User menu

Galois theory and commutators

Bibliographic reference Everaert, Tomas ; Van der Linden, Tim. Galois theory and commutators. In: Algebra universalis, Vol. 65, no. 2, p. 161-177 (2011)
Permanent URL http://hdl.handle.net/2078.1/83373
  1. Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories. Mathematics and its Applications, vol. 566. Kluwer (2004)
  2. Borceux F., Clementino Maria Manuel, Topological semi-abelian algebras, 10.1016/j.aim.2004.03.002
  3. Borceux, F., Janelidze, G.: Galois Theories. Cambridge Studies in Advanced Mathematics, vol. 72. Cambridge University Press (2001)
  4. Bourn, D.: Normalization equivalence, kernel equivalence and affine categories. In: Carboni, A., Pedicchio, M.C., Rosolini, G. (eds.) Category Theory, Proceedings Como 1990. Lecture Notes in Mathematics, vol. 1488, pp. 43–62. Springer (1991)
  5. Bourn Dominique, Gran Marino, Central extensions in semi-abelian categories, 10.1016/s0022-4049(02)00127-5
  6. Bourn D., Janelidze G.: Characterization of protomodular varieties of universal algebras. Theory Appl. Categ. 11, 143–147 (2003)
  7. Everaert T., Relative commutator theory in varieties of Ω-groups, 10.1016/j.jpaa.2006.05.011
  8. Everaert Tomas, Higher central extensions and Hopf formulae, 10.1016/j.jalgebra.2008.12.015
  9. Everaert Tomas, Gran Marino, On low-dimensional homology in categories, 10.4310/hha.2007.v9.n1.a12
  10. Everaert T., Gran M.: Relative commutator associated with varieties of n-nilpotent and of n-solvable groups. Arch. Math. (Brno) 42, 387–396 (2007)
  11. Everaert Tomas, Gran Marino, Van der Linden Tim, Higher Hopf formulae for homology via Galois Theory, 10.1016/j.aim.2007.11.001
  12. Grandis Marco, Preface, 10.1023/b:apcs.0000013953.15330.92
  13. Everaert T., Van der Linden T.: Baer invariants in semi-abelian categories II: Homology. Theory Appl. Categ. 12, 195–224 (2004)
  14. Everaert T., Van der Linden T.: A note on double central extensions in exact Mal’tsev categories. Cah. Topol. Géom. Differ. Catég. 51, 143–153 (2010)
  15. Everaert, T., Van der Linden, T.: Relative commutator theory in semi-abelian categories (2010, submitted)
  16. Frohlich A., Baer-Invariants of Algebras, 10.2307/1993904
  17. Furtado-Coelho J, Homology and generalized Baer invariants, 10.1016/0021-8693(76)90213-1
  18. GOEDECKE JULIA, VAN DER LINDEN TIM, On satellites in semi-abelian categories: Homology without projectives, 10.1017/s0305004109990107
  19. Higgins P. J., Groups with Multiple Operators, 10.1112/plms/s3-6.3.366
  20. Janelidze George, Pure Galois theory in categories, 10.1016/0021-8693(90)90130-g
  21. Janelidze, G.: What is a double central extension? (The question was asked by Ronald Brown.) Cah. Topol. Géom. Differ. Catég. 32, 191–201 (1991)
  22. Janelidze G., Kelly G.M., Galois theory and a general notion of central extension, 10.1016/0022-4049(94)90057-4
  23. Janelidze George, Márki László, Tholen Walter, Semi-abelian categories, 10.1016/s0022-4049(01)00103-7
  24. Lavendhomme, R., Roisin, J.R. Cohomologie non abélienne de structures algébriques. J. Algebra 67:385–414 (1980) (French)
  25. Lue Abraham S.-T., Baer-invariants and extensions relative to a variety, 10.1017/s0305004100041529
  26. Rodelo D., Van der Linden T.: The third cohomology group classifies double central extensions. Theory Appl. Categ. 23, 150–169 (2010)
  27. Ursini, A. Osservazioni sulle varietá BIT. Boll. Unione Mat. Ital. 4:205–211 (1973) (Italian)
  28. Ursini Aldo, On subtractive varieties, I, 10.1007/bf01236518