User menu

Sparsity Driven People Localization with a Heterogeneous Network of Cameras

Bibliographic reference Alahi, Alexandre ; Jacques, Laurent ; Boursier, Yannick ; Vandergheynst, Pierre. Sparsity Driven People Localization with a Heterogeneous Network of Cameras. In: Journal of Mathematical Imaging and Vision, Vol. 41, no. 1-2, p. 39-58 (2011)
Permanent URL http://hdl.handle.net/2078.1/87549
  1. Alahi, A., Boursier, Y., Jacques, L., Vandergheynst, P.: A sparsity constrained inverse problem to locate people in a network of cameras. In: 16th International Conference on Digital Signal Processing, Santorini, Greece, pp. 189–195 (2009)
  2. Alahi Alexandre, Boursier Yannick, Jacques Laurent, Vandergheynst Pierre, Sport players detection and tracking with a mixed network of planar and omnidirectional cameras, 10.1109/icdsc.2009.5289406
  3. Alahi Alexandre, Jacques Laurent, Boursier Yannick, Vandergheynst Pierre, Sparsity-driven people localization algorithm: Evaluation in crowded scenes environments, 10.1109/pets-winter.2009.5399487
  4. Alahi Alexandre, Vandergheynst Pierre, Bierlaire Michel, Kunt Murat, Cascade of descriptors to detect and track objects across any network of cameras, 10.1016/j.cviu.2010.01.004
  5. Baraniuk Richard G., Cevher Volkan, Duarte Marco F., Hegde Chinmay, Model-Based Compressive Sensing, 10.1109/tit.2010.2040894
  6. Berclaz, J., Fleuret, F., Fua, P.: Robust people tracking with global trajectory optimization. In: Conference on Computer Vision and Pattern Recognition, pp. 744–750 (2006)
  7. Black J., Ellis T., Rosin P., Multi view image surveillance and tracking, 10.1109/motion.2002.1182230
  8. Candès Emmanuel J., Wakin Michael B., Boyd Stephen P., Enhancing Sparsity by Reweighted ℓ 1 Minimization, 10.1007/s00041-008-9045-x
  9. Caspi Yaron, Simakov Denis, Irani Michal, Feature-Based Sequence-to-Sequence Matching, 10.1007/s11263-005-4842-z
  10. Cevher, V., Duarte, M., Baraniuk, R.: Distributed target localization via spatial sparsity. In: Proc. European Signal Processing Conference (2008)
  11. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proceedings of Int. Conf. on Acoustics, Speech, Signal Processing (ICASSP), pp. 3869–3872 (2008)
  12. Chen Scott Shaobing, Donoho David L., Saunders Michael A., Atomic Decomposition by Basis Pursuit, 10.1137/s1064827596304010
  13. Hong Cheng, Nanning Zheng, Junjie Qin, Pedestrian detection using sparse Gabor filter and support vector machine, 10.1109/ivs.2005.1505166
  14. Combettes * Patrick L., Solving monotone inclusions via compositions of nonexpansive averaged operators, 10.1080/02331930412331327157
  15. Combettes Patrick L., Wajs Valérie R., Signal Recovery by Proximal Forward-Backward Splitting, 10.1137/050626090
  16. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)
  17. Delannay Damien, Danhier Nicolas, De Vleeschouwer Christophe, Detection and recognition of sports(wo)men from multiple views, 10.1109/icdsc.2009.5289407
  18. Dijkstra E. W., A note on two problems in connexion with graphs, 10.1007/bf01386390
  19. Elfes A., Using occupancy grids for mobile robot perception and navigation, 10.1109/2.30720
  20. Eshel, R., Moses, Y.: Homography based multiple camera detection and tracking of people in a dense crowd. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
  21. Fadili, M.J., Starck, J.L.: Monotone operator splitting for fast sparse solutions of inverse problems. SIAM J. Imaging Sci., 2005–2006 (2009)
  22. Fleuret F., Berclaz J., Lengagne R., Fua P., Multicamera People Tracking with a Probabilistic Occupancy Map, 10.1109/tpami.2007.1174
  23. Franco, J., Boyer, E.: Fusion of multiview silhouette cues using a space occupancy grid. In: Tenth Proc. IEEE Int’l Conference on Computer Vision, ICCV 2005, vol. 2 (2005)
  24. Gorodnitsky I.F., Rao B.D., Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm, 10.1109/78.558475
  25. Khan, S., Shah, M.: A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Proc. European Conference on Computer Vision, vol. 4, pp. 133–146 (2006)
  26. Khan S.M., Shah M., Tracking Multiple Occluding People by Localizing on Multiple Scene Planes, 10.1109/tpami.2008.102
  27. Kim, K., Davis, L.: Multi-camera tracking and segmentation of occluded people on ground plane using search-guided particle filtering. In: Proc. European Conference on Computer Vision, vol. 3, pp. 98–109 (2006)
  28. Kowalski Matthieu, Torrésani Bruno, Sparsity and persistence: mixed norms provide simple signal models with dependent coefficients, 10.1007/s11760-008-0076-1
  29. Malioutov D., Cetin M., Willsky A.S., A sparse signal reconstruction perspective for source localization with sensor arrays, 10.1109/tsp.2005.850882
  30. Moreau, J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris Ser. A, Math. 255, 2897–2899 (1962)
  31. Mueller, K., Smolic, A., Droese, M., Voigt, P., Wienand, T.: Multi-texture modeling of 3d traffic scenes. In: Proc. of the 2003 Int’l Conference on Multimedia, vol. 2, pp. 657–660 (2003)
  32. Natarajan B. K., Sparse Approximate Solutions to Linear Systems, 10.1137/s0097539792240406
  33. Oren M., Papageorgiou C., Sinha P., Osuna E., Poggio T., Pedestrian detection using wavelet templates, 10.1109/cvpr.1997.609319
  34. Orwell J., Massey S., Remagnino P., Greenhill D., Jones G.A., A multi-agent framework for visual surveillance, 10.1109/iciap.1999.797748
  35. Papageorgiou, C., Poggio, T.: Trainable pedestrian detection. In: Proc. IEEE Int’l Conference on Image Processing, vol. 4, pp. 35–39 (1999)
  36. Porikli Fatih, Achieving real-time object detection and tracking under extreme conditions, 10.1007/s11554-006-0011-z
  37. Reddy, D., Sankaranarayanan, A., Cevher, V., Chellappa, R.: Compressed sensing for multi-view tracking and 3-D voxel reconstruction. In: Proc. IEEE Int’l Conference on Image Processing, pp. 221–224 (2008)
  38. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)
  39. Stauffer, C., Tieu, K.: Automated multi-camera planar tracking correspondence modeling. In: Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 259–266 (2003)
  40. Suard F., Rakotomamonjy A., Bensrhair A., Broggi A., Pedestrian Detection using Infrared images and Histograms of Oriented Gradients, 10.1109/ivs.2006.1689629
  41. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, Methodol., 267–288 (1996)
  42. Tuzel O., Porikli F., Meer P., Pedestrian Detection via Classification on Riemannian Manifolds, 10.1109/tpami.2008.75
  43. Viola Paul, Jones Michael J., Snow Daniel, Detecting Pedestrians Using Patterns of Motion and Appearance, 10.1007/s11263-005-6644-8
  44. Yang, Gonzalez-Banos, Guibas, Counting people in crowds with a real-time network of simple image sensors, 10.1109/iccv.2003.1238325
  45. Yilmaz Alper, Javed Omar, Shah Mubarak, Object tracking : A survey, 10.1145/1177352.1177355
  46. Zhao, T., Nevatia, R.: Bayesian human segmentation in crowded situations. In: 2003 Proc. IEEE Int’l Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 459–466 (2003)