User menu

Placing zeroes and the Kronecker canonical form

Bibliographic reference Boley , D. ; Van Dooren, Paul. Placing zeroes and the Kronecker canonical form. In: M. Moonen, G. Golub and B. De Moor, NATO ASI on Linear Algebra for Large Scale and Real-Time Applications, Kluwer  1993, p. 353-354
Permanent URL http://hdl.handle.net/2078.1/81205
  1. W. A. Berger, R. J. Perry, and H. H. Sun, An algorithm for the assignment of system zeroes,Automatica, 27(3) (1991), pp. 541–544.
  2. Th. Beelen and P. Van Dooren, An improved algorithm for the computation of Kronecker's canonical form of a singular pencil,Linear Algebra & Applications, 105 (1988), pp. 9–65.
  3. D. L. Boley, Estimating the sensitivity of the algebraic structure of matrix pencils with simple eigenvalue estimates,SIAM J. Matrix Anal., 11 (1990), pp. 632–643.
  4. A. Emami-Naeini and P. Van Dooren, Computation of zeros of linear multivariable systems,Automatica, 18 (1982), pp. 415–430.
  5. F. R. Gantmacher,Theory of Matrices, vol. 2, Chelsea, New York, 1959.
  6. T. K. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
  7. J. Kautsky, N. K. Nichols, and P. Van Dooren, Robust pole assignment in linear state feedback,Int. J. Control, 41 (1985), pp. 1129–1155.
  8. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to the analysis and synthesis of system zeroes, part I,Int. J. Contr., 23 (1976), pp. 149–166.
  9. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to the analysis and synthesis of system zeroes, part II: Non-square systems,Int. J. Contr., 23 (1976), pp. 167–181.
  10. G. Miminis and C. C. Paige, A direct method for pole assignment of time-invariant multi-input linear systems,Automatica, 24(3) (1988), pp. 343–356.
  11. P. Misra, A computational algorithm for squaring up, part I: Zero input-output matrix, InProc. Conf. Dec. Contr., pp. 149–150, December 1992.
  12. P. Van Dooren, The computation of Kronecker's canonical form of a singular pencil,Lin. Alg. & Appl., 27 (1979), pp. 103–141.
  13. G. Verghese, P. Van Dooren, and T. Kailath, Properties of the system matrix of a generalized state-space system,Int. J. Contr., 30 (1979), pp. 235–243.