User menu

NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment.

Bibliographic reference Moon, Eui Jung ; Sonveaux, Pierre ; Porporato, Paolo ; Danhier, Pierre ; Gallez, Bernard ; et. al. NADPH oxidase-mediated reactive oxygen species production activates hypoxia-inducible factor-1 (HIF-1) via the ERK pathway after hyperthermia treatment.. In: Proceedings of the National academy of sciences of the United States of America, Vol. 107, no. 47, p. 20477-20482 (2010)
Permanent URL http://hdl.handle.net/2078.1/88185
  1. Song Chang W., Park Heonjoo, Griffin Robert J., Improvement of Tumor Oxygenation by Mild Hyperthermia, 10.1667/0033-7587(2001)155[0515:iotobm]2.0.co;2
  2. Vujaskovic Z., Song C. W., Physiological mechanisms underlying heat-induced radiosensitization, 10.1080/02656730310001619514
  3. Oleson J. R., Eugene Robertson Special Lecture Hyperthermia from the clinic to the laboratory: a hypothesis, 10.3109/02656739509022467
  4. Brizel, Cancer Research, 56, 5347 (1996)
  5. Vujaskovic Z., Rosen E. L., Blackwell K. L., Jones E. L., Brizel D. M., Prosnitz L. R., Samulski T. V., Dewhirst M. W., Ultrasound guided pO 2 measurement of breast cancer reoxygenation after neoadjuvant chemotherapy and hyperthermia treatment, 10.1080/0265673031000121517
  6. Jones E. L., Thermochemoradiotherapy Improves Oxygenation in Locally Advanced Breast Cancer, 10.1158/1078-0432.ccr-04-0133
  7. Jones Ellen L., Oleson James R., Prosnitz Leonard R., Samulski Thaddeus V., Vujaskovic Zeljko, Yu Daohai, Sanders Linda L., Dewhirst Mark W., Randomized Trial of Hyperthermia and Radiation for Superficial Tumors, 10.1200/jco.2005.05.520
  8. Hauck M. L., Phase I Trial of Doxorubicin-Containing Low Temperature Sensitive Liposomes in Spontaneous Canine Tumors, 10.1158/1078-0432.ccr-06-0226
  9. Ponce Ana M., Vujaskovic Zeljko, Yuan Fan, Needham David, Dewhirst Mark W., Hyperthermia mediated liposomal drug delivery, 10.1080/02656730600582956
  10. Ponce A. M., Viglianti B. L., Yu D., Yarmolenko P. S., Michelich C. R., Woo J., Bally M. B., Dewhirst M. W., Magnetic Resonance Imaging of Temperature-Sensitive Liposome Release: Drug Dose Painting and Antitumor Effects, 10.1093/jnci/djk005
  11. Shakil Abdus, Osborn James L, Song Chang W, Changes in oxygenation status and blood flow in a rat tumor model by mild temperature hyperthermia, 10.1016/s0360-3016(98)00516-1
  12. Tamulevicius P, Luscher G, Streffer C, Effects on intermediary metabolism in mouse tissues by Ro-03-8799, 10.1038/bjc.1987.195
  13. Kelleher D. K., Engel T., Vaupel P. W., Changes in microregional perfusion, oxygenation, ATP and lactate distribution in subcutaneous rat tumours upon water-filtered IR-A hyperthermia, 10.3109/02656739509022460
  14. Streffer Christian, Review: Metabolic changes during and after hyperthermia, 10.3109/02656738509029295
  15. Vaupel Peter W., Kelleher Debra K., Pathophysiological and vascular characteristics of tumours and their importance for hyperthermia: Heterogeneity is the key issue, 10.3109/02656731003596259
  16. Covello Kelly L., Simon M.Celeste, HIFs, Hypoxia, and Vascular Development, Current Topics in Developmental Biology (2004) ISBN:9780121531621 p.37-54, 10.1016/s0070-2153(04)62002-3
  17. Rankin E B, Giaccia A J, The role of hypoxia-inducible factors in tumorigenesis, 10.1038/cdd.2008.21
  18. Semenza Gregg L., Regulation of cancer cell metabolism by hypoxia-inducible factor 1, 10.1016/j.semcancer.2008.11.009
  19. Semenza Gregg L., Targeting HIF-1 for cancer therapy, 10.1038/nrc1187
  20. Moon Eui Jung, Brizel David M., Chi Jen–Tsan Ashley, Dewhirst Mark W., The Potential Role of Intrinsic Hypoxia Markers as Prognostic Variables in Cancer, 10.1089/ars.2007.1623
  21. Semenza G. L., Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis, 10.1182/blood-2009-05-189985
  22. Berra E., HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1  in normoxia, 10.1093/emboj/cdg392
  23. Forsythe J A, Jiang B H, Iyer N V, Agani F, Leung S W, Koos R D, Semenza G L, Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1., 10.1128/mcb.16.9.4604
  24. Kim Jung-whan, Tchernyshyov Irina, Semenza Gregg L., Dang Chi V., HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia, 10.1016/j.cmet.2006.02.002
  25. Jackson I. L., Jackson I. L., Batinic-Haberle I., Sonveaux P., Dewhirst M. W., Vujaskovic Z., ROS production and angiogenic regulation by macrophages in response to heat therapy, 10.1080/02656730600594027
  26. Katschinski Dörthe M., Le Lu, Heinrich Daniel, Wagner Klaus F., Hofer Thomas, Schindler Susann G., Wenger Roland H., Heat Induction of the Unphosphorylated Form of Hypoxia-inducible Factor-1α Is Dependent on Heat Shock Protein-90 Activity, 10.1074/jbc.m110377200
  27. Wartenberg Maria, Gronczynska Sabina, Bekhite Mohamed M., Saric Tomo, Niedermeier Wilhelm, Hescheler J�rgen, Sauer Heinrich, Regulation of the multidrug resistance transporter P-glycoprotein in multicellular prostate tumor spheroids by hyperthermia and reactive oxygen species, 10.1002/ijc.20596
  28. Ferrara Napoleone, Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, 10.1210/er.2003-0027
  29. Li Fang, Sonveaux Pierre, Rabbani Zahid N., Liu Shanling, Yan Bin, Huang Qian, Vujaskovic Zeljko, Dewhirst Mark W., Li Chuan-Yuan, Regulation of HIF-1α Stability through S-Nitrosylation, 10.1016/j.molcel.2007.02.024
  30. Koch Cameron J., [1] Measurement of absolute oxygen levels in cells and tissues using oxygen sensors and 2-nitroimidazole EF5, Methods in Enzymology (2002) ISBN:9780121822552 p.3-31, 10.1016/s0076-6879(02)52003-6
  31. Cao Yiting, Li Chuan-Yuan, Moeller Benjamin J., Yu Daohai, Zhao Yulin, Dreher Matthew R., Shan Siqing, Dewhirst Mark W., Observation of Incipient Tumor Angiogenesis That Is Independent of Hypoxia and Hypoxia Inducible Factor-1 Activation, 10.1158/0008-5472.can-04-4553
  32. Jordan Bénédicte F, Sonveaux Pierre, Feron Olivier, Grégoire Vincent, Beghein Nelson, Gallez Bernard, Nitric oxide–mediated increase in tumor blood flow and oxygenation of tumors implanted in muscles stimulated by electric pulses, 10.1016/s0360-3016(02)04505-4
  33. Wang G. L., Jiang B. H., Rue E. A., Semenza G. L., Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension., 10.1073/pnas.92.12.5510
  34. Moeller Benjamin J, Cao Yiting, Li Chuan Y, Dewhirst Mark W, Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors, 10.1016/s1535-6108(04)00115-1
  35. Batinić-Haberle Ines, Rebouças Júlio S., Spasojević Ivan, Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential, 10.1089/ars.2009.2876
  36. Mansfield Kyle D., Guzy Robert D., Pan Yi, Young Regina M., Cash Timothy P., Schumacker Paul T., Simon M. Celeste, Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-α activation, 10.1016/j.cmet.2005.05.003
  37. Goyal Parag, Weissmann Norbert, Grimminger Friedrich, Hegel Cornelia, Bader Lucius, Rose Frank, Fink Ludger, Ghofrani Hossein A, Schermuly Ralph T, Schmidt Harald H.H.W, Seeger Werner, Hänze Jörg, Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species, 10.1016/j.freeradbiomed.2004.02.071
  38. Choi Jung-A, Lee Jin-Wook, Kim Hyunju, Kim Eun-Young, Seo Ji-Min, Ko Jesang, Kim Jae-Hong, Pro-survival of estrogen receptor-negative breast cancer cells is regulated by a BLT2–reactive oxygen species-linked signaling pathway, 10.1093/carcin/bgp203
  39. Segal Anthony W., Abo Arie, The biochemical basis of the NADPH oxidase of phagocytes, 10.1016/0968-0004(93)90051-n
  40. Adachi Y, Shibai Y, Mitsushita J, Shang W H, Hirose K, Kamata T, Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6, 10.1038/onc.2008.133
  41. Han Song Iy, Oh Su Young, Jeon Won Je, Kim Jung Mo, Lee Jun Hyuk, Chung Hae Young, Choi Yung Hyun, Yoo Mi Ae, Kim Han Do, Kang Ho Sung, Mild heat shock induces cyclin D1 synthesis through multiple Ras signal pathways, 10.1016/s0014-5793(02)02459-6
  42. Shin Mi Hee, Moon Young Ji, Seo Jo-Eun, Lee Youngae, Kim Kyu Han, Chung Jin Ho, Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression, 10.1016/j.freeradbiomed.2007.10.053
  43. Favata Margaret F., Horiuchi Kurumi Y., Manos Elizabeth J., Daulerio Andrea J., Stradley Deborah A., Feeser Wendi S., Van Dyk Drew E., Pitts William J., Earl Richard A., Hobbs Frank, Copeland Robert A., Magolda Ronald L., Scherle Peggy A., Trzaskos James M., Identification of a Novel Inhibitor of Mitogen-activated Protein Kinase Kinase, 10.1074/jbc.273.29.18623
  44. Cairns R. A., Papandreou I., Sutphin P. D., Denko N. C., Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy, 10.1073/pnas.0611662104
  45. Wigfield S M, Winter S C, Giatromanolaki A, Taylor J, Koukourakis M L, Harris A L, PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer, 10.1038/sj.bjc.6604356
  46. Batinić-Haberle Ines, Liochev Stefan I., Spasojević Ivan, Fridovich Irwin, A Potent Superoxide Dismutase Mimic: Manganese β-Octabromo-meso-tetrakis-(N-methylpyridinium- 4-yl) Porphyrin, 10.1006/abbi.1997.0157
  47. Bristow Robert G., Hill Richard P., Hypoxia and metabolism: Hypoxia, DNA repair and genetic instability, 10.1038/nrc2344
  48. Harada H, Kizaka-Kondoh S, Li G, Itasaka S, Shibuya K, Inoue M, Hiraoka M, Significance of HIF-1-active cells in angiogenesis and radioresistance, 10.1038/sj.onc.1210556
  49. Song Xianrang, Liu Xianxi, Chi Weiling, Liu Yonglei, Wei Ling, Wang Xingwu, Yu Jinming, Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1α gene, 10.1007/s00280-006-0224-7
  50. Brown L. M., Reversing Hypoxic Cell Chemoresistance in Vitro Using Genetic and Small Molecule Approaches Targeting Hypoxia Inducible Factor-1, 10.1124/mol.105.015743
  51. Sullivan R., Pare G. C., Frederiksen L. J., Semenza G. L., Graham C. H., Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity, 10.1158/1535-7163.mct-08-0198
  52. Liu, Cancer Science, 99, 121 (2008)
  53. Yuan, Journal of Nuclear Medicine, 47, 989 (2006)
  54. Rabbani Zahid N., Spasojevic Ivan, Zhang Xiuwu, Moeller Benjamin J., Haberle Sinisa, Vasquez-Vivar Jeannette, Dewhirst Mark W., Vujaskovic Zeljko, Batinic-Haberle Ines, Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP5+, via suppression of oxidative stress in a mouse model of breast tumor, 10.1016/j.freeradbiomed.2009.07.001
  55. Schroeder Thies, Yuan Hong, Viglianti Benjamin L., Peltz Cathryn, Asopa Shubha, Vujaskovic Zeljko, Dewhirst Mark W., Spatial Heterogeneity and Oxygen Dependence of Glucose Consumption in R3230Ac and Fibrosarcomas of the Fischer 344 Rat, 10.1158/0008-5472.can-04-3900