User menu

Ensemble logistic regression for feature selection

Bibliographic reference Zakharov, Roman ; Dupont, Pierre. Ensemble logistic regression for feature selection.6th IAPR International Conference on Pattern Recognition in Bioinformatics (Delft, The Netherlands, du 02/11/2011 au 04/11/2011). In: Lecture Notes in Bioinformatics, no. 7036, p. 133-144 (2011)
Permanent URL
  1. Abeel Thomas, Helleputte Thibault, Van de Peer Yves, Dupont Pierre, Saeys Yvan, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, 10.1093/bioinformatics/btp630
  2. Bach Francis R., Bolasso : model consistent Lasso estimation through the bootstrap, 10.1145/1390156.1390161
  3. Breiman Leo, 10.1023/a:1010933404324
  4. Chandran Uma R, Ma Changqing, Dhir Rajiv, Bisceglia Michelle, Lyons-Weiler Maureen, Liang Wenjing, Michalopoulos George, Becich Michael, Monzon Federico A, Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process, 10.1186/1471-2407-7-64
  5. Cox, D.R., Snell, E.J.: Analysis of binary data. Monographs on statistics and applied probability. Chapman and Hall (1989)
  6. Desmedt C., Piette F., Loi S., Wang Y., Lallemand F., Haibe-Kains B., Viale G., Delorenzi M., Zhang Y., d'Assignies M. S., Bergh J., Lidereau R., Ellis P., Harris A. L., Klijn J. G.M., Foekens J. A., Cardoso F., Piccart M. J., Buyse M., Sotiriou C., , Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series, 10.1158/1078-0432.ccr-06-2765
  7. Dietterich Thomas G., Ensemble Methods in Machine Learning, Multiple Classifier Systems (2000) ISBN:9783540677048 p.1-15, 10.1007/3-540-45014-9_1
  8. Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.): Feature Extraction. Foundations and Applications. Studies in Fuzziness and Soft Computing. Physica-Verlag, Springer (2006)
  9. Helleputte Thibault, Dupont Pierre, Feature Selection by Transfer Learning with Linear Regularized Models, Machine Learning and Knowledge Discovery in Databases (2009) ISBN:9783642041792 p.533-547, 10.1007/978-3-642-04180-8_52
  10. Hoerl Arthur E., Kennard Robert W., Ridge Regression: Biased Estimation for Nonorthogonal Problems, 10.1080/00401706.1970.10488634
  11. Kalousis Alexandros, Prados Julien, Hilario Melanie, Stability of feature selection algorithms: a study on high-dimensional spaces, 10.1007/s10115-006-0040-8
  12. Kuncheva, L.I.: A stability index for feature selection. In: Proceedings of the 25th International Multi-Conference Artificial Intelligence and Applications, pp. 390–395. ACTA Press, Anaheim (2007)
  13. Li Qiyuan, Eklund Aron C., Juul Nicolai, Haibe-Kains Benjamin, Workman Christopher T., Richardson Andrea L., Szallasi Zoltan, Swanton Charles, Minimising Immunohistochemical False Negative ER Classification Using a Complementary 23 Gene Expression Signature of ER Status, 10.1371/journal.pone.0015031
  14. Nadeau Claude, 10.1023/a:1024068626366
  15. Ng Andrew Y., Feature selection, L1 vs. L2 regularization, and rotational invariance, 10.1145/1015330.1015435
  16. Roth V., The Generalized LASSO, 10.1109/tnn.2003.809398
  17. Saeys Y., Inza I., Larranaga P., A review of feature selection techniques in bioinformatics, 10.1093/bioinformatics/btm344
  18. Shipp Margaret A., Ross Ken N., Tamayo Pablo, Weng Andrew P., Kutok Jeffery L., Aguiar Ricardo C.T., Gaasenbeek Michelle, Angelo Michael, Reich Michael, Pinkus Geraldine S., Ray Tane S., Koval Margaret A., Last Kim W., Norton Andrew, Lister T. Andrew, Mesirov Jill, Neuberg Donna S., Lander Eric S., Aster Jon C., Golub Todd R., Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning, 10.1038/nm0102-68
  19. Singh Dinesh, Febbo Phillip G., Ross Kenneth, Jackson Donald G., Manola Judith, Ladd Christine, Tamayo Pablo, Renshaw Andrew A., D'Amico Anthony V., Richie Jerome P., Lander Eric S., Loda Massimo, Kantoff Philip W., Golub Todd R., Sellers William R., Gene expression correlates of clinical prostate cancer behavior, 10.1016/s1535-6108(02)00030-2
  20. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 58, 267–288 (1994)
  21. Witten, D.M., Tibshirani, R.: A comparison of fold-change and the t-statistic for microarray data analysis. Stanford University. Technical report (2007)
  22. Zou Hui, Hastie Trevor, Regularization and variable selection via the elastic net, 10.1111/j.1467-9868.2005.00503.x