User menu

Springer's theorem for tame quadratic forms over Henselian fields

Bibliographic reference Elomary, Mohamed Abdou ; Tignol, Jean-Pierre. Springer's theorem for tame quadratic forms over Henselian fields. In: Mathematische Zeitschrift, Vol. 269, no. 1, p. 309-323 (2011)
Permanent URL http://hdl.handle.net/2078.1/87590
  1. Aravire Roberto, Jacob Bill, Versions of Springer's Theorem for Quadratic Forms in Characteristic 2, 10.1353/ajm.1996.0011
  2. Bruhat F., Tits J.: Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires. Bull. Soc. Math. France 115(2), 141–195 (1987)
  3. Elman, R., Karpenko, N., Merkurjev, A.: The algebraic and geometric theory of quadratic forms. American Mathematical Society Colloquium Publications, vol. 56. American Mathematical Society, Providence, RI (2008)
  4. Goldman O., Iwahori N., The space of $\mathfrak{p}$ -adic normsnorms, 10.1007/bf02391811
  5. Hwang Y.-S, Wadsworth A.R, Correspondences Between Valued Division Algebras and Graded Division Algebras, 10.1006/jabr.1999.7903
  6. Lam, T.Y.: Introduction to quadratic forms over fields. Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence, RI (2005)
  7. Renard J.-F, Tignol J.-R, Wadsworth A.R., Graded Hermitian forms and Springer's theorem, 10.1016/s0019-3577(07)80010-3
  8. Springer T.A., Quadratic forms over fields with a discrete valuation, 10.1016/s1385-7258(55)50050-3
  9. Springer T.A., Quadratic forms over Fields with a Discrete Valuation II. Norms, 10.1016/s1385-7258(56)50031-5
  10. Tietze Uwe-Peter, Zur Theorie quadratischer Formen �ber Hensel-K�rpern, 10.1007/bf01238655
  11. Tignol J.-P., Wadsworth A. R., Value functions and associated graded rings for semisimple algebras, 10.1090/s0002-9947-09-04681-9