User menu

Preimages for the Tillich-Zémor hash function

Bibliographic reference Petit, Christophe ; Quisquater, Jean-Jacques. Preimages for the Tillich-Zémor hash function.Selected Areas in Cryptography - 17th International Workshop (Waterloo (Ontario, Canada), du 12/08/2010 au 13/08/2010). In: Proceedings of Selected Areas in Cryptography - 17th International Workshop, Springer2010, p.282-301
Permanent URL http://hdl.handle.net/2078.1/87908
  1. Abdukhalikov Kanat S., Kim Chul, On the Security of the Hashing Scheme Based on SL 2, Fast Software Encryption (1998) ISBN:9783540642657 p.93-102, 10.1007/3-540-69710-1_7
  2. Charles Denis X., Lauter Kristin E., Goren Eyal Z., Cryptographic Hash Functions from Expander Graphs, 10.1007/s00145-007-9002-x
  3. Charnes Chris, Pieprzyk Josef, Attacking the SL 2 hashing scheme, Advances in Cryptology — ASIACRYPT'94 (1995) ISBN:9783540593393 p.322-330, 10.1007/bfb0000444
  4. de Meulenaer, G., Petit, C., Quisquater, J.-J.: Hardware implementations of a variant of Zémor-Tillich hash function: Can a provably secure hash function be very efficient? (2009) (preprint)
  5. Geiselmann Willi, A note on the hash function of Tillich and zémor, Fast Software Encryption (1996) ISBN:9783540608653 p.51-52, 10.1007/3-540-60865-6_42
  6. Grassl, M., Ilic, I., Magliveras, S., Steinwandt, R.: Cryptanalysis of the Tillich-Zémor hash function. Cryptology ePrint Archive, Report 2009/376 (2009), http://eprint.iacr.org/
  7. Helfgott, H.A.: Growth and generation in SL 2(Z/pZ) (2005)
  8. Mesirov Jill P., Sweet Melvin M., Continued fraction expansions of rational expressions with irreducible denominators in characteristic 2, 10.1016/0022-314x(87)90058-8
  9. Petit Christophe, Lauter Kristin, Quisquater Jean-Jacques, Full Cryptanalysis of LPS and Morgenstern Hash Functions, Lecture Notes in Computer Science (2008) ISBN:9783540858546 p.263-277, 10.1007/978-3-540-85855-3_18
  10. Petit Christophe, Quisquater Jean-Jacques, Tillich Jean-Pierre, Zémor Gilles, Hard and Easy Components of Collision Search in the Zémor-Tillich Hash Function: New Attacks and Reduced Variants with Equivalent Security, Topics in Cryptology – CT-RSA 2009 (2009) ISBN:9783642008610 p.182-194, 10.1007/978-3-642-00862-7_12
  11. Steinwandt Rainer, Grassl Markus, Geiselmann Willi, Beth Thomas, Weaknesses in the SL2($$ \mathbb{F}_{2^n } $$) Hashing Scheme, Advances in Cryptology — CRYPTO 2000 (2000) ISBN:9783540679073 p.287-299, 10.1007/3-540-44598-6_18
  12. Tillich Jean-Pierre, Zémor Gilles, Hashing with SL 2, Advances in Cryptology — CRYPTO ’94 ISBN:9783540583332 p.40-49, 10.1007/3-540-48658-5_5
  13. Tillich Jean-Pierre, Zémor Gilles, Collisions for the LPS Expander Graph Hash Function, Advances in Cryptology – EUROCRYPT 2008 ISBN:9783540789666 p.254-269, 10.1007/978-3-540-78967-3_15
  14. Tillich Jean-Pierre, Zémor Gilles, Group-theoretic hash functions, Algebraic Coding (1994) ISBN:9783540578437 p.90-110, 10.1007/3-540-57843-9_12
  15. Zémor G., Hash Functions And Graphs With Large Girths, Advances in Cryptology — EUROCRYPT ’91 ISBN:9783540546207 p.508-511, 10.1007/3-540-46416-6_44
  16. Z�mor Gilles, Hash functions and Cayley graphs, 10.1007/bf01388652