User menu

Scaling fields in the two-dimensional Abelian sandpile model.

Bibliographic reference Mahieu, Stéphane ; Ruelle, Philippe. Scaling fields in the two-dimensional Abelian sandpile model.. In: Physical review. E, Statistical, nonlinear, and soft matter physics, Vol. 64, no. 6 Pt 2, p. 066130 (2001)
Permanent URL http://hdl.handle.net/2078.1/9007
  1. Bak Per, Tang Chao, Wiesenfeld Kurt, Self-organized criticality: An explanation of the 1/fnoise, 10.1103/physrevlett.59.381
  2. P. Bak, How Nature Works—the Science of Self-Organized Criticality (1997)
  3. Jensen Henrik Jeldtoft, Self-Organized Criticality : Emergent Complex Behavior in Physical and Biological Systems, ISBN:9780511622717, 10.1017/cbo9780511622717
  4. Dhar Deepak, The Abelian sandpile and related models, 10.1016/s0378-4371(98)00493-2
  5. Dhar Deepak, Self-organized critical state of sandpile automaton models, 10.1103/physrevlett.64.1613
  6. Majumdar S.N., Dhar Deepak, Equivalence between the Abelian sandpile model and the q→0 limit of the Potts model, 10.1016/0378-4371(92)90447-x
  7. Majumdar S N, Dhar D, Height correlations in the Abelian sandpile model, 10.1088/0305-4470/24/7/008
  8. Ivashkevich E.V., Priezzhev V.B., Introduction to the sandpile model, 10.1016/s0378-4371(98)00012-0
  9. J.G. Brankov, J. Phys. I, 3, 1729 (1993)
  10. Ivashkevich E V, Boundary height correlations in a two-dimensional Abelian sandpile, 10.1088/0305-4470/27/11/014
  11. Priezzhev V. B., Structure of two-dimensional sandpile. I. Height probabilities, 10.1007/bf02188212
  12. Dhar D, Majumdar S N, Abelian sandpile model on the Bethe lattice, 10.1088/0305-4470/23/19/018
  13. PÉREZ CONRAD J., CORRAL ÁLVARO, DÍAZ-GUILERA ALBERT, CHRISTENSEN KIM, ARENAS ALEX, ON SELF-ORGANIZED CRITICALITY AND SYNCHRONIZATION IN LATTICE MODELS OF COUPLED DYNAMICAL SYSTEMS, 10.1142/s0217979296000416
  14. Manna S. S., Kiss L�szl� B., Kert�sz J�nos, Cascades and self-organized criticality, 10.1007/bf01027312
  15. Tsuchiya Tomoko, Katori Makoto, Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model, 10.1103/physreve.61.1183
  16. Vázquez Alexei, Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule, 10.1103/physreve.62.7797
  17. Saleur H., Polymers and percolation in two dimensions and twisted N = 2 supersymmetry, 10.1016/0550-3213(92)90657-w
  18. Gurarie V., Logarithmic operators in conformal field theory, 10.1016/0550-3213(93)90528-w
  19. Gaberdiel Matthias R., Kausch Horst G., A rational logarithmic conformal field theory, 10.1016/0370-2693(96)00949-5
  20. Gurarie V., Flohr M., Nayak C., The Haldane-Rezayi quantum Hall state and conformal field theory, 10.1016/s0550-3213(97)00351-9
  21. Gaberdiel Matthias R., Kausch Horst G., A local logarithmic conformal field theory, 10.1016/s0550-3213(98)00701-9
  22. Kausch Horst G., Symplectic fermions, 10.1016/s0550-3213(00)00295-9
  23. Ivashkevich E V, Correlation functions of dense polymers andc=-2conformal field theory, 10.1088/0305-4470/32/9/015
  24. Spanier Jerome, Oldham Keith B., Romer Robert H., An Atlas of Functions, 10.1119/1.15377
  25. B. M. McCoy, The Two-Dimensional Ising Model (1973)