Periodic modulations in the switching current of niobium mesoscopic thin loops have been observed as a function of a perpendicular magnetic field. These modulations reflect the formation of specific vortices configurations in the arms and in the contacts of the loops. The voltage measured just before the current-driven transition to the normal state takes either zero or nonzero values depending on whether the vortices are efficiently pinned or move under the action of the applied current. This switching voltage varies sharply in the vicinity of the regularly spaced matching fields at which the switching current is minimum. This reflects the rearrangement of the vortices pattern from an unstable configuration into a more stable one. In addition, multimodal switching current distributions obtained at a constant field highlight that the few vortices involved in the field-cooling process freeze into a limited number of configurations. Finally, the spacing between the matching fields allows us to extract the critical field for complete vortex expulsion of the samples. Electrical transport measurements appear to be an efficient tool to determine the superheating field of submicrometer-wide structures, which is not obvious when measured by scanning probe microscopy.
Kramer R. B. G., Ataklti G. W., Moshchalkov V. V., Silhanek A. V., Direct visualization of the Campbell regime in superconducting stripes, 10.1103/physrevb.81.144508
Van de Vondel J., Silhanek A. V., Metlushko V., Vavassori P., Ilic B., Moshchalkov V. V., Self-organized mode-locking effect in superconductor/ferromagnet hybrids, 10.1103/physrevb.79.054527
Kokanović I., Helzel A., Babić D., Sürgers C., Strunk C., Effect of vortex-core size on the flux lattice in a mesoscopic superconducting strip, 10.1103/physrevb.77.172504
Baelus B. J., Kanda A., Peeters F. M., Ootuka Y., Kadowaki K., Vortex-state-dependent phase boundary in mesoscopic superconducting disks, 10.1103/physrevb.71.140502
Karapetrov G., Fedor J., Iavarone M., Rosenmann D., Kwok W. K., Direct Observation of Geometrical Phase Transitions in Mesoscopic Superconductors by Scanning Tunneling Microscopy, 10.1103/physrevlett.95.167002
Stan Gheorghe, Field Stuart B., Martinis John M., Critical Field for Complete Vortex Expulsion from Narrow Superconducting Strips, 10.1103/physrevlett.92.097003
Kuit K. H., Kirtley J. R., van der Veur W., Molenaar C. G., Roesthuis F. J. G., Troeman A. G. P., Clem J. R., Hilgenkamp H., Rogalla H., Flokstra J., Vortex trapping and expulsion in thin-filmYBa2Cu3O7−δstrips, 10.1103/physrevb.77.134504
Sánchez-Lotero P., Palacios J. J., Critical fields for vortex expulsion from narrow superconducting strips, 10.1103/physrevb.75.214505
Guimpel J., Civale L., de la Cruz F., Murduck J. M., Schuller Ivan K., Dimensional phase transition in superconductors with short coherence length, 10.1103/physrevb.38.2342
Brongersma S. H., Verweij E., Koeman N. J., de Groot D. G., Griessen R., Ivlev B. I., Series of maxima in the field dependent magnetic moment of layered superconductors, 10.1103/physrevlett.71.2319
Ziese M., Esquinazi P., Wagner P., Adrian H., Brongersma S. H., Griessen R., Matching and surface barrier effects of the flux-line lattice in superconducting films and multilayers, 10.1103/physrevb.53.8658
Carneiro Gilson, Equilibrium vortex-line configurations and critical currents in thin films under a parallel field, 10.1103/physrevb.57.6077
Michotte Sebastien, Lucot Damien, Mailly Dominique, Fluxoid quantization in the critical current of a niobium superconducting loop far below the critical temperature, 10.1103/physrevb.81.100503
Berdiyorov G. R., Milošević M. V., Peeters F. M., Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements, 10.1103/physrevb.81.144511
Werthamer N. R., Helfand E., Hohenberg P. C., Temperature and Purity Dependence of the Superconducting Critical Field,Hc2. III. Electron Spin and Spin-Orbit Effects, 10.1103/physrev.147.295
Bose Sangita, Raychaudhuri Pratap, Banerjee Rajarshi, Ayyub Pushan, Upper critical field in nanostructured Nb: Competing effects of the reduction in density of states and the mean free path, 10.1103/physrevb.74.224502
Bose Sangita, Raychaudhuri Pratap, Banerjee Rajarshi, Vasa Parinda, Ayyub Pushan, Mechanism of the Size Dependence of the Superconducting Transition of Nanostructured Nb, 10.1103/physrevlett.95.147003
Gubin A. I., Il’in K. S., Vitusevich S. A., Siegel M., Klein N., Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films, 10.1103/physrevb.72.064503
N. W. Ashcroft, Solid State Physics (1976)
Faucher M, Jubert P O, Fruchart O, Wernsdorfer W, Bouchiat V, Optimizing the flux coupling between a nanoSQUID and a magnetic particle using atomic force microscope nanolithography, 10.1088/0953-2048/22/6/064010
Peroz Christophe, Villard Catherine, Flux flow properties of niobium thin films in clean and dirty superconducting limits, 10.1103/physrevb.72.014515
Bronson Eric, Gelfand Martin P., Field Stuart B., Equilibrium configurations of Pearl vortices in narrow strips, 10.1103/physrevb.73.144501
Catelani G., Sethna James P., Temperature dependence of the superheating field for superconductors in the high-κLondon limit, 10.1103/physrevb.78.224509
Kouzoudis D., Breitwisch M., Finnemore D. K., Edge barrier pinning for a single superconducting vortex, 10.1103/physrevb.60.10508
M. Tinkham, Introduction to Superconductivity (1996)
Bibliographic reference
Adam, Sébastien ; Hallet, Xavier ; Piraux, Luc ; Lucot, Damien ; Mailly, Dominique ; et. al. Switching current modulations induced by vortices rearrangement in mesoscopic superconducting loops. In: Physical review. B, Condensed matter and materials physics, Vol. 84, no. 10, p. 104512 (01/09/2011)