User menu

Hybrid finite elements and spectral method for computation of the electric potential generated by a nerve cuff electrode.

Bibliographic reference Parrini, S ; Delbeke, Jean ; Romero, E. ; Legat, Vincent ; Veraart, Claude. Hybrid finite elements and spectral method for computation of the electric potential generated by a nerve cuff electrode.. In: Medical & biological engineering & computing, Vol. 37, no. 6, p. 733-6 (1999)
Permanent URL http://hdl.handle.net/2078.1/8478
  1. Altman, K. W., andPlonsey, R. (1986): ‘A two-part model for determining the electromagnetic and physiologic behaviour of cuff electrode nerve stimulators’,IEEE Trans.,BME-33, pp. 285–293
  2. Altman, K. W., andPlonsey, R. (1988): ‘Development of a model for point source electrical fibre bundle stimulation’,Med. Biol. Eng. Comput.,26, pp. 466–475
  3. Chintalacharuvu, R. R., Ksienski, D. A., andMortimer, J. T. (1991): ‘A numerical analysis of the electric field generated by a nerve cuff electrode’, Proc. IEEE Eng. Med. Biol. Soc 13th Ann. Conf.,13, pp. 912–913
  4. Crochet, M. J., Debbaut, B., Keunings, R., andMarchal, J. M. (1992): ‘Polyflow: a multi-purpose finite-element program for continuous polymer flows’,in Brien, K. O. (Ed.): ‘Computer modelling of extrusion and other continuous processes’ (Hanser Munich), pp. 25–50
  5. Deurloo, K. E. I., Holsheimer, J., andBoom, H. B. K. (1998): ‘Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity’,Med. Biol. Eng. Comput.,36, pp. 66–74
  6. Gasquet, C., andWitomski, P. (1998): ‘Analyse de Fourier et applications: filtrage, calcul numérique et ondelettes’ (Masson), pp. 36–43
  7. Geddes, L. A., andBaker, L. E. (1967): ‘The specific resistance of biological material—a compendium of data for the biological engineer and physiologist’,Med. Biol. Eng.,5, pp. 271–293
  8. Goodall, E. V., Kosterman, L. M., andStruijk, J. J. (1995): ‘Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode’,IEEE Trans. Rehab. Eng.,3, pp. 272–282
  9. Grill, W. M., andMortimer, J. T. (1994): ‘Electrical properties of implant encapsulation tissue’,Ann. Biomed. Eng.,22, pp. 23–33
  10. Grill, W. M., andMortimer, J. T. (1995): ‘Stimulus waveforms for selective neural stimulation’,IEEE Eng. Med. Biol. Soc. Mag.,14, pp. 375–385
  11. Plonsey, R., andFleming, D. G. (1969): ‘Bioelectric phenomena’ (McGraw-Hill Book Company), pp. 127–138
  12. Bellens R., de Schrijver E., Van den Bosch G., Groeseneken G., Heremans P., Maes H.E., On the hot-carrier-induced post-stress interface trap generation in n-channel MOS transistors, 10.1109/16.275228
  13. Sweeney, J. D., Ksienski, D. A., andMortimer, J. T. (1990): ‘A nerve cuff technique for selective excitation of peripheral nerve trunk regions’,IEEE Trans.,BME-37, pp. 706–715
  14. Veltink, P. H., Van Alste, J. A., andBoom, H. B. K. (1988): ‘Simulation of intrafascicular and extraneural nerve stimulation’,IEEE Trans.,BME-35, pp. 69–75
  15. Veraart, C., Grill, W. M., andMortimer, J. T. (1993): ‘Selective control of muscle activation with a multipolar nerve cuff electrode’,IEEE Trans.,BME-40, pp. 640–653
  16. Veraart, C., Raftopoulos, C., Mortimer, J. T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., andWanet-Defalque, M.-C. (1998): ‘Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode,Brain Res.,813, pp. 181–186
  17. Zienkiewicz, O. C., andMorgan, K. (1993): ‘Finite elements and approximation’ (Wiley Interscience, New York), pp. 95–106, 316–322