User menu

Prediction of chaotic dynamics in sheared liquid crystalline polymers.

Bibliographic reference Grosso, M ; Keunings, Roland ; Crescitelli, S ; Maffettone, P L. Prediction of chaotic dynamics in sheared liquid crystalline polymers.. In: Physical review letters, Vol. 86, no. 14, p. 3184-7 (2001)
Permanent URL
  1. S. Z. Hess, Naturforsch. A, 31, 1034 (1976)
  2. M. Doi, J. Polym. Sci. Polym. Phys, 19, 229 (1981)
  3. M. Doi, The Theory of Polymer Dynamics (1986)
  4. Marrucci G., Maffettone P. L., A description of the liquid-crystalline phase of rodlike polymers at high shear rates, 10.1021/ma00200a045
  5. Larson R. G., Arrested tumbling in shearing flows of liquid-crystal polymers, 10.1021/ma00219a020
  6. Mewis Jan, Mortier Martine, Vermant Jan, Moldenaers Paula, Experimental Evidence for the Existence of a Wagging Regime in Polymeric Liquid Crystals, 10.1021/ma961146e
  7. Bandyopadhyay Ranjini, Basappa Geetha, Sood A. K., Observation of Chaotic Dynamics in Dilute Sheared Aqueous Solutions of CTAT, 10.1103/physrevlett.84.2022
  8. W. Maier, Naturforsch. A, 14, 882 (1959)
  9. SEYDEL R., TUTORIAL ON CONTINUATION, 10.1142/s0218127491000026
  10. E. J. Doedel, AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (1997)
  11. Faraoni V., Grosso M., Crescitelli S., Maffettone P. L., The rigid-rod model for nematic polymers: An analysis of the shear flow problem, 10.1122/1.551005
  12. Feigenbaum Mitchell J., Quantitative universality for a class of nonlinear transformations, 10.1007/bf01020332
  13. Takens Floris, Detecting strange attractors in turbulence, Lecture Notes in Mathematics (1981) ISBN:9783540111719 p.366-381, 10.1007/bfb0091924
  14. Sauer Tim, Yorke James A., Casdagli Martin, Embedology, 10.1007/bf01053745
  15. Hegger Rainer, Kantz Holger, Schreiber Thomas, Practical implementation of nonlinear time series methods: The TISEAN package, 10.1063/1.166424
  16. Fraser Andrew M., Swinney Harry L., Independent coordinates for strange attractors from mutual information, 10.1103/physreva.33.1134
  17. Liebert W., Schuster H.G., Proper choice of the time delay for the analysis of chaotic time series, 10.1016/0375-9601(89)90169-2
  18. Kennel Matthew B., Brown Reggie, Abarbanel Henry D. I., Determining embedding dimension for phase-space reconstruction using a geometrical construction, 10.1103/physreva.45.3403
  19. Kantz Holger, A robust method to estimate the maximal Lyapunov exponent of a time series, 10.1016/0375-9601(94)90991-1
  20. Wiggins Stephen, Mazel David S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, 10.1063/1.4822950
  21. P. Grassberger, Physica (Amsterdam), 9D, 189 (1983)