate and which satisfy the property. The idea is
to only quantify χSat(φ) existentially over the state variables (i.e., those that
do not represent features). The result is a Boolean function over the feature
variables that represents exactly the products for which the property holds.
Implementing this calculation is the only significant change we made to the
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NuSMV code (the other being the addition of the command-line parameter).
Still, it accounts for just about 44 lines of additional code. One fragment of
code is executed once for all properties in the model, it consists in creating the
BDDs of the feature variables which are used in the quantification. The second
fragment is executed for each property, after the model checking algorithm
is finished. It calculates the quantifications and prints the information about
satisfying and violating products on stdout.

Currently, FDs are not implemented as part of the toolset. However, this
would be quite straightforward. Following Definition 7.12, it would be sufficient
to test whether the conjunction of the returned function and B(d), the Boolean
function equivalent of the FD d, is satisfiable. An alternative would be to limit
the check to the set of valid products of the FD from the outset. This can
be done by adding constraint IVAR B(d) to the model before it is analysed.
NuSMV considers it as an invariant, which will effectively prevent it from
considering invalid products.

8.4 Experiments

In [Plath and Ryan, 2001], the authors propose the fSMV language along with
a verification technique for CTL that is based on the naïve algorithm, i.e., an
exhaustive enumeration of the set of products (although they limit themselves
to couples of features). Such a product-enumerative approach is exactly what
we intend to avoid. While both approaches produce equivalent results, we
argue that model checking a single model with variability (i.e., the model of
the whole SPL) is in general more efficient. Experiments with the Haskell FTS
library also suggest that [Classen et al., 2010b]. Here, we test this hypothesis
in the symbolic context through benchmarks that compare the runtime of the
naïve algorithm and the FTS algorithm.

8.4.1 Elevator system

For these experiments we used the elevator system from [Plath and Ryan, 2001].
We extended the SMV models provided with the original paper in two ways.
First, we made the number of floors (fixed at five in [Plath and Ryan, 2001])
variable. Secondly, we added four more features to the system, giving a total
of nine features. All features are independent, which means that there are 29

products. The elevator system is comprised of a number of platform buttons
and a number of cabin buttons. There is a single button on each platform,
which calls the elevator. The button press is modelled non-deterministically,
and a pressed button remains pressed until the elevator has served the floor and
its doors are opened. The elevator will always serve all requests in its current
direction before it stops and changes direction. When serving a floor, the lift
doors open and close again. There are nine features that modify the behaviour
of the lift. Those marked with an asterisk were added by us.
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Anti-prank.* Normally, a lift button will remain pushed until the correspond-
ing floor is served. With this feature, the lift buttons have to be held
pushed by a person.

Empty. If the lift is empty, then all requests made in the cabin will be can-
celled.

Executive floor. One floor of the building has priority over the other floors
and will be served first, both for cabin and platform requests.

Open when idle.* When idle, the lift opens its doors.

Overload The lift will refuse to close its doors when it is overloaded.

Park. When idle, the lift returns to the first floor.

Quick close.* The lift door cannot be kept open by holding the platform
button pushed.

Shuttle.* The lift will only change direction at the first and last floor.

Two-thirds full. When the lift is two-thirds full, it will serve cabin calls before
platform calls.

To test the correctness of our approach we reduced the example to the five
features from [Plath and Ryan, 2001] and managed to reproduce the feature
interactions reported in the original paper. Subsequently, we made some mi-
nor modifications to the model to accommodate the additional features. The
models are distributed with the toolset on the FTS website [Classen, 2010b].

The properties used for our benchmarks are those of the base system shown
in Table 8.1 (mostly combined safety and liveness properties). The property
numbers reported in the statistics refer to the numbers in Table 8.1, and can
also be used to identify the properties in the NuSMV code.

8.4.2 Experimental setup

The goal of our experiments is to evaluate the performance of our algorithms.
To this end, we compare the FTS algorithm with the naïve algorithm.

The experiments consist in using both algorithms to check the fifteen prop-
erties of the base system given in Table 8.1 against an elevator model with the
number of floors ranging from 4 to 8. Each property was benchmarked in a
separate run of the model checker. The benchmarks were run on an Ubuntu
machine with an Intel Core2 Duo at 2.80 GHz with 4 Gb of RAM.

The reported benchmarks compare (for each property)

• the total runtime of 29 model checks that enumerate all products explic-
itly (column ‘Enumerative’ in Tables 8.2, 8.3, 8.4, 8.5 and 8.6).

• the runtime of a single NuSMV model check following our method (col-
umn ‘Single’ in Tables 8.2, 8.3, 8.4, 8.5 and 8.6);
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Table 8.1: Benchmarked properties
ID Property

01 A�(landingBut2.pressed⇒A♦(lift.f loor = 2 ∧ lift.door = open))

01’ ¬A�(landingBut2.pressed

⇒ A♦(lift.f loor = 2 ∧ lift.door = open ∧ lift.direction = down))

02 A�(liftBut3.pressed⇒ A♦(floor = 3 ∧ door = open))

03a A�(floor = 2 ∧ liftBut6.pressed ∧ direction = up

⇒ A[direction = upUfloor = 6])

03b A�(floor = 6 ∧ liftBut1.pressed ∧ direction = down

⇒ A[direction = downUfloor = 1])

04 ¬A�(door = closed⇒ A♦door = open)

05a EF (floor = 1 ∧ idle ∧ door = closed ∧AX(door = closed))

05b A�(floor = 1 ∧ idle ∧ door = closed ∧A© (door = closed)

⇒ EG(floor = 1 ∧ door = closed))

05-part EF (A© (door = closed))

05c EF (floor = 3 ∧ idle ∧ door = closed ∧A© (door = closed))

05d A�(floor = 3 ∧ idle ∧ door = closed ∧A© (door = closed)

⇒ EG(floor = 3 ∧ door = closed))

05e EF (EG(door = closed))

05’ ¬A�(floor = 4 ∧ idle⇒ E[idleUfloor = 1])

06 ¬A�((floor = 3 ∧ ¬liftBut3.pressed ∧ direction = up)

⇒ door = closed)

07 ¬A�((floor = 3 ∧ ¬liftBut3.pressed ∧ direction = down)

⇒ door = closed)

The size of the NuSMV model of the product with all features ranges from
217 states for four floors, to 227 states for eight floors. These are the upper
bounds for the size of the models analysed in the enumerative benchmarks. As
explained earlier, our algorithm only needs one check, but requires an additional
variable for each feature. Its models are thus much larger, from 226 states to 236.

An important factor in BDD based model checking is the variable ordering.
In order to avoid computing static variable orderings and still be efficient,
NuSMV has the parameter -dynamic, which causes the BDD package to reorder
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Figure 8.1: Evolution of speedup with the number of floors (logarithmic scale).

the variables during verification in case the BDD size grows beyond a certain
threshold. When using this method for the single model check, it works well
on small to medium models (up to six floors). However, its limitations become
more and more apparent as the size of the models grows. In the case of the
single model check for eight floors (i.e., a model of size 236), NuSMV would
spend more time reordering variables than actually verifying the property.

In consequence, we computed variable orderings for each number of floors,
and used these in all subsequent benchmarks. The model checks of the single
approach were run with parameters -df -i orderfile. Those of the enumer-
ative approach were run with -df -dynamic. It is important to note that the
variable orderings computed for the single approach cannot be reused for the
enumerative case. This is due to the fact that the enumerative approach pro-
duces 29 models with different sets of variables, which would require 29 variable
orderings. However, due to the absence of the nine feature variables, the indi-
vidual models of the enumerative cases are much smaller than the single model
in the single case. Therefore, the dynamic variable ordering, while being the
only option, should still be rather efficient for the enumerative case.

8.4.3 Results

The results of the benchmarks are given in Tables 8.2, 8.3, 8.4, 8.5 and 8.6.
They show that our approach achieves order-of-magnitude speedups over the
enumerative approach. These observations are reported for each property in
Figure 8.1, where we show how speedup evolves when the number of floors
grows. Three clusters appear: four high outliers, with speedups greater than
250 and up to 1000; five low outliers with speedups below two or three and
sometimes negative; and six stable properties with speedups around ten. A
trend that we observed is that with an increasing number of floors, the outliers
tend to become more extreme (the high speedups grow, the low speedups de-
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scend). This is most likely due to the importance of the static variable ordering
for larger models, although we cannot exclude other factors.

We conducted a second experiment in which we used the dynamic variable
ordering for both algorithms. In this case, when the number of floors was larger
than six, the smaller models of the naïve algorithm caused it to be more efficient
than the FTS algorithm on more than half of the properties. This means that
the improvement in speedup seen above can be attributed to a large extent to
the use of an optimised static variable ordering. The crucial advantage of our
algorithm is therefore that it just needs one variable ordering. Note that both
algorithms could be combined. First, our algorithm would be used to find a
good variable ordering. Since this variable ordering comprises all the variables
that are used in the naïve checks, a variable ordering for each naïve check can
be obtained from this ordering by removing irrelevant variables. The naïve
algorithm could then be used with static orderings (obtained with the FTS
algorithm). This procedure has not been tested or subjected to benchmarks.

8.4.4 Threats to validity

In order to limit bias, we went to great lengths to ensure that the enumerative
benchmarks were as efficient as possible. For instance, the computation of the
29 feature compositions (to create the files that were model checked) for each
property was not included in the runtime. Furthermore, the large volume of
log files from these runs was cleaned after each run since it would slow down
the tool after several runs (because of huge inode lists in the parent folder).

NuSMV has an extensive set of optimisations and parameters of which we
only used the most basic ones, -dynamic and -df (preventing the computation
of reachable states, which was found to be slowing down both algorithms). The
naïve algorithm might benefit more from some of these optimisations, since even
a small improvement can accumulate over the O(2n) runs of the the tool. On
the other hand, since the set of variables is different for most products, some
optimisations cannot be used in the naïve algorithm. For example, NuSMV
allows hard caching of BDDs, so that they can be reused between checks.
This caching cannot be used between products, because most products have
different variables and thus different BDDs. Using the basic algorithm allowed
us to make sure that the only difference in runtime was due to the use of the
FTS algorithm and a static variable ordering.

8.5 Conclusion

We presented fNuSMV, a toolset for symbolic FTS model checking imple-
menting the algorithms of Chapter 7. Its input language, fSMV, was taken
from [Plath and Ryan, 2001]. It is based on the compositional FOSD paradigm
(see Section 1.3): features are specified individually and composed to create the
model of a product. For fNuSMV we proposed a new form of composition. It
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creates a symbolic FTS, to which our symbolic model checking algorithm can
be applied. We also showed that fSMV and FTS are expressively equivalent
modelling languages.

The fNuSMV toolset allowed us to conduct experiments showing that the
FTS algorithms are orders-of-magnitude faster than the naïve algorithm. Most
of this improvement can be attributed to the fact that the FTS algorithm needs
just one variable ordering, which can be optimised.

Table 8.2: Benchmark results for the elevator system with four floors.

Property Value Enumerative Single Speedup

01 false 17.84s 0.14s 127.43
01’ true 15.37s 0.05s 307.40
04 false 18.19s 1.06s 17.16
02 false 19.23s 0.22s 87.41
03a false 20.48s 1.84s 11.13
03b false 21.23s 1.76s 12.06
05a false 20.09s 3.23s 6.22
05b true 14.36s 0.03s 478.67
05-part true 16.47s 0.06s 274.50
05c false 19.94s 1.86s 10.72
05d true 14.68s 0.03s 489.33
05e false 18.3s 1.06s 17.26
05’ false 19.89s 1.62s 12.28
06 true 18.89s 1.2s 15.74
07 true 19.27s 2.57s 7.50
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Table 8.3: Benchmark results for the elevator system with five floors.

Property Value Enumerative Single Speedup

01 false 29.38s 0.44s 66.77
01’ true 24.76s 0.09s 275.11
04 false 34.02s 4.62s 7.36
02 false 33.16s 0.82s 40.44
03a false 37.98s 6.3s 6.03
03b false 39.43s 6.32s 6.24
05a false 39.77s 13.99s 2.84
05b true 22.7s 0.03s 756.67
05-part true 29.25s 0.16s 182.81
05c false 35.52s 8.66s 4.10
05d true 23.44s 0.04s 586.00
05e false 34.09s 4.63s 7.36
05’ false 40.21s 8.14s 4.94
06 true 34.55s 4.56s 7.58
07 true 35.9s 7.57s 4.74

Table 8.4: Benchmark results for the elevator system with six floors.

Property Value Enumerative Single Speedup

01 false 44s 1.05s 41.90
01’ true 34.02s 0.13s 261.69
04 false 67.76s 18.44s 3.67
02 false 52.36s 1.87s 28.00
03a false 76.67s 22.42s 3.42
03b false 77.98s 27.21s 2.87
05a false 105.07s 322.53s 0.33
05b true 30.67s 0.04s 766.75
05-part true 54.63s 0.32s 170.72
05c false 88.63s 78.36s 1.13
05d true 30.93s 0.05s 618.60
05e false 67.45s 18.39s 3.67
05’ false 131.78s 63.61s 2.07
06 true 68.36s 20.42s 3.35
07 true 73.06s 36.89s 1.98
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Table 8.5: Benchmark results for the elevator system with seven floors.

Property Value Enumerative Single Speedup

01 false 66.89s 3.45s 19.39
01’ true 44.34s 0.17s 260.82
04 false 214.75s 109.67s 1.96
02 false 86.98s 5.58s 15.59
03a false 160.43s 51.35s 3.12
03b false 169.91s 66.45s 2.56
05a false 487.98s 571.69s 0.85
05b true 38.39s 0.04s 959.75
05-part true 114.38s 0.55s 207.96
05c false 269.19s 257.98s 1.04
05d true 38.62s 0.06s 643.67
05e false 214.13s 112.79s 1.90
05’ false 568.56s 241.53s 2.35
06 true 142.42s 48.37s 2.94
07 true 160.3s 128.84s 1.24

Table 8.6: Benchmark results for the elevator system with eight floors.

Property Value Enumerative Single Speedup

01 false 99.14s 4.96s 19.99
01’ true 62.71s 0.15s 418.07
04 false 337.47s 414.32s 0.81
02 false 139.58s 6.06s 23.03
03a false 312.05s 57.65s 5.41
03b false 332.49s 81.35s 4.09
05a false 2180.58s 2232.39s 0.98
05b true 51.26s 0.04s 1281.50
05-part true 211.63s 0.48s 440.90
05c false 851.58s 899.2s 0.95
05d true 52.27s 0.07s 746.71
05e false 337.81s 407.84s 0.83
05’ false 2441.67s 887.8s 2.75
06 true 263.68s 102.39s 2.58
07 true 325.31s 439.25s 0.74



Chapter 9

SNIP and fPromela

“ Von Neumann gave me an interesting idea: that you don’t have to
be responsible for the world that you’re in. So I have developed
a very powerful sense of social irresponsibility as a result of von
Neumann’s advice. It’s made me a very happy man ever since. ”Richard Feynman, Surely You’re Joking, Mr. Feynman!, 1985

In this chapter, we present SNIP, a model checker that implements the semi-
symbolic algorithms of Chapter 6. SNIP was developed after fNuSMV, and our
motivations for its development were (i) to test the semi-symbolic algorithms
on larger models and (ii) to have a procedural modelling language based on
annotation rather than composition. The result is fPromela, a modified version
of Promela, the well-known language of the SPIN model checker [Holzmann,
2004]. SNIP is the first model checker dedicated to SPLs.

Our presentation begins in Section 9.1, with an introduction and a moti-
vation. In Section 9.2, we present fPromela, SNIP’s modelling language. In
Section 9.3, we give examples of how SNIP can be used, and we describe its
architecture and other implementation details. In Section 9.4, we report on the
experiments conducted with SNIP. We conclude in Section 9.5.

9.1 Introduction

After working with fNuSMV for several months, conducting benchmarks and
creating models, we became more attentive to the requirements of the engineer
using the tool. During this time, we identified several drawbacks of the fNuSMV
toolset. First, the fact that the toolset consists of several tools, all of which have
to be used to verify a property, makes it somewhat cumbersome to use. This is
especially problematic when elaborating a model. During this phase, the work
of the engineer generally consists in refining the model (making corrections,
additions, or other changes) and then verifying it to inspect the impact of the
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change. Short feedback cycles and flexible command-line instructions are thus
paramount. Secondly, the fSMV modelling language has two particularities
that can make it unintuitive in certain cases.

First, SMV is declarative and very close to the symbolic transition relation
required for the symbolic model checking algorithm. The behaviour has to be
specified directly in terms of the changes to the variable values, one by one.
This is very different from the way problems in the real world are described,
which is generally done in a procedural style (e.g., program code, flow dia-
grams or automata). To address this point, we decided to base our language
on a procedural modelling language, thereby shrinking the cognitive gap be-
tween the model and the problem being modelled. A perfect candidate for
this was Promela, which is the modelling language of the popular SPIN model
checker [Holzmann, 2004]. Its syntax is close to that of programming languages
like C, making it easy to learn. Promela also offers many facilities for modelling
distributed systems (e.g., processes and communication channels).

The second particularity that can make fSMV unintuitive in certain cases
is that it requires modular features. While modularity is an ideal goal, not
all features can easily be modularised. In [Boucher et al., 2010b], we worked
on an industrial SPL where features would just change single instructions in
the middle of a function. While this and similar small-granularity features
can be modularised,1 this introduces overhead and is contrary to the goal of
feature modularity, the ability to develop features in isolation. If features
are sufficiently small and specialised, they will not make sense in isolation.
Furthermore, in many cases, it is clear from the outset that two features need
‘glue code’ to work together, or that features manipulating the same variable
have a priority order. Such things are hard to express in modular languages
such as fSMV. Generally, the only way to achieve modularity in this case is by
duplicating features, or encapsulating ‘glue code’ inside artificial features—all
things that are contrary to the goal of modularity. To address this second
point, we thus decided to base the modelling language on annotation, rather
than modularity and composition. A further motivation for this choice is the
use of similar techniques in practice (e.g., #ifdefs [Kästner et al., 2008,Liebig
et al., 2010] or code tags [Boucher et al., 2010b]).

The result is fPromela and the model checker SNIP. In contrast to fNuSMV,
which was implemented by modifying the existing NuSMVmodel checker, SNIP
was implemented from scratch. While the fully symbolic FTS algorithm can
largely be reduced to the one for transition systems, this is not the case for
the semi-symbolic algorithm. Implementing it by changing an existing model
checker would require major changes in many parts of the code, requiring a
good knowledge of the code, or well-placed extension points which would have
to anticipate all the places at which changes have to be made. Furthermore,
modifying the SPIN source code is far from trivial, even for simpler modifica-

1In aspect-oriented programming, for instance, a ‘hook’ (a call to an empty method) can
be placed where the feature’s code is supposed to be injected, which an then be addressed in
a point-cut.
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tions. These considerations led us to re-implement SNIP from scratch. The
development took about four man-months, which is considerably more than
the time spent on the development of the Haskell FTS library or fNuSMV.

To the best of our knowledge, SNIP is the first model checker specifically
dedicated to SPLs. It supports both model checking problems, Mc and ExtMc
for fLTL, assertion and deadlock checking. In contrast to fSMV, SNIP is an
integrated tool with a single command-line interface, requiring just one call
to launch a verification. Thanks to the development of the TVL modelling
language [Classen et al., 2011a] and its associated libraries, SNIP also has
built-in support for FDs.

9.2 The fPromela modelling language

SNIP’s modelling language, fPromela, is based on the procedural modelling
language Promela. In this section, we first give an overview of the language.
We then discuss its semantics in terms of FTS and study its expressiveness.

9.2.1 Syntax

The syntax of fPromela is the same as the one of Promela [Holzmann, 2004].
Many constructs are similar to C. This should result in a gentle learning curve,
even for people that are not familiar with Promela. For example, consider the
following system consisting of a sender and a receiver.

Listing 9.1: A Promela model with a sender and a receiver.

1 chan buffer = [3] of { int };
2
3 active proctype sender () {
4 int p;
5 do :: true;
6 i f :: p = 0;
7 :: p = 1;
8 f i ;
9 buffer!p;

10 od;
11 }
12
13 active proctype receiver () {
14 do :: true;
15 buffer?_;
16 od;
17 }

The key element in Promela and fPromela are processes, specified with the
proctype keyword. A process has to be started by another process or declared
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active, which means that it is active in the initial state of the system. If
several processes are active, their executions are interleaved. The sender and
the receiver are both active processes. Processes can communicate through
shared variables, as in fSMV, or more explicitly through channels. The global
variable buffer is a channel of integers with a capacity of three. This means
that it can hold three messages. A channel will refuse new messages to be sent
once it is full; it will also refuse being read from once it is empty.

A process can have local variables, like p at line 4, which cannot be accessed
by other processes. The behaviour of a process is specified in a procedural style.
The do statement is used to declare a loop. A do loop can have several loop
bodies (called options), each introduced with a double colon, ::. The first
statement of an option is the condition under which it can be executed. The
loop at line 5 has one option with the condition true, which means that it can
always be executed, effectively making the loop infinite.2 if statements work
similarly. The if statement at line 6 has two options. Their first and only
statements are assignments, which can always be executed. When there are
several options that can be executed like this, the choice is non-deterministic
(this is different from case statements in SMV, where the first option would
be taken). The if statement at lines 6 to 8 is thus used to assign a value to p
non-deterministically.3

Unlike in a programming language, every statement in Promela will be
blocked if it is not executable. At line 9, the content of the variable p is writ-
ten into the channel buffer. If the channel is full, execution will be blocked
here until there is space in the channel. In essence, the sender process non-
deterministically writes zeros and ones into a buffer. The receiver process
indefinitely reads from the buffer (line 15). When reading from a channel,
the underscore means that a message is discarded. If a variable is used, e.g.,
buffer?var, the message is written into the variable. In both cases, the mes-
sage is removed from the channel, which frees up space.

Promela has a rather extensive syntax, much richer than that of SMV.
This brief introduction only covered the most important constructs. Almost
all constructs that exist in Promela are available in fPromela and SNIP, too. A
full list of unsupported constructs is distributed with SNIP. Let us now proceed
to fPromela. fPromela extends Promela with a new type, feature variables.
Feature variables can be used to guard statements with feature expressions.
The following example illustrates this.

Listing 9.2: A simple fPromela model.

1 // Declare features
2 typedef features {

2A loop can only be left with the break statement, even if it is not infinite. When the
conditions of all options are false, execution will be blocked until one of them becomes true.

3When all conditions of an if statement are false, execution will be blocked until one of
them becomes true. To avoid this, the else expression can be used in one of the conditions.
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3 bool Foo;
4 bool Bar
5 };
6 features f;
7
8 active proctype toto() {
9 int i = 0;

10 // Guarded increment statement
11 gd :: f.Foo || f.Bar;
12 i++;
13 :: else ;
14 skip;
15 dg;
16 // Test assertion
17 assert (i == 1);
18 }

The features used in a model have to be declared as fields of the special type
features, which is done at lines 2-6. The reason for this is twofold: it serves
as an interface that identifies the features used in the model and it ensures
compatibility with Promela. The features can then be referenced by declaring
any variable with this type (f in the example).

The example system consists of one process, specified at lines 8-18. As
discussed in Section 9.1, variability in fPromela is expressed by guarding state-
ments. Guard blocks use the gd keyword. The i++ statement at line 12, for
instance, is guarded with the expression f.Foo || f.Bar (line 11). This means
that the i++ statement is only part of products containing features Foo or Bar.
The other products (line 13) do nothing (line 14). A gd statement works like
an if statement, except that only feature variables or the else keyword can
be used in the first statement (the condition) of its options. In fact, this is
the only place where feature variables may be used. They cannot be accessed
anywhere else, be written to or printed. In the language of the C preprocessor,
the above guard would be written

1 #ifde f FOO || BAR
2 i++;
3 #endif

Where FOO and BAR are directives that are set at compile time if the corre-
sponding features are to be included. Variability in fPromela is thus expressed
in a way that is very similar to how it would be expressed in a programming
language such as C. Like in C, any fPromela statement can be guarded and
guards can be nested. However, unlike #ifdefs, the gd statements in fPromela
are part of the language and its grammar. This way, we avoid the problems that
exist when parsing C code with #ifdefs [Garrido and Johnson, 2005,Kästner
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BarFoo

Example

0..2

Figure 9.1: Graphical rendering of the TVL FD in Listing 9.3.

et al., 2010], and any product is guaranteed to be syntactically correct. Note
that the else in fPromela has to be specified (it is not required by the C pre-
processor). Otherwise, execution of all other products will be blocked at this
point (which is consistent with the if in Promela).

Independently from this, we should note that directives of the C prepro-
cessor can be used in fPromela, too—not to specify variability, but to simplify
the model, define constants, decompose it into several files, and so on. This is
very helpful for specifying properties, and is required to make SNIP compatible
with SPIN. Further note that gd and dg are just aliases for if and fi. SNIP
will distinguish guards from normal ifs on its own. This way, a syntactically
valid and well-typed fPromela file is also a syntactically valid and well-typed
Promela file, provided that all gds are replaced by ifs.

Let us go back to the example from Listing 9.2. As expected, a guarded
statement is part of the model of a product if its guard evaluates to true in the
product. In the example, this means that i is only incremented in products
containing features f.Foo or f.Bar. At line 17, the property that i equals one
is specified using an assertion. Alternatively, properties can be specified using
LTL, fLTL or directly as automata (that is, using never claims as in SPIN).

In addition to an fPromela file, SNIP requires an FD specified with TVL.
A TVL feature model for the previous example would be the following.

Listing 9.3: TVL equivalent of the FD in Figure 9.1

1 root Example group [0..2] {
2 Foo ,
3 Bar
4 }

In the graphical syntax introduced in Chapter 1, this would be rendered as
shown in Figure 9.1. All features declared in the fPromela file have to exist in
the TVL file; otherwise SNIP will report an error.

9.2.2 Semantics
The syntax of Promela (and hence fPromela) is rather vast, so that it would be
tedious to define its full semantics here. We thus omit the less relevant details
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true / p = 0
line
6

line 
9

true / p = 1

line
5

!full(buffer) / buffer!p

true / 

p = 0 && empty(buffer)

Figure 9.2: Program graph of the sender process from Listing 9.1.

of the semantics. The interested reader is referred to [Holzmann, 2004], which
contains a precise account of Promela’s semantics (in fact, [Holzmann, 2004] is
the only reference used for the implementation of SNIP).

In order to see more clearly what a Promela or fPromela model represents,
we define the abstract syntax of both languages. Each proctype of a model
defines a program graph.4 As an example, the program graph corresponding to
the sender process of Listing 9.1 is shown in Figure 9.2.

A program graph is defined over a set of typed variables. The vertices of
this graph are the control locations (i.e., the program counter, represented by
the line number in Figure 9.2) and its transition relation defines the control
flow. Each transition has a condition under which it can be executed, and an
effect, i.e., a function that defines its effect on the set of variables. In Figure 9.2,
the transitions are annotated with condition / effect. In Promela, the control
statements such as do, if or the semicolon define the control flow. The only
statements that end up on transitions are expressions, assignments (including
channel reads and writes), assertions and print statements (not shown in our
examples, but supported by SNIP). For the purpose of this discussion, we just
consider expressions and assignments.

Definition 9.1. Let types be the set of types in Promela, V = {v1, . . . , vk} a
set of variables, and τ : V → types their type function: expr(V ) denotes all
Promela expressions over V , and asgn(V ) all assignments. Assuming that the
variables are ordered, v ∈ τ(v1) × . . . × τ(vk) denotes a valuation of the vari-
ables, let val(V ) be the set of all valuations. For e ∈ expr(V ), we write that
v |= e if the expression evaluates to true for the values v. For a ∈ asgn(V ),
apply(a, v) ∈ val(V ) denotes the valuation obtained after applying the assign-
ment a to v.

We define a program graph as a graph in which each transition is labelled
with an expression (the condition) and an assignment (its effect). If a statement
in a model has no effect on the variables, its assignment is the identity function.
If a statement can be executed at all times, its condition is simply true. In
addition, a program graph has an expression characterising the variable values
in the initial state.

4Holzmann uses the term ‘finite state automaton’ [Holzmann, 2004]. We use ‘program
graph’ [Baier and Katoen, 2008], since ‘finite state automaton’ is used for something else.
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Definition 9.2. A program graph over (V, τ) is a tuple (S, trans, I, init), where
S is a set of states and I ⊆ S a set of initial states, trans ⊆ S × expr(V ) ×
asgn(V ) × S is the transition relation, and init ∈ expr(V ) is an expression
characterising the variable values in the initial state.

The semantics of a program graph G, noted [[G]], is a transition system (S′,
Act′, trans′, I ′, expr(V ), L′) where

• S′ = S × val(V ), that is, each state denotes a control location and a
variable valuation of the program graph;

• I ′ =
{

(i, v) | i ∈ I, v ∈ val(V ) • v |= init
}
, the initial states are the

initial control locations and valuations satisfying init;

• Act′ = {ε}, actions are not required here, so each transition is labelled
with a dummy action ε;

• L′((s, val)) = {e ∈ expr(V ) | val |= e}, each state is labelled with the
expressions satisfied by its variable valuation;

• Transitions can only be executed when the expression evaluates to true
for the variable valuation in the start state; they change the variable val-
uation in the end state according to the assignment: for e ∈ expr(V ), a ∈
asgn(V ) and v ∈ val(V ),

(s, e, a, s′) ∈ trans ∧ val |= e

(s, val) ε→′ (s′, apply(a, val))
.

The program graph corresponding to a Promela file is obtained by trans-
forming control statements into vertices. In a nutshell, this is done as follows.
Single expressions terminated by a semicolon correspond to states with single
outgoing transitions. An example is the transition from line 5 to line 6 in
Figure 9.2. An if statement becomes a state with one outgoing transition per
option. This transition is labelled with the first expression of the option. The
last state of all options leads back to a common state. In the example of the
sender, there is just one transition per option, which is why both transitions
leaving line 6 lead to the same state in Figure 9.2. A do statement is similar to
an if statement, except that the last transition of all options leads back to the
beginning of the do statement. Assignment statements are always executable,
their condition is thus true. Channel writes are only executable if the channel
is not full. In Promela, variables are implicitly initialised at zero and channels
are empty; hence the expression on the initial transition in Figure 9.2.

A fragment of the transition system corresponding to the program graph
of the sender is shown in Figure 9.3. The transition system has no infinite
behaviours. Every behaviour stops in a state where the control location is line 9
and the buffer contains three elements. The buffer is thus full and execution
blocks at line 9. To obtain a system with no finite behaviours, the program
graph of the sender and the one of the receiver have to be put in parallel. The



9.2 The fPromela modelling language 147
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Figure 9.3: Transition system of the program graph of Figure 9.2.

parallel composition of two program graphs is obtained by interleaving their
executions. One exception are rendez-vous channels, which are channels of
capacity zero. Reads and writes of rendez-vous channels have to occur together,
at the same time, which means that these transitions are synchronised. The
parallel composition of two program graphs results in a program graph over
the union of their variables. We do not go into the details of this definition.
It is very similar to Definition 2.4, except that it takes shared variables into
account. (Note that the parallel composition of two program graphs is not
equivalent to the parallel composition of their transition systems; the latter is
inconsistent as it does not take shared variables into account.)

As expected, the semantics of a Promela model is a transition system. The
actual semantics is much more intricate, but Definition 9.2 captures the gist of
it. An fPromela model, in turn, describes a featured program graph. A featured
program graph is a program graph in which transitions are annotated with
feature expressions.

Definition 9.3. A featured program graph over variables (V, τ), and an FD
d with features N , is a tuple (S, trans, I, init, γ), where S, I, trans and init
are defined as in Definition 9.2 and γ : trans → B({f1, . . . , fn}) annotates
transitions with a feature expression.

The semantics of a featured program graph is an FTS (S′, {ε}, trans′, I ′,
expr(V ), L′, d, γ′) where S′, I ′ and trans′ are defined as in Definition 9.2.
Note that there is a clear correspondence between transitions of the program
graph and those of the transition system. In the FTS, γ′ is such that for any
transition t′ ∈ trans′, let t ∈ trans be the corresponding transition of the
program graph, then γ′(t′) = true if γ(t) is not defined (i.e., for an unguarded
transition) and γ′(t′) = γ(t) otherwise.
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true / i++  / Foo || Bar
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true /   / !Foo && !Bar 
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18

true / assert(i == 1)  /

i == 0

(a) The featured program graph of the model.
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(b) The corresponding FTS.

Figure 9.4: The fPromela example from Listing 9.2.

The featured program graph of an fPromela file is obtained in a way similar to
obtaining the program graph of a normal Promela file. The only difference is
the treatment of gd statements. The featured program graph of a Promela file
would be equivalent to its program graph. Remember, the first statement of an
option of a gd statement is the feature expression. The other statements are the
guarded behaviour. In terms of the featured program graph, this means that a
gd statement is treated like an if statement, except that the fist statement acts
as the feature expression of the second statement. If the first statement of an
option block is else, the feature expression is the negation of the disjunction
of the feature expressions of the other options in the gd statement.

To illustrate this, the featured program graph corresponding to the fPromela
example from Listing 9.2 is shown in Figure 9.4(a). The feature expression la-
bels were added in colour behind the existing labels. All unguarded statements,
like the assert at line 17, are not labelled. The corresponding FTS is shown
in Figure 9.4(b).

The semantics of an fPromela model is an FTS. As for Promela, the actual
semantics is much more intricate than Definition 9.3. In fact, it follows the
semantics of Promela (given in [Holzmann, 2004]) exactly, just adding feature
expressions from the featured program graph to the transitions. The parallel
composition of two featured program graphs is defined in the same way as
for program graphs, and is similar to Definition 4.7. Each transition of the
resulting featured program graph corresponds to a transition of one of the
featured program graphs, whose feature expression it inherits. An exception
are rendez-vous transitions, whose feature expressions are the conjunction of
those of the transitions being executed in parallel.

Just like FTS and transition systems, featured program graphs and pro-
gram graphs are related by a projection operation. The following definition is
analogous to Definition 4.2.
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Definition 9.4. Given a featured program graph fG = (S, trans, I, init, γ)
with FD d, its projection to a product p ∈ [[d]]

FD
, noted fG |p, is the program

graph (S, trans′, I, init) where trans′ , {t ∈ trans | t 6∈ dom(γ(t))∨p |= γ(t)}.
Syntactically, the projection operation can be accomplished as follows.

Algorithm 9.5. Given an fPromela model with FD d, its projection to a prod-
uct p ∈ [[d]]

FD
can be obtained as follows:

(1) remove all feature variable declarations;

(2) replace the feature expressions of all gd statements by the value they take
for p;

(3) remove the feature expressions that evaluate to true;

(4) replace all gd statements by if statements.

The obtained model is a syntactically valid Promela model. Since feature vari-
ables are guaranteed to only appear in feature expressions, removing them will
not lead to bad references.

Theorem 9.6. Given an fPromela model with FD d and featured program graph
fG, the reduction to a product p ∈ [[d]]

FD
computed according to Algorithm 9.5

yields a Promela model whose program graph is semantically equivalent to fG |p.

Proof sketch. It should be clear that without steps (2) and (3) of Algorithm 9.5,
the resulting program graph would have at least the transitions and states of
fG |p. The effect of step (2) is that all feature expressions that evaluate to
false become transitions which can never be executed. This is equivalent to
removing them. Furthermore, the transitions in fG whose feature expression
evaluated to true (that are thus in fG |p) are now all prefixed with a single
transition with the expression true (the evaluated feature expression). The
effect of step (3) is to remove these transitions. The resulting program graph
is thus indeed semantically equivalent to fG |p.

An immediate consequence of this is that the fPromela semantics preserves
the Promela semantics: an fPromela model without any guarded statements
can be interpreted as an fPromela or as a Promela model. The first interpre-
tation yields an FTS and the second yields a transition system, both of which
have exactly the same behaviours. For the fPromela example from Listing 9.2,
the projection to the product {Example, Foo} is the following:

1 active proctype toto() {
2 int i = 0;
3 i++;
4 assert (i == 1);
5 }
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similarly. The if statement at line 6 has two options. Their first and only
statements are assignments, which can always be executed. When there are
several options that can be executed like this, the choice is non-deterministic
(this is different from case statements in SMV, where the first option would
be taken). The if statement at lines 6 to 8 is thus used to assign a value to p
non-deterministically.3

Unlike in a programming language, every statement in Promela will block if
its is not executable. At line 9, the content of the variable p is written into the
channel buffer. If the channel is full, execution will block here until there is
space in the channel. In essence, the sender process non-deterministically writes
zeros and ones into a buffer. The receiver process indefinitely reads from the
buffer (line 15). When reading from a channel, the underscore means that a
message is discarded. If a variable is used, e.g., buffer?var, the message from
is written into the variable. In both cases, the message is removed from the
channel, which frees up space.

Promela has a rather extensive syntax, much richer than that of SMV. This
brief introduction only covered the most important constructs. Almost all con-
structs that exist in Promela are available in fPromela and SNIP, too. A full
list of unsupported constructs is distributed with SNIP. Let us now proceed to
fPromela. fPromela extends Promela with a new type, feature variables. Fea-
ture variables can be used to guard statements with feature expressions. The
following example illustrates this.

1 // Declare features

2 typedef features {

3 bool Foo;

4 bool Bar

5 };

6 features f;

7
8 active proctype toto() {

9 int i = 0;

10 // Guarded increment statement

11 gd :: f.Foo || f.Bar;

12 i++;

13 :: else ;
14 skip;

15 dg;
16 // Test assertion

17 assert (i == 1);

18 }

The features used in a model have to be declared as fields of the special type
features, which is done at lines 2-6. The reason for this is twofold: it serves
as an interface that identifies the features used in the model and it ensures
compatibility with Promela. The features can then be referenced by declaring
any variable with this type (f in the example).

3When all conditions of an if statement are false, execution will block until one of them
becomes true. To avoid this, the else expression can be used in one of the conditions.
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An Promela model can be obtained from an fPromela model by changing all

1 typedef product {

2 bool Foo = 1;

3 bool Bar = 0

4 };

5 product f;

6
7 active proctype toto() {

8 int i = 0;

9
10 i f :: f.Foo || f.Bar;

11 i++;

12 :: else ;
13 skip;

14 f i ;
15
16 assert (i == 1);

17 }

1 active proctype toto() {

2 int i = 0;

3 i++;

4 assert (i == 1);

5 }

9.2.3 Expressiveness

Let us now illustrate SNIP and its user interface. As for most model check-
ers, SNIP’s use consists in launching checks with certain parameters (property,
execution bound, and so on). A very efficient interface for this is the command
line; it remembers past commands and keeps a trace of inputs and outputs.
SNIP is thus a command-line application. The list of its parameters is shown
when launching SNIP.

9.3 User interface

Having features as a first-class concept means that results of a model checker
have to be provided in terms of features. This is not the case if just a single
product is verified, or a list of products one by one. Either case yields informa-
tion about specific products, which is limiting as problematic features cannot
be inferred from violating products. This is not only limited as a verification
result, but also inappropriate for the engineer who thinks in terms of features
when specifying the model. Without knowing which features are responsible, it
is much more difficult to locate an error, especially if it involves several inter-
acting features. Extending classical model checkers to SPLs almost inevitably
leads to this situation. SNIP and our earlier model checker [46] are the only
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(b) The corresponding FTS.

Figure 9.4: The fPromela example from Section 9.1.

The semantics of a featured program graph is an FTS (S�, {�}, trans�, I �,
expr(V ), L�, d, γ�) where S�, I � and trans� are defined as in Definition 9.3. Note
that there is a clear correspondence between transitions of the program graph
and those of the transition system. In the FTS, γ� is so that for any transition
t� ∈ trans�, let t ∈ trans be the corresponding transition of the program graph,
then γ�(t�) = γ(t).

The featured program graph of an fPromela file is obtained in a way similar
to obtaining the program graph of a normal Promela file. First note that the
featured program graph of a Promela file would be equivalent to its program
graph (minus the feature expressions). The only difference is the treatment of
gd statements. Remember, the first statement of an option of a gd statement
is the feature expression. The other statements are the guarded behaviour. In
terms of the featured program graph, this means that a gd statement is treated
like an if statement, except that the fist statement acts as the feature expression
of the second statement. If the first statement of an option block is else, the
feature expression is the negation of the conjunction of the feature expressions
of the other options in the gd statement.

To illustrate this, the featured program graph corresponding to the fPromela
example from Section 9.1 is shown in Figure 9.4(a). The feature expression labels
were added in colour behind the existing labels. All unguarded statements, like
the assert at line 17, are implicitly labelled with true. The corresponding FTS
is shown in Figure 9.4(b).

The semantics of an fPromela model is given by an FTS, which is very similar
to the Promela model without the guards.

This discussion shows that fPromela and Promela are very similar to FTS
and transition systems. Before we can close the loop of this commuting diagram

Given an fPromela model, the behaviour of a product is obtained by fixing
the values of all feature variables.

Theorem 9.4. Each fPromela model is semantically equivalent to the non-de-
terministic choice between 2n Promela models (where n is the number of fea-
tures) that are obtained by varying the initial values of the feature variables.

fPromela

Promela

FTS

Transition systems

semantics, ⟦⟧

semantics, ⟦⟧

projectionprojection
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The semantics of a featured program graph is an FTS (S�, {�}, trans�, I �,
expr(V ), L�, d, γ�) where S�, I � and trans� are defined as in Definition 9.2. Note
that there is a clear correspondence between transitions of the program graph
and those of the transition system. In the FTS, γ� is so that for any transition
t� ∈ trans�, let t ∈ trans be the corresponding transition of the program graph,
then γ�(t�) = γ(t).

The featured program graph of an fPromela file is obtained in a way similar
to obtaining the program graph of a normal Promela file. First note that the
featured program graph of a Promela file would be equivalent to its program
graph (minus the feature expressions). The only difference is the treatment of
gd statements. Remember, the first statement of an option of a gd statement
is the feature expression. The other statements are the guarded behaviour. In
terms of the featured program graph, this means that a gd statement is treated
like an if statement, except that the fist statement acts as the feature expression
of the second statement. If the first statement of an option block is else, the
feature expression is the negation of the conjunction of the feature expressions
of the other options in the gd statement.

To illustrate this, the featured program graph corresponding to the fPromela
example from Section 9.1 is shown in Figure 9.4(a). The feature expression labels
were added in colour behind the existing labels. All unguarded statements, like
the assert at line 17, are implicitly labelled with true. The corresponding FTS
is shown in Figure 9.4(b).

The semantics of an fPromela model is an FTS. As for Promela, the actual
semantics is much more intricate than Definition 9.3. In fact, it follows the
semantics of Promela (given in [92]) exactly, just adding feature expressions from
the featured program graph to the transitions. The parallel composition of two
featured program graphs is defined in the same way as for program graphs, and
is similar to Definition 4.6. Each transition of the resulting featured program
graph corresponds to a transition of one of the featured program graphs, whose
feature expression it inherits. An exception are rendez-vous transition, whose
feature expression is the conjunction of those of the transitions being executed
in parallel.

Featured program graphs

Program graphs

projection
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The semantics of a featured program graph is an FTS (S�, {�}, trans�, I �,
expr(V ), L�, d, γ�) where S�, I � and trans� are defined as in Definition 9.2. Note
that there is a clear correspondence between transitions of the program graph
and those of the transition system. In the FTS, γ� is so that for any transition
t� ∈ trans�, let t ∈ trans be the corresponding transition of the program graph,
then γ�(t�) = true if γ(t) is not defined (i.E., for unguarded transition) and
γ�(t�) = γ(t) otherwise.

The featured program graph of an fPromela file is obtained in a way similar
to obtaining the program graph of a normal Promela file. First note that the
featured program graph of a Promela file would be equivalent to its program
graph. The only difference is the treatment of gd statements. Remember, the
first statement of an option of a gd statement is the feature expression. The
other statements are the guarded behaviour. In terms of the featured program
graph, this means that a gd statement is treated like an if statement, except
that the fist statement acts as the feature expression of the second statement.
If the first statement of an option block is else, the feature expression is the
negation of the conjunction of the feature expressions of the other options in
the gd statement.

To illustrate this, the featured program graph corresponding to the fPromela
example from Section 9.1 is shown in Figure 9.4(a). The feature expression labels
were added in colour behind the existing labels. All unguarded statements, like
the assert at line 17, are not labelled. The corresponding FTS is shown in
Figure 9.4(b).

The semantics of an fPromela model is an FTS. As for Promela, the actual
semantics is much more intricate than Definition 9.3. In fact, it follows the
semantics of Promela (given in [92]) exactly, just adding feature expressions from
the featured program graph to the transitions. The parallel composition of two
featured program graphs is defined in the same way as for program graphs, and
is similar to Definition 4.6. Each transition of the resulting featured program
graph corresponds to a transition of one of the featured program graphs, whose
feature expression it inherits. An exception are rendez-vous transition, whose
feature expression is the conjunction of those of the transitions being executed
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The semantics of a featured program graph is an FTS (S�, {�}, trans�, I �,
expr(V ), L�, d, γ�) where S�, I � and trans� are defined as in Definition 9.2. Note
that there is a clear correspondence between transitions of the program graph
and those of the transition system. In the FTS, γ� is so that for any transition
t� ∈ trans�, let t ∈ trans be the corresponding transition of the program graph,
then γ�(t�) = true if γ(t) is not defined (i.E., for unguarded transition) and
γ�(t�) = γ(t) otherwise.

The featured program graph of an fPromela file is obtained in a way similar
to obtaining the program graph of a normal Promela file. First note that the
featured program graph of a Promela file would be equivalent to its program
graph. The only difference is the treatment of gd statements. Remember, the
first statement of an option of a gd statement is the feature expression. The
other statements are the guarded behaviour. In terms of the featured program
graph, this means that a gd statement is treated like an if statement, except
that the fist statement acts as the feature expression of the second statement.
If the first statement of an option block is else, the feature expression is the
negation of the conjunction of the feature expressions of the other options in
the gd statement.

To illustrate this, the featured program graph corresponding to the fPromela
example from Section 9.1 is shown in Figure 9.4(a). The feature expression labels
were added in colour behind the existing labels. All unguarded statements, like
the assert at line 17, are not labelled. The corresponding FTS is shown in
Figure 9.4(b).

The semantics of an fPromela model is an FTS. As for Promela, the actual
semantics is much more intricate than Definition 9.3. In fact, it follows the
semantics of Promela (given in [92]) exactly, just adding feature expressions from
the featured program graph to the transitions. The parallel composition of two
featured program graphs is defined in the same way as for program graphs, and
is similar to Definition 4.6. Each transition of the resulting featured program
graph corresponds to a transition of one of the featured program graphs, whose
feature expression it inherits. An exception are rendez-vous transition, whose
feature expression is the conjunction of those of the transitions being executed

abstract syntax

abstract syntax

Figure 9.5: Relation of fPromela, Promela, FTS and transition systems.

The relation between fPromela and Promela is thus very similar to that
between FTS and transition systems, as is the relation between fPromela and
FTS and Promela and transition systems. This is best illustrated by the di-
agram in Figure 9.5. The diagram is commutative, as Theorem 9.6 and the
following theorem establish.

Theorem 9.7. For any fPromela model with FD d and featured program graph
fG, for any product p ∈ [[d]]

FD
,

[[fG |p]] ≡ [[fG]] |p

where ≡ means that both transition systems are trace equivalent.

Proof sketch. The semantics of a program graph is defined in the same way as
the semantics of a featured program graph. Furthermore, feature expressions
are treated in the same way by FTS projection (Definition 4.2) and by the
projection of a featured program graph (Definition 9.4). In consequence, the
order in which these operations are applied does not matter. Hence, [[fG |p]] is
syntactically equivalent to [[fG]] |p.

This concludes our discussion of the semantics of fPromela. Before we
proceed to study its expressiveness, we would like to point out that there is
also a much easier method to implement syntactic projection.

Algorithm 9.8. Given an fPromela model with FD d, its projection to a prod-
uct p ∈ [[d]]

FD
can be obtained as follows:

(1) initialise all feature variables according to p;

(2) replace all gd statements by if statements.
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The advantage of this method is that it does not require the whole fPromela
file to be parsed. As gd can be replaced by if in an fPromela file anyway, all
that needs to be done is to initialise the feature variables. For the example
from Listing 9.2, this would yield the following.

1 typedef product {
2 bool Foo = 1; // initialise
3 bool Bar = 0 // initialise
4 };
5 product f;
6
7 active proctype toto() {
8 int i = 0;
9

10 i f :: f.Foo || f.Bar; // gd becomes if
11 i++;
12 :: else ;
13 skip;
14 f i ;
15
16 assert (i == 1);
17 }

The principal difference to Algorithm 9.5 is that the feature expressions
at line 10 and line 12 remain as transitions. This changes nothing for those
that evaluate to false since they can never be taken. Those that evaluate to
true, however, are additional transitions that have to be executed before the
actual guarded statement is executed. This leads to two discrepancies: first,
these transitions will create stutter transitions in the underlying transition sys-
tem (i.e., transitions that do not modify the atomic propositions). Secondly,
they might introduce new non-determinism. This is more problematic. Con-
sider the following case:

1 gd :: f.Foo;
2 chan!1;
3 :: true;
4 skip;
5 dg;

The channel write statement is only part of products with feature A, whereas
the skip is part of all products. A discrepancy arises in products with featureA.
First, consider projection according to Algorithm 9.5: when the execution gets
to the above statements and the channel is full, the system will always take the
skip transition. If projected according to Algorithm 9.8, the channel write will
be prefixed by a true transition. Now, when the execution gets to the guarded
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statement, the system has the non-deterministic choice of taking the skip or the
true transition. If the true transition is taken, the execution will be blocked
at the channel write statement. If the channel remains full indefinitely, this
leads to a deadlock which does not exist in the other projection. The problem
is that the true transition introduced non-determinism which did not exist in
the actual system. A necessary condition for this problem to occur is that the
guarded statement is not exclusive, i.e., some of the product sets defined by its
feature expressions overlap. Otherwise, the true transition would be the only
one, and thus cannot introduce new non-determinism. This is formalised by
the following theorem.

Theorem 9.9. Given an fPromela model with FD d and featured program
graph fG, the reduction to a product p ∈ [[d]]

FD
computed according to Al-

gorithm 9.8 yields a Promela model whose program graph G is stutter trace
equivalent [Baier and Katoen, 2008] to fG |p if all gd statements are exclusive.
Exclusive means that the sets of products defined by the feature expressions of
a gd statement are disjoint.

Proof sketch. In the resulting Promela model, the feature variables are normal
Boolean variables. By definition of fPromela, they are never written to, which
means that all feature expressions will always evaluate to the same value. The
resulting program graph G thus corresponds to that of Algorithm 9.5 in which
step (3) was not executed. As stated in the proof of Theorem 9.6, the transitions
in fG whose feature expression evaluated to true are now prefixed with a
transition (the former feature expression) whose expression always evaluates
to true. These true transitions lead to a stutter transition in [[G]], since they
do not change the variables. However, [[G]] is only stutter trace equivalent to
[[fG |p]] if the true transitions do not introduce new non-determinism. If the
sets of products of a gd statement are disjoint, it will have at most one true
transition in any product. In this case, the true transitions do not introduce
new non-determinism.

In practice, the feature expressions of a gd statement are almost always
disjoint. Furthermore, stutter trace equivalence preserves all LTL properties
that do not use the © operator, which is almost never used. Because of this,
and because of its ease of implementation, we use Algorithm 9.8 to implement
projection (the input to SPIN) in our benchmarks.

The above theorem has a corollary which yields an alternative, much more
intuitive, semantics for fPromela.

Corollary 9.10. Each fPromela model is semantically equivalent to the non-
deterministic choice between 2n Promela models (where n is the number of fea-
ture variables) obtained by varying the initial values of the features. (Provided
that the feature expressions of all gd statements are disjoint.)
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9.2.3 Expressiveness

By Definition 9.3, any fPromela model can be translated into an equivalent
FTS. The fPromela modelling language is thus a subset of the FTS language.
It is rather easy to show that the converse holds as well, i.e., that both languages
are expressively equivalent (except for the action labels which exist in FTS).

Theorem 9.11. Any FTS can be translated into fPromela.

Proof sketch. Let (S, Act, trans, I, AP, L, d, γ) be an FTS. An equivalent
fPromela model with FD d can be obtained by encoding the transition relation
with goto statements (which work similar to C). Basically, each state becomes
a program location and gotos are used to jump from location to location re-
flecting the transition relation. Each goto thus corresponds to one transition
and is guarded with the feature expression of the transition. For each state
s ∈ S with its outgoing transitions, this yields:

1 // One label identifying the state:
2 state_s:
3 // If the state is an initial state , a second label:
4 init_s:
5 // For each target state one option with a goto:
6 gd :: feature expression;
7 goto state_target;
8 :: ...
9 dg;

The initial states are modelled as follows:

1 // One goto per initial state
2 i f :: goto init_state;
3 :: ...
4 f i ;

The features of the FTS are declared under the features type as shown in
Section 9.2.1. The program graph G of an active proctype with this behaviour
will have |S|+ 1 control locations, one for each state, plus the additional initial
state. Since there are no variables, [[G]] is syntactically identical to the input
FTS, except for the additional initial state.

9.3 SNIP

Let us now introduce SNIP. First, we present its user interface and illustrate it
with several examples. We then discuss its architecture, various implementation
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choices and third-party libraries used. Finally, we describe how the algorithms
of Chapter 6 were implemented.

9.3.1 User interface and illustration

The user interface of SNIP is designed to take into account all the SPL model
checking use cases presented in the introduction to Part III. It also addresses a
variety of practical concerns that the user might have, like simulation, bounded
checking, layout of counterexamples, and so on.

As for most model checkers, SNIP’s use consists in launching checks with
certain parameters (property, execution bound). A very efficient interface for
this is the command line; it remembers past commands and keeps a trace of
inputs and outputs. SNIP is thus a command-line application. The list of its
parameters is shown when launching SNIP without parameter.

Introductory example and assertion checking

As input, SNIP requires an fPromela file, a TVL file and a property. For
our first illustration, we use the example from the previous section, where the
fPromela file is given in Listing 9.2 and the TVL file in Listing 9.3. In this
case, the property is the assertion at line 17 of the model. To check it, SNIP
would be executed as follows.

$ ./snip -check -fm features.tvl model.pml
No never claim , checking only asserts and deadlocks ..
Assertion at line 17 violated [explored 5 states , re-explored 0].
- Products by which it is violated (as feature expression ):

5 (!Foo & !Bar)

- Stack trace:
features = /
pid 00, toto @ NL11

10 toto.i = 0
--

features = (!Foo & !Bar)
pid 00, toto @ NL14
--

15 features = (!Foo & !Bar)
pid 00, toto @ NL17
--
-- Final state repeated in full:

features = (!Foo & !Bar)
20 pid 00, toto @ NL17

toto.i = 0
--

The -check parameter activates SNIP’s model checker. If it is set, SNIP au-
tomatically checks all assertions and looks for deadlocks. The -fm parameter
specifies the feature model. This parameter can be omitted if the TVL file
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has the same name as the fPromela file. That is, if the TVL file were named
model.tvl, the preceding command-line can be shortened to:

$ ./snip -check model.pml

The output consists of two parts. First, SNIP reports the products for which
the property is violated in the form of a feature expression (line 5). Second,
SNIP gives a counterexample, that is, an execution of the fPromela model
which proves the property violation (line 7 and following). It is presented as
a sequence of states separated by double dashes. For each state, SNIP prints
the products that can reach the state as a feature expression (‘/’ means all
products), the position inside each process (pid 00, toto @ NL11 means the
process with id 0, of type toto is at line 11), and the values of the variables.
At line 3, SNIP also reports two statistics: the number of states that were
explored and re-explored. The explored states are the states that were visited
and stored in memory; the re-explored states are visited states that had to be
explored again (see also Section 6.3).

To make counterexamples shorter and easier to understand, variables are
only printed if their value changed. Furthermore, the last state is repeated in
full so that the user can work backwards. There are two options to control
the output of counterexamples: -nt disables them (very useful if the user
is only interested in the satisfying products), and -st prints only states in
which variable values changed (i.e., states in which processes do nothing are
not shown.). Since SNIP’s output is text and can be interpreted immediately
(no need for an additional tool), it can be piped to other command-line tools
such as cat or grep. This is very useful to filter the relevant variables out of
long counterexamples.

For the example, SNIP reports that the assertion is violated by products
that satisfy !Foo & !Bar. This is as expected, since only those products lack
the i++ statement at line 12. In contrast to fNuSMV, SNIP implements both
Mc and ExtMc. If only -check is specified, SNIP computes Mc. This means
that SNIP stops as soon as it finds a violation. To compute ExtMc, the
parameters -check and -exhaustive have to be set.

$ ./snip -nt -check -exhaustive -fm features.tvl model.pml
No never claim , checking only asserts and deadlocks ..
Assertion at line 17 violated [explored 5 states , re-explored 0].
- Products by which it is violated (as feature expression ):

5 (!Foo & !Bar)

Exhaustive search finished [explored 5 states , re -explored 0].
- One problem found covering the following products (others

are ok):
10 (!Foo & !Bar)

In this case, SNIP will print a violation upon finding it (line 3), and continues
searching for violations in the other products. In the example, we disabled
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printing of counterexamples using -nt, otherwise, SNIP will print a counterex-
ample for each violation. When the search terminates, SNIP prints a summary
with all the products found to violate (line 7). In this case, those are the same
as before. However, we now have the certitude that all products satisfying Foo
| Bar are free from violations.

Sender/receiver example and deadlock checking

The previous example is rather basic. It does not have infinite behaviours and
does not use parallel composition. Let us modify the sender/receiver example
given in Listing 9.1 by making each of the two processes optional. The FD in
this case would be the following.

1 root Main group someOf {
2 Send ,
3 Receive
4 }

The Promela model is transformed into the following fPromela model.

1 typedef features {
2 bool Send;
3 bool Receive
4 };
5 features f;
6
7 chan buffer = [3] of { int };
8
9 proctype sender () {

10 int p;
11 do :: true;
12 i f :: p = 0;
13 :: p = 1;
14 f i ;
15 buffer!p;
16 od;
17 }
18
19 proctype receiver () {
20 do :: true;
21 buffer?_;
22 od;
23 }
24
25 active proctype boot() {
26 gd :: f.Send;
27 run sender ();
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28 :: else ;
29 skip;
30 dg;
31 gd :: f.Receive;
32 run receiver ();
33 :: else ;
34 skip;
35 dg;
36 }

Instead of declaring the sender and the receiver processes active, they are
now started explicitly by the boot process, using the run statement. Each run
statement is guarded by the respective feature. This way, only products with
the Send feature have a sender process, and likewise for the Receive feature.
Checking this model yields the following.

$ ./snip -check -exhaustive -nt sendrcv.pml
No never claim , checking only asserts and deadlocks ..
Found deadlock [explored 139 states , re -explored 0].
- Products by which it is violated (as feature expression ):

5 (Send & !Receive)

Found deadlock [explored 202 states , re -explored 0].
- Products by which it is violated (as feature expression ):

(!Send & Receive)
10

Exhaustive search finished [explored 202 states , re-explored 0].
- 2 problems were found covering the following products (others

are ok):
(!Send & Receive) | (Send & !Receive)

SNIP finds two deadlocks, as expected. The counterexamples (disabled
here for brevity) identify the deadlocked states. In the first case, the sender is
started without a receiver. It will thus send messages until the buffer is full, at
which point it waits indefinitely at line 15; a deadlock state. In the second case,
the receiver is started without a sender. It deadlocks immediately at line 21
because the buffer will always remain empty.

It might seem that this is inconsistent with the previous example. It too has
only finite behaviours, and yet SNIP did not report a deadlock. This is because
its finite behaviours all end with a terminal state of the program graph (in
this case, the end of the process specification). In Promela and fPromela, a
state with no outgoing transitions is not a deadlock state if all processes are
in terminal states. In the deadlock states of the sender/receiver example, the
boot process is in a terminal state, whereas the sender (or receiver) is not.

In Section 5.4.2, we remarked that in FTS, deadlocks can also stem from
erroneous feature expressions. Consider the following example in which A is a
single optional feature.
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1 typedef features {
2 bool A
3 };
4 features f;
5
6 active proctype foo() {
7 int i = 0;
8 gd :: f.A;
9 i++;

10 dg;
11 i++;
12 }

The guard at line 8 only considers products with feature A. For all other
products, there will be no transition in this state. Those products are dead-
locked, as the foo process is blocked in a non-terminal state. In SNIP, such
special deadlocks states are called trivially invalid end states; ‘trivially’, be-
cause they can be very easily avoided by making sure each gd statement has an
else option. By default, SNIP will not check for trivially invalid end states.
In contrast to simple deadlock checking, it requires a small computation each
time, which might be costly. If SNIP is run normally, this yields.

$ ./snip -check -nt deadlock.pml
No never claim , checking only asserts and deadlocks ..
No assertion violations or deadlocks found [explored 2 states ,
re -explored 0].

To activate checking of trivially invalid end states, and compute CheckDead-
lock as defined in Definition 5.6, the -fdlc parameter has to be set.

$ ./snip -check -exhaustive -fdlc -nt deadlock.pml
No never claim , checking only asserts and deadlocks ..
Found trivially invalid end state; the following set of products
can reach the state , but has no outgoing transition. [explored 1

5 states , re-explored 0].
- Products by which it is violated (as feature expression ):

(!A)

SNIP then correctly identifies the products without feature A as violating.

Mine pump example and fLTL model checking

So far, we have shown how assertions and deadlocks are checked. Of course,
properties can also be specified using LTL, fLTL or directly as never claims.

To illustrate this, we use the mine pump example from Section 4.5.2. The
fPromela model is not shown here. The use of fPromela allowed us to be
more detailed and faithful to the CONIC code in [Kramer et al., 1983]. The
state space of the model is thus considerably larger than that of the FTS in
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Section 4.5.2. In terms of code, it consists of about 200 lines of fPromela.
Recall that the system consists of a controller, a pump, a water sensor, a
methane sensor and a user. When activated, the controller should switch on
the pump when the water level is high, but only if there is no methane in the
mine. The TVL FD of this model is the following.

Listing 9.4: FD of the mine pump controller product line.

1 root MinePump {
2 group allOf {
3 opt Command group someOf {
4 Start ,
5 Stop
6 },
7 opt MethaneSensor group someOf {
8 MethaneAlarm ,
9 MethaneQuery

10 },
11 WaterSensor group [0..*] {
12 Low ,
13 Normal ,
14 High
15 }
16 }
17 }

It is slightly different from the earlier one in Figure 4.21. We split up methane
detection into two features, corresponding to the two mechanisms used. With
the MethaneAlarm feature, the controller is notified when there is methane in
the mine (it is passive). With the MethaneQuery, the controller queries the
methane sensor each time before starting the pump (it is active).

The model contains a large number of properties (42). Here, we focus on one
such property: “There is never a situation in which the pump runs indefinitely
even though there is methane.”; in LTL this becomes ¬♦�(pumpOn∧methane),
and in the syntax used by SNIP: !<>[] (pumpOn && methane).

Checking this property with SNIP yields the following.

$ ./snip -check -exhaustive -nt
-ltl ’!<>[] (pumpOn && methane)’ minepump.pml

Checking LTL property !<>[] (pumpOn && methane )..
Property violated [explored 481 states , re -explored 0].

5 - Products by which it is violated (as feature expression ):
(Start & Stop & MethaneQuery & MethaneAlarm & Low & High)

[...]

10 Property violated [explored 12806 states , re-explored 65409].
- Products by which it is violated (as feature expression ):
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(Start & !Stop & !MethaneQuery & !MethaneAlarm & !Low & High)

Exhaustive search finished [explored 17325 states ,
15 re -explored 179937].

- 16 problems were found covering the following products (others
are ok):

(Start & High)

The property is specified with the -ltl parameter. SNIP finds 16 violations
and concludes that all products with Start & High violate the property. This
is not what we expected, as the property is supposed to be satisfied by the
system. Products without Start or High will never even start the pump, which
is why they satisfy the property.

A look at the counterexamples reveals a problem with the property. Basi-
cally, the controller has a central loop, in which it can receive three types of
messages: user commands (start and stop), methane alarm messages, and water
level readings. The counterexamples show in every case that the methane sensor
sends an alarm message to the controller. However, as the choice of receiving
one of the three messages is non-deterministic, the controller might ignore the
alarm message indefinitely. In practice, such a behaviour is highly unlikely.
It is thus reasonable to assume that the controller will infinitely often accept
a message of each type. This assumption can be specified in LTL as follows:
(([]<> readCommand) && ([]<> readAlarm) && ([]<> readLevel)).

$ ./snip -check -exhaustive -nt
-ltl ’([]<> read ..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read ..) -> (!<>[] pump ..)..
Property violated [explored 27428 states , re-explored 125153].

5 - Products by which it is violated (as feature expression ):
(Start & Stop & MethaneQuery & !MethaneAlarm & Low & High)

[...]

10 Property violated [explored 30157 states , re-explored 162316].
- Products by which it is violated (as feature expression ):

(Start & !Stop & !MethaneQuery & !MethaneAlarm & !Low & High)

Exhaustive search finished [explored 34356 states , re -explored
15 274456].

- 8 problems were found covering the following products (others
are ok):

(Start & !MethaneAlarm & High)

This result can be interpreted as saying that the MethaneAlarm feature is re-
sponsible for making the property true. This corresponds to what we expected,
as theMethaneAlarm feature alerts the controller of methane, leading it to shut
off the pump. Following the guidelines of Section 5.4.1, the assumption has to
be discharged. This is done by checking its negation.

$ ./snip -check -exhaustive -nt
-ltl ’!(([]<> read..)’ minepump.pml
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Checking LTL property !(([]<> read ..)..
Property violated [explored 2169 states , re-explored 0].

5 - Products by which it is violated (as feature expression ):
(Start & Stop & MethaneQuery & MethaneAlarm & Low & High)

[...]

10 Exhaustive search finished [explored 8091 states , re-explored
37323]
- 38 problems were found covering every product.

The assumption is thus discharged by all products.
Normally, the example property is not expected to hold for products that

do not have the MethaneAlarm feature. It corresponds to a requirement im-
plemented by the feature. This can be expressed with a quantifier in fLTL:

[MethaneAlarm] ¬♦�(pumpOn ∧methane).
In SNIP, the quantifier of an fLTL property is specified in TVL syntax, sepa-
rately from the LTL property with the -filter parameter.

$ ./snip -check -exhaustive -nt
-filter ’MethaneAlarm ’
-ltl ’([]<> read ..) -> (!<>[] pump..)’ minepump.pml

Checking LTL property ([]<> read ..) -> (!<>[] pump ..)..
5 Attention! Checks are only done for products satisfying:

MethaneAlarm!
Property satisfied [explored 27893 states , re-explored 248254].

The property is thus indeed satisfied by all relevant products. SNIP recalls in
the output that the property is checked over a subset of the products (line 5).

9.3.2 Architecture and third-party libraries
SNIP is entirely written in the C programming language. An overview of its
architecture is shown in Figure 9.6. The core of SNIP is divided into layers,
so that lower layers are unaware of and have no dependency on upper layers.
Each layer has access to a set of wrapped libraries. A wrapper consists of an
interface (a header file) against which other code is written, and one or more
implementations of the interface depending on the third-party library used.
Third-party libraries are thus all wrapped and can easily be replaced. The
library to be used for a wrapper is chosen at compile time. Let us first look at
the core of SNIP, before we survey the third-party libraries used.

To create the fPromela parser, we use the parser generators Flex and Bison.
These tools are highly efficient and the de-facto standard for creating parsers
in C. To make sure that a Promela file in SNIP is parsed in the same way as it
is in SPIN, we reused the Bison grammar specification from the SPIN source
code.5 As the model is parsed, SNIP fills a symbol table with global variables

5This is indeed the only piece of SPIN source code reused in SNIP.
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Wrapped libraries

Parsing (symbols.c, automata.c)

Handling states (state.c)

fPromela semantics (execution.c)

Algorithm (checking.c)

Interface (main.c)

Boolean functions (boolFct.h)

CUDD CNF lib

Hash functions (hashState.h)

Jenkins Modulo

Hashtable (hashtable.h)

Judy Clarke

Satisfiability checking (sat.h)

CUDD Minisat

LTL (ltl.h)

ltl2ba

TVL (tvl.h)

TVLLibraryCore

Figure 9.6: Architecture of SNIP.

and process definitions. The body of a process is represented by a featured pro-
gram graph, which is created at the same time the model is parsed (it is built
backwards). We make extensive use of doubly linked lists, one of the primary
data structures in SNIP. As the featured program graph is built, all feature
expressions are transformed into Boolean function objects (the actual type de-
pends on the library chosen for representing Boolean functions). Furthermore,
all references inside expressions are resolved and replaced by pointers to the
respective symbols.

The state layer implements functions for the representation and manipula-
tion of system states in memory. We do not use state compression [Holzmann,
1997] in SNIP. To make state manipulation reasonably efficient nonetheless, all
variables are stored in a block of memory (the payload), rather than in linked
lists. Blocks of memory can be copied and compared efficiently with built-in
functions. The payload holds the global variables as well as those of the pro-
cesses. Since all variables have a fixed size, we only need to keep track of the
address in the payload at which the variables of a process start. A state further
contains a Boolean function, which characterises the products for which it is
reachable. The state layer handles dynamically created processes and channels.

The execution layer implements the semantics of Promela and fPromela. To
make sure that the Promela semantics is correctly implemented, we follow the
operational Promela reference [Holzmann, 2004] very closely. We thus have a
function executables, which determines the transitions that can be executed
in a state. It takes the feature expression of the state into account, as well as
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the feature expressions of the candidate transitions. It can be thought of as an
implementation of the Post operator from Definition 6.16. The other functions
that are derived from the Promela specification are eval, which evaluates an
expression, and apply, which executes a transition. The execution layer has
also functions for simulation and for managing the execution stack of the DFS.

On top of this sits the model checking layer. It implements the procedure
Reachables from Section 6.3, both as a nested DFS (for LTL) and as a normal
DFS (for asserts and deadlocks). Visited states are stored in a hash table. The
model checking layer will be discussed in more detail in the following section.

The interface layer pieces all of the other layers together. It is also responsi-
ble for most preparatory tasks. It interprets the command-line parameters and
writes them to global variables. It transforms the LTL property into a Büchi
automaton which it appends as a never claim to the input file. It then runs the
C preprocessor on the input file and launches the parser. The interface layer
also guesses the name of the TVL model, appends the fLTL guard (-filter
parameter) to the model (as described in Section 6.2.4) and transforms it into
a Boolean function. A number of temporary files are generated for this, which
can be preserved if SNIP is executed with the -t parameter.

SNIP uses several third-party libraries. As noted before, the Promela gram-
mar is taken from SPIN. To automate the transformation from LTL to Büchi
automata, we use LTL2BA,6 a very efficient implementation based on the re-
sults of [Gastin and Oddoux, 2001]. To parse TVL models and transform them
into DIMACS, we use the TVL library.7 DIMACS is a data exchange format
for Boolean functions in CNF. The TVL library is written in JAVA and rather
inefficient (even small models take a second to be parsed and transformed).
Therefore, SNIP also allows the user to specify the FD in DIMACS directly.
For this, SNIP has a command-line switch -fmdimacs, which has to be fol-
lowed by a file in DIMACS format, and a dictionary file. Variable names in a
DIMACS file are all integers. The dictionary file lists the feature names of the
integers used in the DIMACS file. The TVL library can export these files.

To store large sets of states with efficient lookup times, we use a resizable
hash table implementation by Clark.8 We manage collisions ourselves using
linked lists. As an alternative to this hash table implementation, we started
the development of a hash table based on Judy arrays.9 However, at the time of
writing, this implementation is work in progress and not ready for usage. The
hash function we use is due to Jenkins.10 A simpler alternative hash function
(repeated application of modulus) remains for testing purposes.

For the internal representation of Boolean functions, we currently have two
alternatives: BDDs or CNFs. For BDDs, we use the CUDD package,11 which

6www.lsv.ens-cachan.fr/̃ gastin/ltl2ba
7www.info.fundp.ac.be/̃ acs/tvl
8www.cl.cam.ac.uk/̃ cwc22/hashtable
9www.judy.sourceforge.net

10www.burtleburtle.net/bob/hash/doobs.html
11vlsi.colorado.edu/̃ fabio/CUDD

http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/
http://www.info.fundp.ac.be/~acs/tvl/
http://www.cl.cam.ac.uk/~cwc22/hashtable/
http://judy.sourceforge.net/
http://www.burtleburtle.net/bob/hash/doobs.html
http://vlsi.colorado.edu/~fabio/CUDD/
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is also used in NuSMV for instance. The representation of Boolean functions
is decoupled from the SAT checking of these functions. SAT checking in BDDs
is accomplished in constant time. Thus, if CUDD is used, it has to be used
for both (representation and SAT checking). The alternative representation,
CNFs, relies on a self-written data structure. CNFs were mostly used during
the early phases of development. A CNF quickly grows out of proportion, since
there is (as of now) almost no minimisation. For SAT checking of CNFs we
use MiniSat,12 but any other SAT checker could be used as well. A challenge
for SAT checking is that many checks have to be executed against the FD (See
Section 6.2.3). The CNF representation of the FD is likely to be larger than
the CNF being checked against it. To avoid having to load the CNF of the FD
into the SAT solver each time, we use MiniSat’s ability to check satisfiability
under an assumption (a literal). Basically, the CNF of the FD is loaded once.
For each CNF checked against it, a temporary variable is created which is
appended as a literal to each clause of the CNF. The result is then checked
under the assumption that the literal is false. After this, a new clause with
the temporary variable as a single negative literal is added, which corresponds
to removing the clauses added before. The SAT solver is reinitialised after a
number of properties were checked (a constant set to 1000 currently), to keep
the number of temporary variables reasonably low.

9.3.3 Implementing the model checking algorithms

Following this overview of SNIP’s architecture, we discuss some of the imple-
mentation details, and relate them to the theoretical results of Chapter 6.

To conduct model checking, SNIP simulates the execution of the fPromela
model. This means that (i) the calculation of the parallel composition of the
processes, (ii) the calculation of the synchronous product of the processes and
the never claim, and (iii) the generation of the resulting FTS according to
Definition 9.3; are all conducted on the fly, i.e., on a per-need basis as the
model checking algorithm is executed.

The model checking algorithm itself follows the Reachables procedure from
Section 6.3 very closely. For simplicity, the procedure is implemented twice.
Once as a nested DFS, which is used when an LTL property was specified (even
if the LTL property is a reachability property, and thus the inner DFS is never
started). In this implementation, the synchronous product with the Büchi
automaton has to be calculated. This is not required when no LTL property is
specified, which is why we implemented a simple DFS separately, which is used
when no LTL property was specified. Checking of assertions and deadlocks is
done in both cases and cannot be disabled (except for the -fdlc parameter
discussed before) as there would be no noticeable speed gain.

In Section 6.2.3, we discussed two alternatives for making sure that only
valid products are considered. One possibility is to seed the initial states with

12www.minisat.se

http://minisat.se/
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the Boolean function corresponding to the FD, the other is to test for each state
whether its feature expression represents at least one valid product. In SNIP
we use the latter: each time a new state is created, its feature expression is
intersected with the BDD of the FD; if the intersection is empty, it is rejected.
This has a number of advantages over the seeding method. Firstly, with the
seeding method, the feature expression characterising the violating products
that is returned as part of the output will also contain the Boolean function
encoding of the FD, rendering it useless to the engineer. Secondly, the seeding
method needs a data structure that exploits overlap in several instances. Ba-
sically, when the feature expression of all states contains the Boolean function
equivalent of the FD, there will be a lot of redundancy. If the data structure
used to represent feature expressions does not exploit this overlap to reduce
the overall memory requirements, it will not scale. This would preclude using
CNFs in this case. The CUDD package, however, does exploit overlap. After
conducting experiments with both methods, though, we could not observe a
noticeable difference in performance. We thus dropped the seeding method.

In Section 6.5, we discussed an optimisation for the ExtMc algorithm. It
consists in maintaining a Boolean function characterising all violating products
encountered so far, and avoiding these products in the search. SNIP has to
maintain such a Boolean function already to be able to produce the summary
information printed when the extended model check ends. The optimisation
itself is combined with the check whether a state is reachable in valid products.
As we said in the previous paragraph, the feature expression of each new state
is intersected with the BDD of the FD to make sure that it contains at least
one valid product. To implement the optimisation for the ExtMc algorithm,
we exclude all violated products from the BDD of the FD. This way, the check
required for the optimisation is conducted automatically when a new state is
created, i.e., one BDD intersection instead of two.

The quantifiers of fLTL properties are implemented as described in Sec-
tion 6.2.4, by appending them to the FD. This is done before the TVL library
is called, which means that we do not even have to parse the quantifier. Since
quantifiers are specified with a separate parameter, they can not only be used
for LTL properties, but also for checking assertions and deadlocks.

In summary, when SNIP model checks an fLTL property [χ]φ, it proceeds
as follows. The initialisation consists of three step. First, SNIP translates the
LTL property φ to a Büchi automaton and appends it to the fPromela file as
a never claim. Second, SNIP appends the quantifier χ as a constraint to the
TVL model and transforms it into a BDD. Third, SNIP parses the fPromela
file, creating one or more featured program graphs in the process. After the
initialisation, SNIP launches the model checking algorithm. The algorithm
computes the FTS corresponding to the parallel composition of the featured
program graphs and their synchronous product with the never claim. It uses
a depth-first search to compute the reachable states (stored in the hash table)
and for each, the products in which it is reachable (in form of a BDD). For
each new state, SNIP makes sure that it is reachable in a valid product which is
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not yet known to violate the property. When a violating state is found, SNIP
prints information about the violation: the feature expression characterising
the violating products is obtained from the BDD, and a counterexample. If
the -exhaustive parameter is set, SNIP continues the search and prints a
summary of all violations when the algorithm finishes.

Finally, we would like to point out that SNIP has a parameter -spin, which
causes it to interpret any input model as a Promela file. This means that feature
variables are treated like normal Boolean variables, and that gd statements are
treated like ifs. The input will thus be interpreted as a featured program graph
without feature expressions, i.e., a normal program graph. This corresponds
to the syntactic projection described in Algorithm 9.8. In this case, no BDDs
(not even trivial ones) will be computed and SNIP’s model checking algorithm
is equivalent to the classical model checking algorithm for single systems. We
use this for our benchmarks, because it allows us to use SNIP to compute the
naïve algorithm (Algorithm 6.2). We can then compare the naïve algorithm
to the FTS algorithm where both are implemented by the same tool (even the
same code). In an experiment measuring performance, this allows us to control
many variables that would be impossible to control if different tools were used.

9.4 Experiments
As shown in Section 6.6, the computational complexity of our our algorithm
is worse than that of the naïve algorithm. However, an experiment conducted
with the Haskell FTS library [Classen et al., 2010b] showed that in practice,
the semi-symbolic FTS algorithm is up to three times faster than the naïve al-
gorithm. There were some limitations to this experiment, which were overcome
with SNIP: it considered a limited number of properties (six), a small model
(457 states in the FTS), and it did not measure the state space reduction.

We thus conducted new experiments with SNIP, considering three models.
The first is the mine pump system [Kramer et al., 1983] discussed in Sec-
tion 9.3.1. It has 11 features and 128 products; its FTS has 21 177 states, all
products combined have 889 252 states. The second model is an elevator prod-
uct line, similar to the one of Section 8.4, with two persons and four floors. It
has 9 features and 256 products. The FTS of the elevator has 572 815 states,
all products combined have 63 051 024. The third model represents a subset of
the CCSDS file delivery protocol (CFDP) [Consultative Committee for Space
Data Systems (CCSDS), 2007], with 10 features and 56 products; its FTS has
1 064 840 states, and the sum of all products combined leads to a transition
system of 2 780 475 states. The fPromela models, including all properties and
explanations, are distributed with SNIP [Classen, 2010b]. The full set of results
is also available at the FTS website [Classen, 2010b].

9.4.1 Experimental setup
Our experimental setup consists of SNIP and a script that implements the naïve
algorithms using SPIN and SNIP without the FTS algorithm (referred to as
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‘enum (snip)’ in the statistics). The script uses the TVL library to list the set
of valid products. For each, it transforms the fPromela input into a Promela file
that describes the behaviour of the product (following Algorithm 9.8). It then
first uses SNIP without the FTS algorithm, then SPIN, to model check the file.
While the script makes up for the lack of functionality in SPIN (and SNIP with-
out the FTS algorithm), it is still inferior in terms of usability. For instance,
SNIP produces a Boolean expression characterising the violating products. As
shown in Section 9.3.1, this expression identifies incompatible features, or fea-
tures that are required for a property to hold. The script, in contrast, only
lists the products that violate the property. The list has to be analysed again
to produce information comparable to that returned by SNIP.

SNIP without the FTS algorithm provides a baseline to evaluate the impact
of the FTS algorithm on the runtime and the size of the state space. A mean-
ingful evaluation of the runtime cannot be done by comparison to tools such
as SPIN, as it would require us to remove the bias introduced by optimisations
for single systems and other implementation choices. The relevant comparison
is thus between SNIP with and without the FTS algorithm. However, SPIN
can be used to evaluate the ability of our algorithm to reduce the state space.

We only consider ExtMc in our experiments. The performance of the naïve
Mc algorithm largely depends on the order in which products are checked,
which we want to exclude as a factor.

Our experiments consist in using SNIP and the above script to compute
ExtMc for all properties of the three examples. For each, we measured the
runtime and the number of explored states. Recall that the FTS algorithm can
re-explore states. The sum of the explored and re-explored states corresponds
to the number of transitions fired. In the case of the naïve algorithm, this
number is equal to the number of explored states. Henceforth, we will thus use
‘number of transitions’ rather than ‘sum of explored and re-explored states’. To
make measurements as fair as possible, the time counted for the naïve algorithm
only includes the verification time. Moreover, in the case of SPIN, verification
consists of three steps: (a) generating a process analyser (pan), (b) compiling
it and (c) running it. The time for (b) was counted separately, as it is due
to a design decision in SPIN rather than its model checking algorithm. All
benchmarks were run on an Ubuntu machine with an Intel Core2 Duo at 2.80
GHz with 4 Gb of RAM.

9.4.2 Mine pump

For the evaluation, we considered a deadlock check and 41 LTL properties,
such as those identified in [Alrajeh et al., 2009]. The quantifiers of these fLTL
properties ranged over the set of all products. The reason for this is that any
fLTL property should initially be checked over all products, to make sure that
use of the quantifier is warranted (e.g., the property might hold in all products,
or be trivially satisfied). Of the 42 benchmark results, we only present data
for (#1), the deadlock check, and for the following representative properties.
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#1	   #10	   #12	   #24	   #25	  

snip	   2,19	   0,06	   1,90	   1,84	   3,01	  

enum	  (snip)	   7,60	   0,80	   7,02	   6,80	   9,91	  

enum	  (spin)	   1,32	   0,6	   1,14	   1,12	   1,82	  

enum	  (spin	  +	  pan)	   57,34	   58,95	   59,53	   59,46	   63,46	  

0,0	  

0,1	  

1,0	  

10,0	  

100,0	  

(a) Runtime in seconds, logarithmic scale.

#1	   #10	   #12	   #24	   #25	  

snip	   251	   7	   207	   197	   309	  

enum	  (snip)	   888	   48	   758	   732	   1	  056	  

enum	  (spin)	   401	   3	   251	   249	   399	  

1	  

10	  

100	  

1	  000	  

10	  000	  

(b) Number of transitions in thousands, loga-
rithmic scale.

Figure 9.7: Benchmark results for the mine pump system.

(#10) The assumption that water level readings are received infinitely often,
�♦readLevel, is discharged by all products.

(#12) The assumption that the pump is switched on infinitely often, �♦pump-
On, is discharged by products in [[Start ∧High]].

(#24) A property that expresses the actual system requirement, that the sys-
tem cannot be in a situation in which the pump runs indefinitely in
presence of methane:

¬♦�(pumpOn ∧methane).

This is the property used in the illustration in Section 9.3.1.

(#25) The same as property (#24) with the assumption that the system reads
the various types of message infinitely often:(

(�♦readCommand) ∧ (�♦readAlarm) ∧ (�♦readLevel)
)

⇒ ¬♦�(pumpOn ∧methane).

This property is violated by products in [[Start∧High∧¬MethaneAlarm]]
and its assumption is discharged by all products. As discussed before,
the MethaneAlarm feature prevents this kind of error. Let φ be property
(#25), the fLTL formula [MethaneAlarm]φ is satisfied by all products.

The effect of quantification is noticeable, even if just one feature value is
forced. For the extended model check of property (#25), SNIP reports eight
counterexamples after exploring 34 356 states and re-exploring 274 456 in 2.96
seconds. To prove satisfaction of the quantified property, only 27 893 states
are explored (248 254 re-explored), that is, 18% and 9% less; taking SNIP 2.62
seconds (11% less time).
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The results for the previously mentioned properties are shown in Figure 9.7.
The x-axis of both charts refers to the property IDs. Globally, the FTS algo-
rithm in SNIP is from two to 45 times faster than the naïve algorithm imple-
mented with SNIP. SNIP is especially efficient for properties that are violated
by all products. This is due to the optimisation discussed in Section 6.5: as
soon as SNIP finds a violating feature combination, it excludes it from the
search. For other properties, the FTS algorithm is consistently between three
and four times faster than the naïve algorithm.

As stated before, a comparison to the naïve algorithm implemented in SPIN
does not allow us to draw any conclusion as to the impact of the FTS algorithm.
The results show that if the compilation time for SPIN’s process analysers is not
counted, SPIN generally outperforms SNIP by a factor of 1.65. Nevertheless,
SNIP is generally faster on the properties violated by all products, e.g., six
times faster for (#10). However, a fair comparison of SNIP and the script has
to take all times into account. The compilation of a process analyser takes
about 60 seconds and accounts, in average, for 99% of the total runtime. SNIP
thus clearly outperforms the script of the naïve algorithm.

To measure state space reduction, we consider the baseline to be the num-
ber of transitions fired (equal to the number of states explored) by the naïve
algorithm implemented with SNIP. The FTS algorithm in SNIP reduced the
average number of states from 603 309 to 174 419 (71%), whereas SPIN reduced
it to 206 970 (66%). This is important, as it shows that SNIP achieves greater
reductions of the state space than the naïve algorithm using SPIN. A good
example is given by property (#24) where the naïve algorithm (without pan
compilation) is faster even though SNIP explores less states. This illustrates
the extent to which SPIN is optimised.

We also measured the maximum amount of memory used by both algorithms
during the verification of these properties. The property which requires the
most memory is (#25). For its verification, the naïve algorithm (implemented
with SNIP) needs 13.63 MB of memory whereas the FTS algorithm requires
20.12 MB. The memory requirements for the naïve algorithm depend on the
product with the largest number of states. The transition system explored by
the naïve algorithm has 14 954 states, which is considerably less than the 34 346
states of the FTS that were explored by the FTS algorithm. This accounts
for the higher memory requirements of the FTS algorithm. Note that these
numbers are rather small, especially considering that between 9.65 MB and
9.73 MB of memory is required for data structures that do not increase with
the number of states (e.g., syntax trees, symbol tables, and so on).

9.4.3 Elevator

The elevator system is based on the fSMV model created for the experiments
in Chapter 8. All features except for the anti-prank feature were retained for
the fPromela model. As before, they are independently optional, yielding 28

products. The behaviour of the lift and of the features is similar to what is
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#1	   #2	   #4	   #11	   #15	  

snip	   217,38	   0,36	   239,51	   222,92	   49,79	  

enum	  (snip)	   200,07	   1,71	   108,35	   199,69	   48,16	  

enum	  (spin)	   56,47	   10,91	   116,27	   35,47	   18,9	  

enum	  (spin	  +	  pan)	   170,41	   129,51	   239,89	   154,08	   139,78	  

0,0	  
0,1	  
1,0	  
10,0	  
100,0	  
1000,0	  

(a) Runtime in seconds, logarithmic scale.

#1	   #2	   #4	   #11	   #15	  

snip	   58	  946	   86	   35	  180	   35	  544	   9	  129	  

enum	  (snip)	   60	  377	   107	   21	  720	   34	  664	   9	  183	  

enum	  (spin)	   19	  190	   431	   33	  821	   8	  928	   2	  595	  

1	  

10	  

100	  

1	  000	  

10	  000	  

100	  000	  

(b) Number of transitions in thousands, loga-
rithmic scale.

Figure 9.8: Benchmark results for the elevator.

described in Section 8.4. The main difference in the fPromela model is that
persons using the elevator are modelled explicitly as processes. This fPromela
model is the largest so far, with about 450 lines of code.

For the benchmarks, we considered a deadlock check and 19 fLTL proper-
ties. Here we show the results for (#1), the deadlock check, and the following
representative properties.

(#2) The assumption that the main control loop is executed infinitely often,
¬�♦progress, is discharged by all products.

(#4) The assumption that a person can visit each floor infinitely often:

¬�♦p0at0 ∨ ¬�♦p0at1 ∨ ¬�♦p0at2 ∨ ¬�♦p0at3
is also discharged by all products.

(#11) The property that it is impossible for cabin buttons to be pressed when
nobody is inside:

¬♦(cb0 ∨ cb1 ∨ cb2 ∨ cb3) ∧ ¬(p0in ∨ p1in) ∧ dclosed).

This property is violated by all products that do not have the Empty
feature (which is supposed to prevent such a situation).

(#15) The property that the door should never remain open indefinitely:

�♦(progress ∨ waiting)⇒ (¬♦�dopen),

is violated by products with features Park, OpenIfIdle or without feature
QuickClose, as expected.

The results are shown in Figure 9.8. In terms of runtime, for half of the
properties, the FTS algorithm in SNIP is slightly slower than the naïve algo-
rithm implemented with SNIP. It is only faster on properties that are violated
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by all products. An explanation for this bad performance is given by the state
space measures. On average, the FTS algorithm in SNIP explores 17 003 891
transitions, that is, even a bit more than the naïve algorithm which explored
16 780 379. SPIN explored 5 885 242, which corresponds to a reduction of 65%.

Note that it is impossible for the FTS algorithm to visit more states than
the naïve algorithm. The only explanation for these measures is that there
is a bug in SNIP which leads to a discrepancy in the Promela semantics of
a model with feature expressions and without. The results for the elevator
benchmarks should thus be taken with caution. At the time of writing, we
have not been able to find this bug. The elevator model makes use of most
Promela language constructs, increasing the likelihood for this kind of error
to occur. This illustrates the challenges faced when implementing a complex
language such as Promela. Note that the bug does not seem to affect the
correctness of the properties; all properties checked in the these examples yield
the same result with both algorithms.

As for the mine pump, we measured the maximum memory used by the
two algorithms implemented in SNIP. In this case, the deadlock check, prop-
erty (#1), required the most memory: 109.2 MB for the naïve algorithm and
155.7 MB for the FTS algorithm. These sizes correspond to 378 267 states in
the transition system explored by the naïve algorithm and 533 332 states in
the FTS. Note that the increase in the required memory is 43% whereas the
number of states increased by 40%. The additional 3% are due to the BDDs
representing the sets of products. The overhead they cause is thus rather small.

9.4.4 CFDP

The CFDP is a file delivery protocol for use in space missions [Consultative
Committee for Space Data Systems (CCSDS), 2007]. The CFDP is highly con-
figurable, and is thus suitable for a wide variety of missions. A mission usually
only needs a subset of its functionality. To minimise the memory requirements
of the CFDP, the non-required parts are not implemented. As part of a col-
laboration with Spacebel, a Belgian company that develops software for space
missions, the CFDP specification was analysed and the protocol decomposed
into features. This feature decomposition was subsequently used in the devel-
opment of a CFDP library SPL [Boucher et al., 2010b]. We used it as the basis
for our CFDP models, in which we consider a small subset of the protocol.

At the heart of the protocol is the transmission of files between CFDP
entities, that is, spacecraft and ground stations. A transmission starts with
the sender transferring a metadata segment to the receiver, followed by data
segments composing the file to be transmitted. Once all data segments have
been transmitted, the sending entity sends an End-Of-File (EOF) message and
the receiver closes the transaction by sending a Finished (FIN) message.

Our experiment considers the efficiency of the different Negative Acknowl-
edgement (NAK) procedures offered by the CFDP to detect and retransmit lost
data segments. The protocol provides four NAK modes:
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Deferred. The receiving entity waits until it receives the EOF message before
it requests the missing data segments.

Immediate. The receiving entity requests a missing data segment as soon as
it notices the loss.

Prompted. At any point in the transmission, the sender can prompt the re-
ceiver (using a PROMPT message) to request the retransmission of lost data
segments. In addition, the receiver will request all missing data segments
when the EOF message is received (as in deferred mode).

Asynchronous. At any point in the transmission, the receiver can request
the retransmission of data segments lost up to this point.

Because we are concerned only by the variability in the NAK modes, we consider
only a small subset of the FD created for [Boucher et al., 2010b]. This subset
can be written in TVL as follows.

1 root CFDP {
2 group allOf {
3 Entity group [0..*] {
4 Snd_min group [0..*] {
5 Snd_min_ack group [0..*] {
6 Snd_prompt_nak
7 }
8 },
9 Recv_min group [0..*] {

10 Recv_min_ack group [0..1] {
11 Recv_immediate_nak ,
12 Recv_deferred_nak ,
13 Recv_prompt_nak ,
14 Recv_asynch_nak
15 }
16 }
17 },
18 Channel group [0..*] {
19 Reliable
20 }
21 }
22 }

Note that the FD also models the reliability of the communication channel.
Even though this is strictly speaking a property of the environment, not the
system, it is useful to capture it as as a feature. The truth of any property is
then automatically expressed in function of the reliability of the communication
channel. It is also worth mentioning that the features corresponding to the four
NAK modes are mutually exclusive. Consequently, the FD has 56 products.

The fPromela model of the CFDP represents the scenario in which a file
is transmitted between two CFDP entities. With this model we verify under
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which condition (i.e., with which features) the file will be successfully trans-
mitted to the receiving entity. The model is based on the CFDP specifica-
tion [Consultative Committee for Space Data Systems (CCSDS), 2007], rather
than code developed by Spacebel. Because we are only interested in the trans-
mission procedure, the CFDP operations that are unrelated to the transmission
itself (user requests, checksum errors, ...) are ignored. Moreover, we applied
some simplifications to the transmission procedure as described in the pro-
tocol specification. The model is due to Maxime Cordy, a student who also
collaborated on the development of SNIP.

For the benchmarks, we considered a deadlock check, property (#1), and
the following fLTL properties.

(#2) The whole file is eventually received, ♦fileReceived. This property is
violated by 38 products, all those where the communication channel is not
reliable, and those without the sending or without the receiving feature.

(#3) If the EOF message eventually reaches the receiver, the whole file is even-
tually received, ♦eofReceived ⇒ ♦fileReceived. This property is vio-
lated 18 products: all those where the channel is not reliable and with
both a sender and a receiver (otherwise the assumption would not hold).

(#4) The same as (#3) with the additional assumption that a negative ac-
knowledgement (NAK) is eventually reaches the sending entity:

(♦eofReceived ∧ ♦nakReceived)⇒ ♦fileReceived.

This property is violated by 9 products, those with an unreliable channel
and where either

• the receiver is in asynchronous, immediate, or prompted NAK mode,

• or the receiver is in deferred NAK mode but the sender is unable to
answer to the NAK messages.

(#5) A variation of the previous property where the second assumption is
that the sender receives NAK messages infinitely often.

(♦eofReceived ∧�♦nakReceived)⇒ ♦fileReceived.

This property is violated by 4 products: those where the communication
channel is unreliable, the receiver has enabled a NAK mode and the sender
is unable to answer to NAK messages.

The results for the previously mentioned properties are shown in Figure 9.9.
In terms of runtime, the FTS algorithm in SNIP is between 1.33 and 2.23 times
faster than the naïve algorithm implemented with SNIP.

In terms of state space reduction, the FTS algorithm in SNIP reduced
the average number of states from 1 440 675 to 910 497 (37%), whereas SPIN
reduced it to 579 077 (60%). The small reduction in the state space explains the
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#1	   #2	   #3	   #4	   #5	  

snip	   8,86	   1,40	   0,71	   2,33	   11,48	  

enum	  (snip)	   11,75	   2,42	   1,58	   4,91	   15,93	  

enum	  (spin)	   2,64	   1,04	   0,77	   1,39	   3,28	  

enum	  (spin	  +	  pan)	   39,03	   38,16	   38,18	   39,41	   41,20	  

0,0	  

0,1	  

1,0	  

10,0	  

100,0	  

(a) Runtime in seconds, logarithmic scale.

#1	   #2	   #3	   #4	   #5	  

snip	   1	  802	   88	   103	   310	   1	  359	  

enum	  (snip)	   2	  780	   169	   210	   687	   2	  017	  

enum	  (spin)	   1	  063	   85	   86	   309	   859	  
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10	  

100	  

1	  000	  

10	  000	  

(b) Number of transitions in thousands, log-
arithmic scale.

Figure 9.9: Benchmark results for the CFDP.

less good performance of the FTS algorithm in this case. Indeed, we observe
that the greater this reduction, the larger the difference in runtime of the two
algorithms. The significant reduction in the case of SPIN is most likely due
to optimisations such as partial order reduction. The model in question is
a distributed system in which partial order reductions can lead to significant
reductions in the size of the state space.

As for the elevator, the deadlock check required the most memory: 336.9 MB
for the naïve algorithm and 395.4 MB for the FTS algorithm. These sizes
correspond to 933 276 states in the transition system explored by the naïve
algorithm and 1 069 840 states in the FTS. Here, the FTS algorithm requires
17% more memory, for a 14% increase in the number of states. Again, there
are 3% overhead for the BDDs representing sets of products.

9.4.5 Incremental benchmarks
While the previous experiments compared the FTS algorithm and the naïve
algorithm on a fixed number of products, we also conducted an experiment to
evaluate how each algorithm behaves when the number of products increases.
For this we used the CFDP model of the previous section and property (#1),
the deadlock check. We first verified the model restricted to 18 products, with
the following five features: Snd_min, Snd_min_ack, Recv_min, Recv_min_-
ack, and Reliable. We then reverified the model five times, each time adding one
feature in the following order: Recv_immediate_nak (24 products), Recv_de-
ferred_nak (30 products), Recv_asynch_nak (36 products), Snd_prompt_nak
(48 products), and Recv_prompt_nak (56 products).

Figure 9.10(a) shows the increase in runtime (in percent) for each added
feature. The x-axis shows the number of features and the number of products in
parentheses. More formally, the shown value is ∆n = runtime(n)−runtime(n−1)

runtime(n−1)

where n ∈ [6, 10] is the number of considered features and runtime(n) the
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6	  	  	  	  	  
(24)	  

7	  	  	  	  	  
(30)	  

8	  	  	  	  
(36)	  

9	  	  	  	  
(48)	  

10	  	  	  	  
(56)	  

snip	   4518%	   3%	   5%	   57%	   2%	  

enum	  (snip)	   954%	   7%	   10%	   85%	   7%	  

enum	  (spin)	   300%	   13%	   12%	   72%	   9%	  
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150%	  

200%	  

(a) Rate of growth of the runtime.
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snip	   4730%	   4%	   5%	   62%	   1%	  

enum	  (snip)	   1115%	   7%	   10%	   86%	   7%	  

enum	  (spin)	   895%	   7%	   11%	   84%	   8%	  
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(b) Rate of growth of the number of transitions.

Figure 9.10: Results of the incremental benchmarks on the CFDP model.

runtime to verify the model with n features. Figure 9.10(b) similarly shows
the increase in the number of fired transitions. Both figures are rather similar,
indicating the correlation between runtime and transitions fired.

For both measures, the increase when adding the sixth feature, Recv_im-
mediate_nak, is huge and off the charts. The reason for this increase is that
in the immediate mode, the receiver sends a NAK as soon as a loss is noticed.
This NAK itself can get lost, which leads to a large number of combinations for
the lost/received data segments and lost/received NAK messages. Without the
Recv_immediate_nak feature, the FTS has 16 801 states and the transition
systems of all products combined have 98 112, i.e., the FTS is 78% smaller.
When the feature is added, the FTS grows to 917 066 states (by 5300%) and
the transition systems to 1 192 023 states (by 1114%). Now the FTS is only
15% smaller. Basically, the states added by the Recv_immediate_nak feature
have a negative impact on the compactness of the FTS. This accounts for the
large increase in the state space explored by the FTS algorithm and shown
in Figure 9.10(b). The increase in the runtime shown in Figure 9.10(a) is a
consequence of this.

For the other features, the increase for the FTS algorithm is consistently
lower than for the naïve algorithm. For example, when the number of features
increases from eight to nine, the number of products increases from 36 to 48
and the runtime of the FTS algorithm grows only by 57%, while the runtime
of the naïve algorithm rises by 85% when implemented with SNIP and by 72%
when implemented SPIN. We conducted these incremental benchmarks also
for the other properties and other orders of features, observing similar results.
As the number of features increases, the runtime for the FTS algorithm grows
slower than that of the naïve algorithm. This indicates that the FTS algorithm
scales better with the number of features than the naïve algorithm.

Another way to analyse the data collected during the incremental bench-
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marks is to compare the rate at which the runtime increases to the rate at which
the number of products increases. For the algorithm to scale with the number
of features, its runtime should increase linearly in the number of features (i.e.,
logarithmically in the number of products), rather than exponentially. To test
this, we take the runtime for checking the model consisting of 24 products as
the baseline, and extrapolate the runtime for the models of 30, 36, 48 and 56
products in two ways.

Exponential. The runtime increases at the same rate as the number of prod-
ucts, i.e., by 25% for the increase to 30, by 50% for the increase to 36
and so on. This growth is exponential in the number of features.

Linear. The runtime increases at the same rate as log2 of the number of prod-
ucts, i.e., by 7% for the increase to 30, by 13% for the increase to 36 and
so on. This growth is linear in the number of features.

As the baseline we chose the runtime for the model of 24 products, because the
runtime for the model of 18 products (i.e., without the Recv_immediate_nak
feature) is an outlier for all three algorithms.

The result is shown in Figure 9.11, where we plot the projected runtimes as
well as the measured runtime for each algorithm and implementation. To make
the results easier to interpret, we further added a function that approximates
each line (in black). As can be seen clearly in these figures, the runtime of
the FTS algorithm increases at a rate that is between exponential and linear,
whereas that of the naïve algorithms increases at the exponential rate (whether
implemented with SNIP or with SPIN).

9.4.6 Discussion
These results show that the FTS algorithm is a viable approach for state space
reduction, in some cases leading to better performance than the script using
SPIN, a tool that has been under development for 20 years. There is, never-
theless, room for improvement of the implementation. Furthermore, we believe
that the state space reductions of SNIP and SPIN can reinforce each other,
opening an exciting area of future work. One step will be to extend the op-
timisations currently implemented in SPIN, such as partial order reduction,
to FTS. The FTS algorithm could then be integrated into SPIN. While such
a project will most likely be more expensive than the development of SNIP,
its prospects are promising. Moreover, the incremental benchmarks show that
while the FTS algorithm is an improvement over the naïve algorithm, its run-
time is not linear in the number of features. This would have to be the case
for the algorithm to scale with the number of features.

As for the threats to validity, all experiments were executed by an auto-
mated script running on a dedicated machine. Moreover, each reported value
is the average of three to five measures. This minimises the risks of flawed run-
time measures, e.g., due to other processes. Furthermore, the runtime reported
for the naïve algorithm is only the verification time. This removes the bias that
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6	  	  	  	  	  	  	  	  	  
(24)	  

7	  	  	  	  	  	  	  	  	  
(30)	  

8	  	  	  	  	  	  	  	  	  
(36)	  

9	  	  	  	  	  	  	  	  	  
(48)	  

10	  	  	  	  	  	  	  	  	  
(56)	  

Exponen4al	   5.08	   6.35	   7.62	   10.16	   11.85	  

Measured	   5.08	   5.24	   5.51	   8.66	   8.86	  

Linear	   5.08	   5.44	   5.73	   6.19	   6.43	  
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(a) FTS algorithm with SNIP.
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Exponen4al	   5.06	   6.33	   7.59	   10.12	   11.81	  

Measured	   5.06	   5.43	   5.95	   11.01	   11.75	  
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Figure 9.11: Growth of the runtime with increasing number of features.
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might have been caused by an inefficient implementation of the script iterating
through the products, generating the input files, deleting them, and so forth.

As to conclusion validity, from the obtained results it is clear that the
FTS algorithm is in most cases an improvement over the naïve algorithm,
both in terms of runtime and in terms of state space. The use of only three
models means that this is a quasi-experiment and that the extent to which it
generalises cannot be concluded from its results. Nevertheless, we used a large
number of properties, including both liveness and safety (mostly combinations
of both) and covering properties satisfied under various circumstances (i.e.,
violated by different sets of products). For the incremental benchmarks we
only considered a single model. It is thus also a quasi-experiment whose results
cannot necessarily be generalised. In addition to the model, the outcome can be
be influenced by the baseline time and the order in which the remaining features
are added to the model. The baseline was chosen such that the remaining
features did not increase the size of the model by more than 100%. For the
four added features, we executed the benchmarks in several orders, with similar
results: the increase of the FTS algorithm is between exponential and linear,
whereas the naïve algorithm increases exponentially.

9.5 Conclusion
We presented SNIP, a model checker that implements the semi-symbolic al-
gorithms of Chapter 6. Its modelling language, fPromela, is an extension of
Promela, the language of the popular model checker SPIN. fPromela uses anno-
tation rather than composition to model variability. Annotations in fPromela
are similar to #ifdefs in the C programming language. We showed that fPro-
mela and FTS are expressively equivalent languages.

SNIP was implemented from scratch. Although this was a time consuming
and risky undertaking, it has given us many insights into the use of the semi-
symbolic FTS algorithm as part of a model checker for a non-trivial language.
Experiments conducted with SNIP have shown that the FTS algorithm is gen-
erally faster than the naïve algorithm, and a viable approach for state space
reduction. In the case of the CFDP, we observed that the runtime of the naïve
algorithm increases exponentially with the number of features, unlike the FTS
algorithm, whose increase is between linear and exponential.
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Chapter 10

Review and Perspectives

“ It is common sense to take a method and try it. If it fails, admit it
frankly and try another. But above all, try something. ”Franklin D. Roosevelt, Looking Forward, 1933

The starting point for this work was the question: How can model checking be
accomplished in the presence of variability? We refined this vast question into
the three research questions addressed in this thesis. These questions cover
the modelling language, the model checking algorithms, and the practicality of
both of them. Our answers to these questions were exhibited over the preceding
two parts of the thesis. In this last part, we conclude the thesis with a review
of the results, and the challenges ahead.

In Section 10.1, we review our results and relate them to the research ques-
tions. This leads us to identify limitations of our work in Section 10.2 as well
as perspectives for future work in Section 10.3.

10.1 Answering the research questions
The motivation and initial driver of this thesis is the study of model checking
in the presence of variability. Part I concluded with a review of the state of
the art, in which we noted that this topic is largely untreated in the research
literature and that the few approaches targeting the problem have considerable
limitations. Most approaches do not consider features as first-class entities in
their models. Moreover, there is but one approach that specifically targets
model checking [Lauenroth et al., 2009], with rather inefficient algorithms.

As the question touches upon many topics, we decomposed it into three
research questions. Let us now look back at these questions and formulate
answers. The first research question is the most fundamental.

RQ1 How can the behaviour of an SPL be described formally, and what does
model checking of SPLs mean?
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In Chapter 4, we showed that by annotating transitions of a transition sys-
tem with feature expressions, we can model the behaviour of every product as
a transition system. If moreover, the features on the feature expressions are
linked to an FD, we model the behaviour of all valid products, which is essen-
tially that of the SPL. Our FTS formalism allows to do exactly this. Contrary
to existing formalisms, an execution of an FTS can be linked to one or more
products. This makes it possible to identify the products that exhibit certain
behavioural properties. Furthermore, features in FTS can be non-monotonic,
i.e., features can add or remove transitions (thereby adding or removing be-
haviours). This way, FTS can be exponentially more succinct than transition
systems. FTS are thus our answer to the first part of this research question.

As to the second part, there are several ways in which model checking of
SPLs can be understood. Since there have only been a few attempts to adapt
model checking techniques to SPLs, the most common view is that SPL model
checking corresponds to model checking of individual products. Analyses that
take variability into account (variability-aware analyses) have only recently
started to attract attention in the SPL and FOSD community [Apel et al.,
2011]. Our discussion of SPL model checking in Chapter 5 adheres to this latter
view: model checking an FTS corresponds to model checking the behaviour
of all the products in the SPL. This also meets our goal of applying model
checking during domain engineering, rather than application engineering. Since
a model check covers several products, a failed check needs to identify the
problematic products. In consequence, the Mc model checking problem is
defined as returning at least one violating product, and the ExtMc problem
as returning the full set of violating products. Properties for an SPL can be
specified in existing temporal logics, LTL and CTL. We adapted these logics
slightly: fLTL and fCTL allow the property to specify the products over which
it should hold.

Of course, these new decision problems bring with them algorithmic chal-
lenges, the subject of our second research question.

RQ2 Is SPL model checking tractable? If so, how?

In Chapters 6 and 7, we studied the complexity of the model checking problems
and gave algorithms for model checking SPLs modelled as FTS. The SPL model
checking problems are harder than the corresponding problems for transition
systems due to (i) the conciseness of the FTS and (ii) the fact that its behaviour
is defined in terms of the products allowed by the FD, which means that FTS
analyses have to solve at least one SAT problem. Hence, the Reachability
problem which is NL-Complete for transition systems becomes NP-Complete
for FTS. Both McfLTL and ExtMcfLTL are FPSPACE-Complete for FTS,
which is the same as for transition systems due to NPSPACE = PSPACE [Sav-
itch, 1970]. McfCTL is FNP-Complete and ExtMcfCTL is #P-Complete
whereas CTL model checking for transition systems is P-Complete.

In terms of algorithms, the features in an FTS lead to an exponential in-
crease in the algorithmic complexity compared to model checking algorithms for
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transition systems. Since FTS are exponentially more succinct than transition
systems, this exponential factor cannot be avoided. Nevertheless, experiments
have shown that our algorithms achieve considerable speedups and have prac-
tical advantages over the naïve procedure of using classical model checking on
every product. However, our experiments also showed that our algorithms are
not exponentially faster than the naïve procedure. This should have been the
case for our algorithms to scale linearly in the number of features.

The answer to the second research question is thus that the tractability
of SPL model checking depends mainly on the number of features in the be-
havioural model. Moreover, in Chapter 7, we have shown that features can be
considered to be a special kind of system variable. In practice, the exponential
factor due to the features is likely to be dwarfed by the size of the state space.
According to this view, SPL model checking is thus not inherently harder than
classical model checking.

RQ3 How can SPL model checking be applied in practice?

As shown in the introduction to Part III, the SPL model checking use case is
different from that of single systems model checking. Inputs and outputs of a
model checker have to be specified in terms of features. Furthermore, the model
checker has to support the quantifiers from fLTL and fCTL. Nevertheless, the
first implementation of our theory as part of a state-of-the-art model checker,
NuSMV, was relatively straightforward. In Chapter 7, we already showed that
the symbolic FTS model checking algorithm can be largely reduced to the one
for transition systems. Most of the implementation effort was thus spent on
the modelling language, fSMV. The semi-symbolic FTS algorithms, in contrast,
could not easily be implemented as part of an existing model checker, due to
the many changes that would be required throughout the code. Nevertheless,
we were able to implement an on-the-fly version of this algorithm as part of a
model checker for a non-trivial language, fPromela.

Although we did not study the use of SPL model checking techniques in
realistic industrial settings, we managed to show that implementations based
on tools or languages that are commonly used in industrial settings are pos-
sible. NuSMV is used in industrial settings [Chiappini et al., 2010], and our
extension thereof is rather conservative. Furthermore SNIP’s modelling lan-
guage, fPromela, combines Promela, a popular specification language, with
annotation-based variability, a common way to specify variability in indus-
trial product lines. These observations combined with the fact that SPL model
checking as seen in this thesis is the intuitive extension of classical model check-
ing to sets of systems, means that we do not see obstacles to the practical ap-
plicability of SPL model checking other than those that already exist for single
system model checking. One the contrary, the return on investment of model
checking is likely to be higher for SPLs than single systems because bugs (and
their corrections) affect several (possibly many) systems, rather than one.
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10.2 Limitations

To address the challenge of efficient reasoning noted in the introduction, the
FTS model checking algorithms should have been linear in the number of fea-
tures. However, all our algorithms are exponential in the number of features.
Moreover, we did not observe exponential speedups over the naïve algorithms
in our experiments. Concretely, this means that the algorithms proposed herein
will not scale with the number of features. This can be seen as a limitation.

However, this limitation corresponds to a theoretical limit. ByTheorem 4.16,
a transition system with the same behaviours as an FTS is exponentially larger
than the FTS. Since the complexity of our model checking algorithms is that
of those for transition systems multiplied by the same exponential factor, it
is impossible for a model checking algorithm to avoid it. The only way to
overcome this would be to restrict the algorithm to subsets of the FTS language,
or accept unsound or incomplete algorithms. Such approaches were judged to
be out of scope for this thesis, and will be part of our future work.

Another limitation of the work presented in this thesis is its validation. We
just considered four systems for our experiments, and all but one of them were
modelled by ourselves. In addition, the results obtained in the three experi-
ments conducted with SNIP had different factors for speedup and state space
reduction. As a consequence of this (already stated in the respective sections),
the power of these experiments to predict algorithmic performance on other
models is rather low. However, we believe that these experiments are sufficient
for this thesis, which is mostly concerned with foundational results. The goal
of the implementations was not only to conduct experiments, but to show the
viability and practicality of the proposed theories, which was demonstrated
independently of the experiments.

10.3 Perspectives

The are several avenues for future research.
A first direction, the most promising and important in our view, is to inves-

tigate methods for compositional reasoning. In [Fisler and Krishnamurthi,
2001,Li et al., 2002b], the authors propose a compositional approach for CTL
model checking, which is linear in the number of features. However, the ap-
proach is rather restrictive as to the kind of models that can be analysed (e.g.,
monotonic features only). A first step towards compositional reasoning for
FTS would be to adapt these algorithms to CTL and LTL model checking of
FTS. In the long term, we believe that it is possible to identify necessary and
sufficient conditions on the changes made by a feature in an FTS for it to
qualify for compositional reasoning. Since it is not likely that all features will
be analysable compositionally, we have to investigate algorithms that combine
compositional and non-compositional approaches, such as those described in
Chapters 6 and 7.
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Another direction for future work is closely linked to the previous one: to
investigate modelling languages that combine the compositional and an-
notative paradigms from FOSD. While developing the models used in our
benchmarks, we noticed the advantages and disadvantages of each paradigm.
Annotations are good for cross-cutting features, which are hard to modularise
or hard to understand once modularised. Annotations are also excellent to
manage detailed feature interactions, i.e., cases in which a feature operates
differently when another feature is present. Compositional approaches, on the
other hand, have the advantage of making a first step towards compositional
reasoning (as it is much easier to judge the impact a feature if it is specified
as a change, rather than if it is spread over the code). They also lend them-
selves well to modelling features which are independent of other features. In
the ideal case, a modelling language should thus offer both mechanisms. A
related idea for future work would be to develop model transformations that
can convert compositional style models into annotative models and the other
way round, as well as methods to check that two such models are equivalent
(e.g., bisimulation equivalent). A transformation from fPromela to fSMV, for
instance, would allow us to compare the performance of the semi-symbolic and
fully symbolic algorithms more closely.

Another general direction for future work is to investigate how methods
currently used in classical model checking can be used for SPL model check-
ing. As mentioned in Section 9.4, an optimisation technique that might be
beneficial for FTS is partial order reduction. This technique reduces the
number of states to explore by identifying redundant interleavings of paral-
lel processes. Furthermore, a number of state space reduction techniques are
based on abstraction and refinement. They require notions such as sim-
ulation and bisimulation, which could be defined and checked on the level of
FTS. A related approach is three-valued model checking of partial models, by
extending FTS with allowed/required modalities as discussed in Section 4.4.3.

In addition to investigating optimisation techniques, another direction for
future work would be to extend the expressiveness of FTS. In its current state,
the FTS semantics is defined for individual products. It does not cover the case
where a product changes at runtime, i.e., during the execution of the model,
by activating or deactivating features. This is the case for self-adaptive
systems or dynamic product lines [Cheng et al., 2009, Classen et al., 2008b].
Moreover, an FTS always references a single FD. A possible extension would
be to make FDs first-class entities in FTS, so that more then one FD can
be referenced in the model, and that an FD can be instantiated multiple times.
In the case of the CFDP discussed in Section 9.4.4, for instance, we used the
same FD for both the sender and the receiver. Conceptually, however, sender
and receiver are separate entities, and the model should refer to two instances
of the CFDP FD, one for the sender and one for the receiver.

As we have shown in this thesis, variability is largely an orthogonal con-
cern to existing concerns in model checking. For example, most SPLs in the
automotive domain have real-time constraints. To be able to handle such
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cases, FTS could be extended with a notion of time, as done already by several
methods in classical model checking of single systems. Similarly, FTS could
be extended with probabilities to allow for modelling of uncertainty. The
algorithmic principles proposed herein could also be applied to software model
checking, e.g., in JavaPathfinder [Visser et al., 2000]. A related avenue for
future work is to abstract FTS or fPromela models from the source code of an
SPL, e.g., C code with #ifdefs, similar to the way Promela is extracted from
Java code in Bandera [Corbett et al., 2000].

There are thus many avenues for future research. In this context, the can-
didate has contributed to the writing of three research projects: Tournesol,
an accepted Belgium/France collaboration project; an accepted FNRS PhD
Project; and CLEVER, an EU FP7 STREP that is currently in preparation.
All these projects target the extension of the results obtained in this thesis.
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“ Many have imagined republics and principalities which have never
been seen or known to exist in reality; for how we live is so far
removed from how we ought to live, that he who abandons what
is done for what ought to be done, will rather bring about his own
ruin than his preservation. ”Niccolò Machiavelli, The Prince, 1513

In this thesis, we sought to answer the question How can model checking be
accomplished in the presence of variability? The question is rather vast, and
it was indeed our goal to give a complete treatment of the problem, from
fundamental to practical issues. The question can be divided into three parts.

The most fundamental one is to provide a formal representation for the be-
haviour of an SPL. For this, we proposed Featured Transition Systems (FTS), a
semantic model for SPL behaviour. FTS are transition systems in which tran-
sitions are linked to the features of an SPL by the means of feature expressions.
From the FTS, one can obtain the behaviour of any product as a transition
system. An FTS is thus a concise model for the behaviour of the entire SPL.
An FTS comes equipped with a feature diagram which expresses the set of
valid products. This allows for separation of concerns as variability and be-
haviour are specified independently. Furthermore, the feature diagram allows
the FTS to capture information about products that are known to be problem-
atic. We studied three mechanisms for expressing variability in FTS, labelling
transitions with feature expressions, labelling transitions with single features
linked to a feature diagram, and labelling transitions with single features and
the ability to specify priorities between transitions. We showed that all of these
types of FTS are exponentially more succinct than transition systems.

SPL model checking, as seen in this thesis, is as a direct generalisation of
classical model checking of single systems. Our goal was to apply model check-
ing to SPLs with as few changes as possible to the concepts and notations.
The result is a model checking approach that, at least to its end-user, is very
similar to single system model checking. In consequence, she can apply her
knowledge of existing model checking approaches to SPL model checking, she
can interpret model checking results similar to the way she interpreted results
in classical model checking, and she can potentially reuse or extend existing
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models. This philosophy is reflected in many elements of our theory. For ex-
ample, the semantics of FTS is defined in terms of transition systems. Features
themselves are not part of the behaviour, but rather changes to the behaviour.

This philosophy is also reflected in our definition of the model checking prob-
lems. Our view is that properties for an SPL should be specified in existing
temporal logics, LTL and CTL. In this thesis, we proposed slight extensions to
these logics: feature LTL and feature CTL. Properties in these logics are a com-
bination of an LTL (resp. CTL) property with a quantifier that expresses over
which products the property should hold. Intuitively, model checking an FTS
against such a property is equivalent to model checking all products covered by
the quantifier, or all products of the product line if there is no quantifier. More
precisely, we identified and formalised two model checking problems for SPLs,
Mc and ExtMc. Both return true if all products satisfy the property. In case
the property is violated, Mc returns at least one violating product, whereas
ExtMc returns the full set of violating and the full set of satisfying products.
The second model checking problem, ExtMc is fundamentally different from
classical model checking in single systems in that it produces information about
several instances of the model. It can be seen as a form of generalised model
checking, in which we compute the values of model parameters (the features)
for which the property holds.

New model checking algorithms are required to compute these decision prob-
lems. The second part of the answer to the initial question is thus concerned
with algorithms and their efficiency. Model checking algorithms perform a
search in the state space of the system. The largest impact on the runtime of
these algorithms is the size of the state space, which is exponential in the num-
ber of system variables and processes, a problem known as state explosion. In
model checking, one commonly distinguishes two types of algorithm, explicit
and symbolic. In an explicit algorithm, the search in the state space visits
system states one by one. In a symbolic algorithm, in contrast, symbolic data
structures are used to represent sets of states. Computations are performed
over these data structures, which means that the algorithm manipulates sets
of states, rather than single states. Symbolic algorithms can, to some extent,
address the state explosion problem. In SPLs, this problem is exacerbated by
the fact that the number of products is potentially huge; exponential, in fact.
Given n features, the number of products to be checked is O(2n).

For SPL model checking, we proposed a new type of algorithm, which we
called semi-symbolic. This algorithm represents the state space explicitly, and
keeps information about products in a symbolic data structure. Its goal is to
reduce the state space by exploiting similarities between the different products
of the SPL. This algorithm targets the fLTL model checking problems, McfLTL
and ExtMcfLTL. It follows the well-established approach of automata-based
model checking [Vardi and Wolper, 1986]. Two suitable symbolic data struc-
tures for sets of products were presented: an encoding based on recording re-
quired and excluded features, and an encoding based on Boolean functions. For



Conclusion 189

the fCTL model checking problems, McfCTL and ExtMcfCTL, we proposed
a fully symbolic algorithm. We showed how this algorithm can be reduced to
classical symbolic model checking of specially crafted transition systems. The
symbolic algorithm puts the semi-symbolic algorithm into perspective, high-
lighting its position between fully explicit and symbolic model checking algo-
rithms. In addition to these FTS algorithms, we also provided a fully explicit
algorithm for the same decision problems, the naïve algorithm. It consists in
model checking each product separately and serves as a baseline in the experi-
ments we conducted.

We carried out a thorough study of the computational complexity of the
decision problems and the algorithms solving them. We showed that problems
that are computationally easy for transition systems are hard for FTS. The
Reachability problem, for instance, is NL-Complete for transition systems
and NP-Complete for FTS. Both McfLTL and ExtMcfLTL are FPSPACE-
Complete for FTS, compared to PSPACE-Complete for classical model check-
ing of transition systems. The similar complexity is due to NPSPACE =
PSPACE [Savitch, 1970]. The model checking problems for fCTL are harder
than the corresponding problem for transition systems. McfCTL is FNP-
Complete and ExtMcfCTL is #P-Complete whereas CTL model checking for
transition systems is P-Complete. As to the algorithms, all our FTS model
checking algorithms have the complexity of the corresponding problem for sin-
gle systems, multiplied by an exponential factor O(2n). The FTS algorithms
are thus not of lower computational complexity than the naïve algorithms.
With experiments we show that in practice, our FTS algorithms are generally
more efficient than the naïve algorithm and have other practical advantages.

This leads us to the third part of the answer to the initial question. While
the first two parts were concerned with theory, the last part provides an as-
sessment of the practical applicability of these theories. Concretely, we put
our theoretical results into practice by implementing them as part of model
checking tools. The implementation of these tools provides insights into the
applicability of the theories, whereas the tools themselves allow us to evaluate
the efficiency of our algorithms through experiments. Since the use case of SPL
model checking differs from the one in single systems, we had to re-implement
and change rather than reuse existing model checkers. The principal difference
between SPL model checking and single systems model checking is variability,
expressed in terms of features. Our model checking tools recognise them as a
first-class concept; in the modelling language, as well as in the presentation of
model checking results. In this regard, our model checkers are currently unique.
All tools are available (open source) at the FTS website [Classen, 2010b].

The fully symbolic FTS algorithms were implemented with the fNuSMV
toolset. The modelling language used by this toolset is fSMV, a feature-oriented
extension of the SMV language proposed in [Plath and Ryan, 2001]. It is based
on superimposition: features are specified individually as changes to a base sys-
tem. Features are composed to create the model of a product. We proposed
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a new form of composition. It creates a symbolic FTS, to which our sym-
bolic model checking algorithm can be applied. Since the fully symbolic model
checking algorithm for FTS can largely be reduced to the classical algorithm
for transition systems, we implemented it by extending the state-of-the-art
symbolic model checker NuSMV [Cimatti et al., 2000]. We showed that fSMV
and FTS are expressively equivalent modelling languages. The fNuSMV toolset
allowed us to conduct experiments showing that the FTS algorithms are orders-
of-magnitude faster than the naïve algorithm. NuSMV uses BDDs to encode
sets of states symbolically. The ordering of variables can have a significant im-
pact on their size, and hence on the runtime of the algorithm. Our algorithm
requires one variable ordering for all products, whereas the naïve algorithm re-
quires O(2n) orderings. The improvement in speedup can thus be attributed to
the fact that the variable ordering used by the FTS algorithm can be optimised.

While the fully symbolic FTS algorithm can largely be reduced to the one
for transition systems, this is not the case for the semi-symbolic algorithm. The
model checker SNIP, which uses the semi-symbolic FTS algorithms, was thus
implemented from scratch. SNIP’s modelling language is fPromela, an exten-
sion of Promela, the language of the popular model checker SPIN [Holzmann,
2004]. Variability in fPromela is modelled by guarding statements with feature
expressions. Guards in fPromela are similar to #ifdefs in the C program-
ming language and other annotation-based techniques widely used in practice.
Moreover, behaviour in fPromela is specified in a procedural style. We showed
that fPromela and FTS are expressively equivalent languages. Furthermore,
SNIP has built-in support for feature diagrams, using our TVL modelling lan-
guage [Classen et al., 2011a]. Experiments conducted with SNIP have shown
that the FTS algorithm is generally faster than the naïve algorithm, and a
viable approach for state space reduction.

We have shown that model checking can be accomplished in the presence of
variability. Our proposal is based on FTS, a semantic model for SPL behaviour,
and implemented in two model checking tools, fNuSMV and SNIP. The contri-
butions made in this thesis do not only apply to SPLs, or variability-intensive
systems. As noted before, the feature expression returned by our algorithm
reveals the problematic features, which generally helps to identify the frag-
ment of the model which is responsible. This means that even for a system
without variability, our algorithm can be used to determine whether a piece
of code, or a function, serves its intended purpose. If this purpose can be
expressed by a temporal property and the piece of code is annotated by a fea-
ture, our algorithm can be used to determine whether it does indeed play a
role in the satisfaction of this property. Moreover, the idea of an algorithm
combining symbolic execution with explicit state-space exploration does not
have to be restricted to features and Boolean variables. As discussed before,
the algorithm can be seen as a variation of generalised model checking. The
model is parameterised in some way (Boolean parameters in our case), and the
problem consists in calculating a Boolean function over the parameters which
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characterises the parameter values for which the model violates a property. The
ExtMc problem is then an optimisation problem, which consists in finding the
function which characterises violating and satisfying parameter values. Seen
this way, it becomes clear that the parameters do not have to be features of a
variability-intensive system.

We identified two principal challenges for model checking in the presence
of variability: scaleable modelling and efficient reasoning. Both are due to the
complexity created by the huge number of potential products. We showed that
FTS are exponentially more succinct than transition systems, which means
that they do scale with the number of features, thereby solving the scaleabil-
ity challenge. To solve the challenge of efficient reasoning, the model checking
algorithms would have to be exponentially more efficient than classical algo-
rithms executed over every product (i.e., the naïve algorithm). However, the
FTS model checking algorithms are of the same algorithmic complexity as the
naïve algorithms. While our experiments showed that they can achieve order-
of-magnitude improvements over the naïve algorithm, these improvements are
not exponential. The analysis of the problem complexity has shown that the
SPL model checking problems are indeed harder. Significant improvements in
algorithmic performance, not least algorithms that are linear in the number of
features, can only be achieved at the expense of the modelling language, that
is, by restricting algorithms to models that are less powerful than FTS. Such
algorithms could be combined with our FTS algorithms to yield an algorithm
for FTS in general. This is one of the many avenues for future work. Among
the contributions of this thesis, the most important is the description and anal-
ysis of the SPL model checking problem itself. Our goal is that FTS become
to SPL model checking what transition systems are to single systems model
checking, the semantic model upon which theories are built. We hope that we
managed to prepare the ground for future research into SPL model checking.
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