User menu

Accès à distance ? S'identifier sur le proxy UCLouvain | Saint-Louis

How can a glacial inception be predicted?

  • Open access
  • PDF
  • 1.50 M
  1. Andrieu Christophe, Doucet Arnaud, Holenstein Roman, Particle Markov chain Monte Carlo methods : Particle Markov Chain Monte Carlo Methods, 10.1111/j.1467-9868.2009.00736.x
  2. Annan J. D., Hargreaves J. C., Using multiple observationally-based constraints to estimate climate sensitivity, 10.1029/2005gl025259
  3. Berger A., Long-term variations of the Earth's orbital elements, 10.1007/bf01229048
  4. Berger AndréL., Long-Term Variations of Daily Insolation and Quaternary Climatic Changes, 10.1175/1520-0469(1978)035<2362:ltvodi>2.0.co;2
  5. Berger André L., Long-Term Variations of Caloric Insolation Resulting from the Earth's Orbital Elements, 10.1016/0033-5894(78)90064-9
  6. Berger A. L., Insolation signatures of quaternary climatic changes, 10.1007/bf02507714
  7. Berger A., CLIMATE: An Exceptionally Long Interglacial Ahead?, 10.1126/science.1076120
  8. Calov Reinhard, Ganopolski Andrey, Multistability and hysteresis in the climate-cryosphere system under orbital forcing, 10.1029/2005gl024518
  9. Clark Peter U., Archer David, Pollard David, Blum Joel D., Rial Jose A., Brovkin Victor, Mix Alan C., Pisias Nicklas G., Roy Martin, The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2, 10.1016/j.quascirev.2006.07.008
  10. Claussen Martin, Brovkin Victor, Calov Reinhard, Ganopolski Andrey, Kubatzki Claudia, Did Humankind Prevent a Holocene Glaciation? : Comment on Ruddiman’s Hypothesis of a Pre-Historic Anthropocene, 10.1007/s10584-005-7276-2
  11. M. Claussen, L. Mysak, A. Weaver, M. Crucifix, T. Fichefet, M.-F. Loutre, S. Weber, J. Alcamo, V. Alexeev, A. Berger, R. Calov, A. Ganopolski, H. Goosse, G. Lohmann, F. Lunkeit, I. Mokhov, V. Petoukhov, P. Stone, Z. Wang, Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models, 10.1007/s00382-001-0200-1
  12. Crucifix Michel, Berger André, How long will our interglacial be?, 10.1029/2006eo350007
  13. Crucifix M., Rougier J., On the use of simple dynamical systems for climate predictions : A Bayesian prediction of the next glacial inception, 10.1140/epjst/e2009-01087-5
  14. Crucifix Michel, Loutre Marie-France, Berger André, Commentary on “The Anthropogenic Greenhouse Era Began Thousands of Years Ago”, 10.1007/s10584-005-7278-0
  15. Ditlevsen Peter D., Bifurcation structure and noise-assisted transitions in the Pleistocene glacial cycles : BIFURCATION STRUCTURE IN GLACIAL CYCLES, 10.1029/2008pa001673
  16. Ditlevsen Peter D., Ditlevsen Ove D., On the Stochastic Nature of the Rapid Climate Shifts during the Last Ice Age, 10.1175/2008jcli2430.1
  17. Augustin Laurent, Barbante Carlo, Barnes Piers R. F., Marc Barnola Jean, Bigler Matthias, Castellano Emiliano, Cattani Olivier, Chappellaz Jerome, Dahl-Jensen Dorthe, Delmonte Barbara, Dreyfus Gabrielle, Durand Gael, Falourd Sonia, Fischer Hubertus, Flückiger Jacqueline, Hansson Margareta E., Huybrechts Philippe, Jugie Gérard, Johnsen Sigfus J., Jouzel Jean, Kaufmann Patrik, Kipfstuhl Josef, Lambert Fabrice, Lipenkov Vladimir Y., Littot Geneviève C., Longinelli Antonio, Lorrain Reginald, Maggi Valter, Masson-Delmotte Valerie, Miller Heinz, Mulvaney Robert, Oerlemans Johannes, Oerter Hans, Orombelli Giuseppe, Parrenin Frederic, Peel David A., Petit Jean-Robert, Raynaud Dominique, Ritz Catherine, Ruth Urs, Schwander Jakob, Siegenthaler Urs, Souchez Roland, Stauffer Bernhard, Peder Steffensen Jorgen, Stenni Barbara, Stocker Thomas F., Tabacco Ignazio E., Udisti Roberto, van de Wal Roderik S. W., van den Broeke Michiel, Weiss Jerome, Wilhelms Frank, Winther Jan-Gunnar, Wolff Eric W., Zucchelli Mario, Eight glacial cycles from an Antarctic ice core, 10.1038/nature02599
  18. Gallée H., Van Yperselb J. P., Fichefet T., Marsiat I., Tricot C., Berger A., Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model: 2. Response to insolation and CO2variations, 10.1029/92jd01256
  19. Gildor Hezi, Tziperman Eli, Physical mechanisms behind biogeochemical glacial-interglacialCO2variations, 10.1029/2000gl012571
  20. Goldstein Michael, Rougier Jonathan, Reified Bayesian modelling and inference for physical systems, 10.1016/j.jspi.2008.07.019
  21. Haken H, Information and Self-Organization: A Macroscopic Approach to Complex Systems (2006)
  22. J. Hargreaves, J. Annan, Assimilation of paleo-data in a simple Earth system model, 10.1007/s00382-002-0241-0
  23. Haslett John, Parnell Andrew, A simple monotone process with application to radiocarbon-dated depth chronologies, 10.1111/j.1467-9876.2008.00623.x
  24. Haslett J., Whiley M., Bhattacharya S., Salter-Townshend M., Wilson Simon P., Allen J. R. M., Huntley B., Mitchell F. J. G., Bayesian palaeoclimate reconstruction, 10.1111/j.1467-985x.2006.00429.x
  25. Hasselmann K., Stochastic climate models Part I. Theory, 10.3402/tellusa.v28i6.11316
  26. Huybers Peter, Tziperman Eli, Integrated summer insolation forcing and 40,000-year glacial cycles: The perspective from an ice-sheet/energy-balance model : FORTY-THOUSAND-YEAR GLACIAL CYCLES, 10.1029/2007pa001463
  27. Imbrie JJ, Milankovitch and Climate, Part I, 269 (1984)
  28. Izhikevich Eugene, FitzHugh Richard, FitzHugh-Nagumo model, 10.4249/scholarpedia.1349
  29. Kanamaru Takashi, Van der Pol oscillator, 10.4249/scholarpedia.2202
  30. Kantz Holger, Schreiber Thomas, Nonlinear Time Series Analysis, ISBN:9780511755798, 10.1017/cbo9780511755798
  31. Kennedy Marc C., O'Hagan Anthony, Bayesian calibration of computer models, 10.1111/1467-9868.00294
  32. King T., Quantifying nonlinearity and geometry in time series of climate, 10.1016/0277-3791(95)00060-7
  33. Kutzbach J.E., Vavrus S.J., Ruddiman W.F., Philippon-Berthier G., Comparisons of atmosphere–ocean simulations of greenhouse gas-induced climate change for pre-industrial and hypothetical ‘no-anthropogenic’ radiative forcing, relative to present day, 10.1177/0959683611400200
  34. Lisiecki LE, Paleoceanography, 20, PA1003 (2005)
  35. Liu Jane, West Mike, Combined Parameter and State Estimation in Simulation-Based Filtering, Sequential Monte Carlo Methods in Practice (2001) ISBN:9781441928870 p.197-223, 10.1007/978-1-4757-3437-9_10
  36. Lorenz EN, Bulletin of the American Meteorological Society, 50, 345 (1969)
  37. Lorenz Edward N., Climatic Change as a Mathematical Problem, 10.1175/1520-0450(1970)009<0325:ccaamp>2.0.co;2
  38. Loutre M.F., Clues from MIS 11 to predict the future climate – a modelling point of view, 10.1016/s0012-821x(03)00235-8
  39. Loutre M.F., Berger A., Marine Isotope Stage 11 as an analogue for the present interglacial, 10.1016/s0921-8181(02)00186-8
  40. Loutre M.F., Berger A., Crucifix M., Desprat S., Sánchez Goñi M.F., 36. Interglacials as simulated by the LLN 2-D NH and MoBidiC climate models, The Climate of Past Interglacials (2007) ISBN:9780444529558 p.547-561, 10.1016/s1571-0866(07)80061-3
  41. Loutre MF, Eos, Transactions of the American Geophysical Union, 89 (2008)
  42. Lüthi Dieter, Le Floch Martine, Bereiter Bernhard, Blunier Thomas, Barnola Jean-Marc, Siegenthaler Urs, Raynaud Dominique, Jouzel Jean, Fischer Hubertus, Kawamura Kenji, Stocker Thomas F., High-resolution carbon dioxide concentration record 650,000–800,000 years before present, 10.1038/nature06949
  43. Marwan Norbert, Donges Jonathan F., Zou Yong, Donner Reik V., Kurths Jürgen, Complex network approach for recurrence analysis of time series, 10.1016/j.physleta.2009.09.042
  44. Mudelsee M, The phase relations among atmospheric CO2 content, temperature and global ice volume over the past 420 ka, 10.1016/s0277-3791(00)00167-0
  45. Mudelsee Manfred, Stattegger Karl, Application of the Grassberger—Procaccia Algorithm to the δ18O Record from ODP Site 659: Selected Methodical Aspects, Fractals and Dynamic Systems in Geoscience (1994) ISBN:9783662073063 p.399-413, 10.1007/978-3-662-07304-9_31
  46. Mudelsee M., Scholz D., Röthlisberger R., Fleitmann D., Mangini A., Wolff E. W., Climate spectrum estimation in the presence of timescale errors, 10.5194/npg-16-43-2009
  47. Murphy James M., Sexton David M. H., Barnett David N., Jones Gareth S., Webb Mark J., Collins Matthew, Stainforth David A., Quantification of modelling uncertainties in a large ensemble of climate change simulations, 10.1038/nature02771
  48. Nicolis C., Can error source terms in forecasting models be represented as Gaussian Markov noises?, 10.1256/qj.04.98
  49. Nicolis Gregoire, Nicolis Catherine, Foundations of Complex Systems : Nonlinear Dynamics, Statistical Physics, Information and Prediction, ISBN:9789812700438, 10.1142/6253
  50. Paillard Didier, 10.1038/34891
  51. Paillard Didier, Glacial cycles: Toward a new paradigm, 10.1029/2000rg000091
  52. Paillard Didier, Parrenin Frédéric, The Antarctic ice sheet and the triggering of deglaciations, 10.1016/j.epsl.2004.08.023
  53. Palmer Tim, Global warming in a nonlinear climate - Can we be sure?, 10.1051/epn:2005202
  54. Palmer T, Stochastic Physics and Climate Modeling (2010)
  55. Petit J. R., Jouzel J., Raynaud D., Barkov N. I., Barnola J.-M., Basile I., Bender M., Chappellaz J., Davis M., Delaygue G., Delmotte M., Kotlyakov V. M., Legrand M., Lipenkov V. Y., Lorius C., PÉpin L., Ritz C., Saltzman E., Stievenard M., 10.1038/20859
  56. Petoukhov V., Ganopolski A., Brovkin V., Claussen M., Eliseev A., Kubatzki C., Rahmstorf S., CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate, 10.1007/pl00007919
  57. Rahmstorf Stefan, Crucifix Michel, Ganopolski Andrey, Goosse Hugues, Kamenkovich Igor, Knutti Reto, Lohmann Gerrit, Marsh Robert, Mysak Lawrence A., Wang Zhaomin, Weaver Andrew J., Thermohaline circulation hysteresis: A model intercomparison, 10.1029/2005gl023655
  58. Raymo Maureen E., Huybers Peter, Unlocking the mysteries of the ice ages, 10.1038/nature06589
  59. Rohling E.J., Braun K., Grant K., Kucera M., Roberts A.P., Siddall M., Trommer G., Comparison between Holocene and Marine Isotope Stage-11 sea-level histories, 10.1016/j.epsl.2009.12.054
  60. Rougier Jonathan, Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, 10.1007/s10584-006-9156-9
  61. Rougier J., Sexton D. M.H, Inference in ensemble experiments, 10.1098/rsta.2007.2071
  62. Rougier Jonathan, Sexton David M. H., Murphy James M., Stainforth David, Analyzing the Climate Sensitivity of the HadSM3 Climate Model Using Ensembles from Different but Related Experiments, 10.1175/2008jcli2533.1
  63. Ruddiman William F., The Anthropogenic Greenhouse Era Began Thousands of Years Ago, 10.1023/b:clim.0000004577.17928.fa
  64. Ruddiman William F., Orbital changes and climate, 10.1016/j.quascirev.2006.09.001
  65. Ruddiman William F., The early anthropogenic hypothesis: Challenges and responses : EARLY ANTHROPOGENIC HYPOTHESIS, 10.1029/2006rg000207
  66. Ruddiman W.F., Kutzbach J.E., Vavrus S.J., Can natural or anthropogenic explanations of late-Holocene CO2 and CH4 increases be falsified?, 10.1177/0959683610387172
  67. Rulkov Nikolai F., Sushchik Mikhail M., Tsimring Lev S., Abarbanel Henry D. I., Generalized synchronization of chaos in directionally coupled chaotic systems, 10.1103/physreve.51.980
  68. Saltzman B, Dynamical Paleoclimatology: Generalized Theory of Global Climate Change (International Geophysics), 80 (2001)
  69. Saltzman Barry, Maasch Kirk A., A first-order global model of late Cenozoic climatic change, 10.1017/s0263593300020824
  70. Saltzman Barry, Maasch Kirk A, A first-order global model of late Cenozoic climatic change II. Further analysis based on a simplification of CO2 dynamics, 10.1007/bf00210005
  71. Sansó Bruno, Forest Chris E., Zantedeschi Daniel, Inferring climate system properties using a computer model, 10.1214/08-ba301
  72. Santner Thomas J., Williams Brian J., Notz William I., The Design and Analysis of Computer Experiments, ISBN:9781441929921, 10.1007/978-1-4757-3799-8
  73. Sisson S. A., Fan Y., Tanaka M. M., Sequential Monte Carlo without likelihoods, 10.1073/pnas.0607208104
  74. Tzedakis P. C., Raynaud D., McManus J. F., Berger A., Brovkin V., Kiefer T., Interglacial diversity, 10.1038/ngeo660
  75. Tziperman Eli, Raymo Maureen E., Huybers Peter, Wunsch Carl, Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing : HOW TO PACE AN ICE AGE, 10.1029/2005pa001241
  76. Vavrus Steve, Philippon-Berthier Gwenaëlle, Kutzbach John E., Ruddiman William F., The role of GCM resolution in simulating glacial inception, 10.1177/0959683610394882
  77. Vettoretti G., Peltier W.R., Sensitivity of glacial inception to orbital and greenhouse gas climate forcing, 10.1016/j.quascirev.2003.08.008
  78. Vettoretti G., Peltier W.R., The impact of insolation, greenhouse gas forcing and ocean circulation changes on glacial inception, 10.1177/0959683610394885
  79. Wood Simon N., Statistical inference for noisy nonlinear ecological dynamic systems, 10.1038/nature09319
Bibliographic reference Crucifix, Michel. How can a glacial inception be predicted?. In: The Holocene : a major interdisciplinary journal focusing on recent environmental change, Vol. 21, no. 5, p. 831-842 (2011)
Permanent URL http://hdl.handle.net/2078.1/84001