User menu

Two modelling approaches of wine-making: first principle metabolic and engineering

Bibliographic reference Charnomordic, Brigitte ; David, Robert ; Dochain, Denis ; Hilgert, N. ; Mouret, Jean-Roch ; et. al. Two modelling approaches of wine-making: first principle metabolic and engineering. In: Mathematical and Computer Modelling of Dynamical Systems : methods, tools and applications in engineering and related sciences, Vol. 16, no. 6, p. 535-553 (2010)
Permanent URL
  1. Boulton R., Am. J. Enol. Vitic., 31, 40 (1980)
  2. Sevely, Y., Pourciel, J.P., Rauzy, G. and Bovee, J.P. Modelling, identification and control of the alcohol fermentation in a cascade reactor. Proceedings of 8th IFAC World Congress. pp.177–184. Kyoto 22
  3. Caro I., Pérez L., Cantero D., Development of a kinetic model for the alcoholic fermentation of must : MODEL FOR ALCOHOLIC FERMENTATION, 10.1002/bit.260380708
  4. Remedios Maŕın M., Am. J. Enol. Vitic., 50, 166 (1999)
  5. Cramer Amanda C., Vlassides Sophocles, Block David E., Kinetic model for nitrogen-limited wine fermentations, 10.1002/bit.10133
  6. Coleman M. C., Fish R., Block D. E., Temperature-Dependent Kinetic Model for Nitrogen-Limited Wine Fermentations, 10.1128/aem.00670-07
  7. Insa G., Sablayrolles J. -M., Douzal V., Alcoholic fermentation under oenological conditions : Use of a combination of data analysis and neural networks to predict sluggish and stuck fermentations, 10.1007/bf00367250
  8. Malherbe S., Fromion V., Hilgert N., Sablayrolles J.-M., Modeling the effects of assimilable nitrogen and temperature on fermentation kinetics in enological conditions, 10.1002/bit.20075
  9. Colombié Sophie, Malherbe Sophie, Sablayrolles Jean-Marie, Modeling of heat transfer in tanks during wine-making fermentation, 10.1016/j.foodcont.2006.05.016
  10. Goelzer A., Charnomordic B., Colombié S., Fromion V., Sablayrolles J.M., Simulation and optimization software for alcoholic fermentation in winemaking conditions, 10.1016/j.foodcont.2008.09.016
  11. El Halaoui N., Sci. Aliments, 7, 241 (1987)
  12. Colombié S., Am. J. Enol. Vitic., 56, 238 (2005)
  13. Colombié S., Proceedings CAB9 (2004)
  14. Dubois Didier, Prade Henri, What are fuzzy rules and how to use them, 10.1016/0165-0114(96)00066-8
  15. Stephanopoulos G.N., Metabolic Engineering: principles and methodologies (1998)
  16. Edwards Jeremy S., Palsson Bernhard O., How will bioinformatics influence metabolic engineering?, 10.1002/(sici)1097-0290(19980420)58:2/3<162::aid-bit8>;2-j
  17. Schuster S, Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering, 10.1016/s0167-7799(98)01290-6
  18. SCHILLING CHRISTOPHE H., LETSCHER DAVID, PALSSON BERNHARD Ø., Theory for the Systemic Definition of Metabolic Pathways and their use in Interpreting Metabolic Function from a Pathway-Oriented Perspective, 10.1006/jtbi.2000.1073
  19. Velagapudi Vidya R., Wittmann Christoph, Schneider Konstantin, Heinzle Elmar, Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function, 10.1016/j.jbiotec.2007.08.043
  20. Sainz Javier, Pizarro Francisco, Pérez-Correa J. Ricardo, Agosin Eduardo, Modeling of yeast metabolism and process dynamics in batch fermentation : Modeling Yeast Metabolism, 10.1002/bit.10535
  21. Bonarius Hendrik P.J., Schmid Georg, Tramper Johannes, Flux analysis of underdetermined metabolic networks: the quest for the missing constraints, 10.1016/s0167-7799(97)01067-6
  22. Nissen T. L., Schulze U., Nielsen J., Villadsen J., Flux Distributions in Anaerobic, Glucose-Limited Continuous Cultures of Saccharomyces Cerevisiae, 10.1099/00221287-143-1-203
  23. Çakır Tunahan, Arga K.Yalçın, Altıntaş M.Mete, Ülgen Kutlu Ö., Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production, 10.1016/j.procbio.2003.10.010
  24. Frick Oliver, Wittmann Christoph, 10.1186/1475-2859-4-30
  25. Varela C., Pizarro F., Agosin E., Biomass Content Governs Fermentation Rate in Nitrogen-Deficient Wine Musts, 10.1128/aem.70.6.3392-3400.2004
  26. Pizarro Francisco, Varela Cristian, Martabit Cecilia, Bruno Claudio, Pérez-Correa J. Ricardo, Agosin Eduardo, Coupling kinetic expressions and metabolic networks for predicting wine fermentations, 10.1002/bit.21494
  27. Camarasa C., Investigation by 13C-NMR and tricarboxylic acid (TCA) deletion mutant analysis of pathways for succinate formation in Saccharomyces cerevisiae during anaerobic fermentation, 10.1099/mic.0.26007-0
  28. Zhang Huimin, Shimizu Kazuyuki, Yao Shanjing, Metabolic flux analysis of Saccharomyces cerevisiae grown on glucose, glycerol or acetate by -labeling experiments, 10.1016/s1369-703x(03)00070-6
  29. Schmidt Karsten, Carlsen Morten, Nielsen Jens, Villadsen John, Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices, 10.1002/(sici)1097-0290(19970920)55:6<831::aid-bit2>;2-h
  30. Klamt Steffen, Stelling Jörg, Two approaches for metabolic pathway analysis?, 10.1016/s0167-7799(02)00034-3
  31. Papin Jason A., Stelling Joerg, Price Nathan D., Klamt Steffen, Schuster Stefan, Palsson Bernhard O., Comparison of network-based pathway analysis methods, 10.1016/j.tibtech.2004.06.010
  32. Provost A., Bastin G., Dynamic metabolic modelling under the balanced growth condition, 10.1016/j.jprocont.2003.12.004
  33. Schwartz Jean-Marc, Kanehisa Minoru, 10.1186/1471-2105-7-186
  34. Pfeiffer T, Sanchez-Valdenebro I, Nuno J., Montero F, Schuster S, METATOOL: for studying metabolic networks, 10.1093/bioinformatics/15.3.251
  35. Klamt S., Stelling J., Ginkel M., Gilles E. D., FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps, 10.1093/bioinformatics/19.2.261
  36. Förster Jochen, Gombert Andreas Karoly, Nielsen Jens, A functional genomics approach using metabolomics andin silicopathway analysis : Combined Metabolome and Pathway Analysis, 10.1002/bit.10378
  37. Çakir Tunahan, Kirdar Betül, Ülgen Kutlu Ö., Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks : Transcriptomics and Metabolic Networks, 10.1002/bit.20020
  38. XU Xiaojing, CAO Limin, CHEN Xun, Elementary Flux Mode Analysis for Optimized Ethanol Yield in Anaerobic Fermentation of Glucose with Saccharomyces cerevisiae, 10.1016/s1004-9541(08)60052-x
  39. Nookaew Intawat, Meechai Asawin, Thammarongtham Chinae, Laoteng Kobkul, Ruanglek Vasimon, Cheevadhanarak Supapon, Nielsen Jens, Bhumiratana Sakarindr, Identification of flux regulation coefficients from elementary flux modes: A systems biology tool for analysis of metabolic networks, 10.1002/bit.21339
  40. Poolman M.G., Venkatesh K.V., Pidcock M.K., Fell D.A., A method for the determination of flux in elementary modes, and its application toLactobacillus rhamnosus, 10.1002/bit.20273
  41. SWIEGERS J.H., BARTOWSKY E.J., HENSCHKE P.A., PRETORIUS I.S., Yeast and bacterial modulation of wine aroma and flavour, 10.1111/j.1755-0238.2005.tb00285.x
  42. Schuster S., Pfeiffer T., Moldenhauer F., Koch I., Dandekar T., Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae, 10.1093/bioinformatics/18.2.351