User menu

An implicit shift bidiagonalization algorithm for ill-posed problems

Bibliographic reference Bjorck, Ake ; Grimme, Eric ; Van Dooren, Paul. An implicit shift bidiagonalization algorithm for ill-posed problems. In: BIT, Vol. 34, p. 510-534 (1994)
Permanent URL http://hdl.handle.net/2078.1/79947
  1. Å. Björck,A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT, 28 (1988), pp. 659–670.
  2. Å. Björck,Numerical Methods for Least Squares Methods, Frontier in Applied Mathematics series. SIAM, Philadelphia, to appear.
  3. Brakhage Helmut, ON ILL-POSED PROBLEMS AND THE METHOD OF CONJUGATE GRADIENTS, Inverse and Ill-Posed Problems (1987) ISBN:9780122390401 p.165-175, 10.1016/b978-0-12-239040-1.50014-4
  4. D. Calvetti, L. Reichel, and D. C. Sorenson,An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Elect. Trans. Numer. Anal., 2 (1994), pp. 1–21.
  5. J. Demmel and W. Kahan,Accurate singular values of bidiagonal matrices, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 873–912.
  6. D. A. Girard,A fast ‘Monte-Carlo Cross-Validation’ procedure for large least squares problems with noisy data, Numer. Math. 56 (1989), pp. 1–23.
  7. G. H. Golub, M. T. Heath, and G. Wahba,Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.
  8. G. H. Golub and W. Kahan,Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer Anal. Ser. B, 2 (1965), pp. 205–224.
  9. G. H. Golub, F. T. Luk, and M. L. Overton,A block Lanczos method for computing the singular values and singular vectors of a matrix, ACM Trans. on Math. Soft., 7 (1981), pp. 149–169.
  10. G. H. Golub and C. F. Van Loan,Matrix Computations, The Johns Hopkins University Press, Baltimore, second edition, 1989.
  11. M. Hanke,Accelerated Landweber iterations for the solution of ill-posed equations, Numer. Math. 60 (1991), pp. 341–373.
  12. M. Hanke and P. C. Hansen,Regularization methods for large-scale problems, Surveys on Mathematics for Industry, 3 (1994), pp. 253–315.
  13. P. C. Hansen,Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review, 34 (1992), pp. 561–580.
  14. P. C. Hansen,Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, 6 (1994), pp. 1–36.
  15. Louis Alfred K., CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR COMPACT OPERATORS, Inverse and Ill-Posed Problems (1987) ISBN:9780122390401 p.177-183, 10.1016/b978-0-12-239040-1.50015-6
  16. D. P. O'Leary and J. A. Simmons,A bidiagonalization-regularization porcedure for large scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474–489.
  17. C. C. Paige,Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Applics., 18 (1976), pp. 341–349.
  18. C. C. Paige and M. A. Saunders,LSQR an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
  19. D. Sorenson,Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
  20. C. R. Vogel and J. G. Wade,Iterative SVD-based methods for ill-posed problems, SIAM J. Sci. Statist. Comput., 15 (1994), pp. 736–754.
  21. G. Wahba,Spline Models for Observational Data, SIAM, CBMS 59, 1990.
  22. J. M. Varah,A practical examination of some numerical methods for linear discrete ill-posed problems, SIAM Review, 21 (1979), pp. 100–111.