User menu

Deadbeat control : a special inverse eigenvalue problem

Bibliographic reference Van Dooren, Paul. Deadbeat control : a special inverse eigenvalue problem. In: Bit : numerical mathematics, Vol. 24, p. 681-699 (1984)
Permanent URL
  1. H. Akashi, H. Imai, M. Adachi,On the optimal control of linear discrete-time systems by geometric approach, Int. J. Contr., Vol. 28, pp. 853–867, 1978.
  2. D. Boley,Computing the controllability/observability decomposition of a linear time-invariant dynamic system, a numerical approach, Ph.D. Thesis, Comp. Sc. Dept. Stanford Univ., June 1981.
  3. D. Boley, G. Golub,Block Lanczos and control theory, Proceedings Workshop on Numerical Methods in Automatic Control, Lund, Sweden, Sept. 1980.
  4. R. Eising,Pole assignment, a new proof and algorithms, Memo COSOR 81-10, T.H. Eindhoven, The Netherlands, Aug. 1981.
  5. A. Emami-Naeini, G. Franklin,Deadbeat control and tracking of discrete time systems, IEEE Trans. Aut. Control., Vol. AC-27, pp. 176–180, Febr. 1982.
  6. G. Klein,On the relationship between controllability indexes, eigenvector assignment, and deadbeat control, IEEE Trans. Aut. Contr., Vol. AC-29, pp. 77–79, Jan. 1984.
  7. M. Konstantinov, P. Petrov, N. Christov,Control of linear systems via the serial canonical form, Proceedings 2nd IFAC/IFIP Symp. Software for Computer Control, Vol. II, June 1979.
  8. M. Konstantinov, P. Petkov, N. Christov,Synthesis of linear systems with desired equivalent form, J. Comp. Appl. Math., Vol. 6, pp. 27–35, 1980.
  9. H. Kwakernaak, R. Sivan,Linear Optimal Control Systems, New York, Wiley, 1972.
  10. F. Lewis,A general Riccati equation solution to the deadbeat control problem, IEEE Trans. Aut. Contr., Vol. AC-27, pp. 186–188, Feb. 1982.
  11. G. Miminis, C. Paige,An algorithm for pole assignment of time invariant linear systems, Int. J. Control, Vol. 35, pp. 341–354, 1982.
  12. G. Miminis, C. Paige,An algorithm for pole assignment of time invariant multi-input linear systems, in Proceedings 21st IEEE Conf. Dec. & Contr., Florida, pp. 62–67, Dec. 1982.
  13. C. Moler,MATLAB User's Guide, Technical Report CS81-1, Dept. of Computer Science, University of New Mexico, June 1981.
  14. C. Mullis,Time optimal discrete regulator gains, IEEE Trans. Aut. Contr., Vol. AC-17, pp. 265–266, 1972.
  15. R. Patel,Computation of minimal-order state-space realizations and observability indices using orthogonal transformations, Int. J. Contr., Vol. 33, pp. 227–246, 1981.
  16. G. Stewart,Introduction to Matrix Computations, New York, Academic, 1973.
  17. P. Van Dooren, A. Emami-Naeini, L. Silverman,Stable extraction of the Kronecker structure of pencils, Proceedings 17th IEEE Conf. Decision and Control, pp. 521–524, Jan. 1979.
  18. P. Van Dooren,On the computation of the Kronecker canonical form of a singular pencil, Linear Algebra & Applications, Vol. 27, pp. 103–141, Oct. 1979.
  19. P. Van Dooren,The generalized eigenstructure problem in linear system theory, IEEE Trans. Aut. Contr., Vol. AC-26, pp. 111–129, Feb. 1981.
  20. A. Varga,Numerically stable algorithm for standard controllability form determination, Electronic Letters, Vol. 17, pp. 74–75, Jan. 1981.
  21. A. Varga,A Schur method for pole assignment, IEEE Trans. Aut. Contr., Vol. AC-26, pp. 517–519, April 1981.
  22. J. Wilkinson,The Algebraic Eigenvalue Problem, Oxford, Clarendon, 1965.
  23. Wonham W. Murray, Linear Multivariable Control: a Geometric Approach, ISBN:9781468400700, 10.1007/978-1-4684-0068-7