User menu

Action of a NO donor on the excitation-contraction pathway activated by noradrenaline in rat superior mesenteric artery.

Bibliographic reference Ghisdal, Philippe ; Gomez, J P ; Morel, Nicole. Action of a NO donor on the excitation-contraction pathway activated by noradrenaline in rat superior mesenteric artery.. In: The Journal of physiology, Vol. 522 Pt 1, p. 83-96 (2000)
Permanent URL
  1. Alosachie Iyad, Godfraind Théophile, The modulatory role of vascular endothelium in the interaction of agonists and antagonists with α-adrenoceptors in the rat aorta, 10.1111/j.1476-5381.1988.tb11684.x
  2. Amédée T, Benham C D, Bolton T B, Byrne N G, Large W A, Potassium, chloride and non-selective cation conductances opened by noradrenaline in rabbit ear artery cells., 10.1113/jphysiol.1990.sp018039
  3. Archer S. L., Huang J. M., Hampl V., Nelson D. P., Shultz P. J., Weir E. K., Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase., 10.1073/pnas.91.16.7583
  4. Archer S. L., Huang J. M.C., Reeve H. L., Hampl V., Tolarova S., Michelakis E., Weir E. K., Differential Distribution of Electrophysiologically Distinct Myocytes in Conduit and Resistance Arteries Determines Their Response to Nitric Oxide and Hypoxia, 10.1161/01.res.78.3.431
  5. Armstead, American Journal of Physiology, 272, H1785 (1997)
  6. Bolotina Victoria M., Najibi Soheil, Palacino James J., Pagano Patrick J., Cohen Richard A., Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle, 10.1038/368850a0
  7. Boonen Harrie C. M., De Mey Jo G. R., G-proteins are involved in contractile responses of isolated mesenteric resistance arteries to agonists, 10.1007/bf00169465
  8. Brayden Joseph E., POTASSIUM CHANNELS IN VASCULAR SMOOTH MUSCLE, 10.1111/j.1440-1681.1996.tb01172.x
  9. Anthony Anthony R., Rhodes Peter, Chemistry, Analysis, and Biological Roles ofS-Nitrosothiols, 10.1006/abio.1997.2129
  10. Carrier, American Journal of Physiology, 273, H76 (1997)
  11. Chen Guifa, Suzuki Hikaru, Weston Arthur H., Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels, 10.1111/j.1476-5381.1988.tb11752.x
  12. Cohen R. A., Plane F., Najibi S., Huk I., Malinski T., Garland C. J., Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery, 10.1073/pnas.94.8.4193
  13. Cornwell, Molecular Pharmacology, 40, 923 (1991)
  14. Eglème C., Godfraind T., Miller R.C., Enhanced responsiveness of rat isolated aorta to clonidine after removal of the endothelial cells, 10.1111/j.1476-5381.1984.tb10736.x
  15. Exton J H, Phosphoinositide Phospholipases and G Proteins in Hormone Action, 10.1146/
  16. Feelisch M., Ostrowski J., Noack E., On the Mechanism of NO Release from Sydnonimines : , 10.1097/00005344-198914110-00004
  17. Garland Christopher J., McPherson Grant A., Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery, 10.1111/j.1476-5381.1992.tb14270.x
  18. Hashimoto T, Hirata M, Itoh T, Kanmura Y, Kuriyama H, Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery., 10.1113/jphysiol.1986.sp015953
  19. Hirata, Journal of Biological Chemistry, 265, 1268 (1990)
  20. Itoh T, Seki N, Suzuki S, Ito S, Kajikuri J, Kuriyama H, Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery., 10.1113/jphysiol.1992.sp019166
  21. Karaki Hideaki, Sato Koichi, Ozaki Hiroshi, Murakami Kazuyasu, Effects of sodium nitroprusside on cytosolic calcium level in vascular smooth muscle, 10.1016/0014-2999(88)90329-9
  22. Krippeit-Drews P., Morel N., Godfraind T., Effect of Nitric Oxide on Membrane Potential and Contraction of Rat Aorta : , 10.1097/00005344-199204002-00022
  23. Kuroiwa M, Aoki H, Kobayashi S, Nishimura J, Kanaide H, Role of GTP-protein and endothelium in contraction induced by ethanol in pig coronary artery., 10.1113/jphysiol.1993.sp019873
  24. Lamb, American Journal of Physiology, 275, H151 (1998a)
  25. Lamb, American Journal of Physiology, 275, H161 (1998b)
  26. Loirand G, Pacaud P, Mironneau C, Mironneau J, GTP-binding proteins mediate noradrenaline effects on calcium and chloride currents in rat portal vein myocytes., 10.1113/jphysiol.1990.sp018225
  27. Lowry, Journal of Biological Chemistry, 193, 265 (1951)
  28. Mistry D. K., Garland C. J., Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+channels (BKCa) in smooth muscle cells isolated from the rat mesenteric artery, 10.1038/sj.bjp.0701940
  29. Morel Nicole, Godfraind Théophile, Characterization in rat aorta of the binding sites responsible for blockade of noradrenaline-evoked calcium entry by nisoldipine, 10.1111/j.1476-5381.1991.tb12196.x
  30. Mulvany M. J., Halpern W., Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats, 10.1161/01.res.41.1.19
  31. Murphy M E, Brayden J E, Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels., 10.1113/jphysiol.1995.sp020789
  32. Nelson, American Journal of Physiology, 268, C799 (1995)
  33. Nelson Mark T., Standen Nicholas B., Brayden Joseph E., Worley Jennings F., Noradrenaline contracts arteries by activating voltage-dependent calcium channels, 10.1038/336382a0
  34. Nishimura, American Journal of Physiology, 259, H2 (1990)
  35. Nishimura Junji, Kolber Michael, van Breemen Cornelis, Norepinephrine and GTP-γ-S increase myofilament Ca2+ sensitivity in α-toxin permeabilized arterial smooth muscle, 10.1016/s0006-291x(88)80303-6
  36. Plane Trances, Garland Christopher J., Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery, 10.1111/j.1476-5381.1993.tb13861.x
  37. Plane Frances, Hurrell Amber, Jeremy Jamie Y., Garland Christopher J., Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery, 10.1111/j.1476-5381.1996.tb16072.x
  38. Plane Frances, Pearson Timothy, Garland Christopher J., Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery, 10.1111/j.1476-5381.1995.tb16316.x
  39. Plane Frances, Wiley Katherine E., Jeremy Jamie Y., Cohen Richard A., Garland Christopher J., Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery, 10.1038/sj.bjp.0701746
  40. Quignard J F, Frapier J M, Harricane M C, Albat B, Nargeot J, Richard S, Voltage-gated calcium channel currents in human coronary myocytes. Regulation by cyclic GMP and nitric oxide., 10.1172/jci119146
  41. Rand Victoria E., Garland C.J., Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: importance of membrane hyperpolarization, 10.1111/j.1476-5381.1992.tb14307.x
  42. Rapoport R. M., Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta, 10.1161/01.res.58.3.407
  43. Robertson, American Journal of Physiology, 265, C299 (1993)
  44. Salomone Salvatore, Morel Nicole, Godfraind Théophile, Effects of 8-bromo cyclic GMP and verapamil on depolarization-evoked Ca2+ signal and contraction in rat aorta, 10.1111/j.1476-5381.1995.tb14964.x
  45. Salomone Salvatore, Silva Claudia L. M., Morel Nicole, Godfraind Th�ophile, Facilitation of the vasorelaxant action of calcium antagonists by basal nitric oxide in depolarized artery, 10.1007/bf00168443
  46. Tewari Kirti, Simard J. Marc, Sodium nitroprusside and cGMP decrease Ca 2+ channel availability in basilar artery smooth muscle cells, 10.1007/s004240050281
  47. Tran Nguyen N. P., Spitzbarth Esther, Robert Alain, Giummelly Philippe, Atkinson Jeffrey, Capdeville-Atkinson Christine, Nitric oxide lowers the calcium sensitivity of tension in the rat tail artery, 10.1111/j.1469-7793.1998.163bu.x
  48. Usachev Y M, Marchenko S M, Sage S O, Cytosolic calcium concentration in resting and stimulated endothelium of excised intact rat aorta., 10.1113/jphysiol.1995.sp021052
  49. Vanheel Bert, Van de Voorde Johan, Nitric oxide induced membrane hyperpolarization in the rat aorta is not mediated by glibenclamide-sensitive potassium channels, 10.1139/y97-164
  50. Waniishi Yoshiki, Inoue Ryuji, Morita Hiromitsu, Teramoto Noriyoshi, Abe Kihachiro, Ito Yushi, Cyclic GMP-dependent but G-kinase-independent inhibition of Ca2+-dependent Cl−currents by NO donors in cat tracheal smooth muscle, 10.1111/j.1469-7793.1998.719bg.x
  51. Weidelt T, Boldt W, Markwardt F, Acetylcholine-induced K+ currents in smooth muscle cells of intact rat small arteries., 10.1113/jphysiol.1997.sp022047
  52. Wu, Journal of Biological Chemistry, 25, 25798 (1992)
  53. Yousif Mariam, Kadavil Elizabeth A., Oriowo M.A., Heterogeneity of α1-Adrenoceptor Subtypes Mediating Noradrenaline-Induced Contractions of theRat Superior Mesenteric Artery, 10.1159/000028198
  54. Yuan, American Journal of Physiology, 272, L44 (1997)
  55. Yuan X. J., Tod M. L., Rubin L. J., Blaustein M. P., NO hyperpolarizes pulmonary artery smooth muscle cells and decreases the intracellular Ca2+ concentration by activating voltage-gated K+ channels., 10.1073/pnas.93.19.10489