# An implicit shift bidiagonalization algorithm for ill-posed problems

## Primary tabs

Bibliographic reference | Bjorck, Ake ; Grimme, Eric ; Van Dooren, Paul. An implicit shift bidiagonalization algorithm for ill-posed problems. In: BIT, Vol. 34, p. 510-534 (1994) |
---|---|

Permanent URL | http://hdl.handle.net/2078.1/79947 |

## References Provided by I4OC

- Å. Björck,A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT, 28 (1988), pp. 659–670.
- Å. Björck,Numerical Methods for Least Squares Methods, Frontier in Applied Mathematics series. SIAM, Philadelphia, to appear.
- Brakhage Helmut,
*ON ILL-POSED PROBLEMS AND THE METHOD OF CONJUGATE GRADIENTS*,*Inverse and Ill-Posed Problems*(1987) ISBN:9780122390401 p.165-175, 10.1016/b978-0-12-239040-1.50014-4 - D. Calvetti, L. Reichel, and D. C. Sorenson,An implicitly restarted Lanczos method for large symmetric eigenvalue problems, Elect. Trans. Numer. Anal., 2 (1994), pp. 1–21.
- J. Demmel and W. Kahan,Accurate singular values of bidiagonal matrices, SIAM J. Sci. Statist. Comput., 11 (1990), pp. 873–912.
- D. A. Girard,A fast ‘Monte-Carlo Cross-Validation’ procedure for large least squares problems with noisy data, Numer. Math. 56 (1989), pp. 1–23.
- G. H. Golub, M. T. Heath, and G. Wahba,Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215–223.
- G. H. Golub and W. Kahan,Calculating the singular values and pseudo-inverse of a matrix, SIAM J. Numer Anal. Ser. B, 2 (1965), pp. 205–224.
- G. H. Golub, F. T. Luk, and M. L. Overton,A block Lanczos method for computing the singular values and singular vectors of a matrix, ACM Trans. on Math. Soft., 7 (1981), pp. 149–169.
- G. H. Golub and C. F. Van Loan,Matrix Computations, The Johns Hopkins University Press, Baltimore, second edition, 1989.
- M. Hanke,Accelerated Landweber iterations for the solution of ill-posed equations, Numer. Math. 60 (1991), pp. 341–373.
- M. Hanke and P. C. Hansen,Regularization methods for large-scale problems, Surveys on Mathematics for Industry, 3 (1994), pp. 253–315.
- P. C. Hansen,Analysis of discrete ill-posed problems by means of the L-curve, SIAM Review, 34 (1992), pp. 561–580.
- P. C. Hansen,Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, 6 (1994), pp. 1–36.
- Louis Alfred K.,
*CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR COMPACT OPERATORS*,*Inverse and Ill-Posed Problems*(1987) ISBN:9780122390401 p.177-183, 10.1016/b978-0-12-239040-1.50015-6 - D. P. O'Leary and J. A. Simmons,A bidiagonalization-regularization porcedure for large scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 474–489.
- C. C. Paige,Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, J. Inst. Math. Applics., 18 (1976), pp. 341–349.
- C. C. Paige and M. A. Saunders,LSQR an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software, 8 (1982), pp. 43–71.
- D. Sorenson,Implicit application of polynomial filters in a k-step Arnoldi method, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
- C. R. Vogel and J. G. Wade,Iterative SVD-based methods for ill-posed problems, SIAM J. Sci. Statist. Comput., 15 (1994), pp. 736–754.
- G. Wahba,Spline Models for Observational Data, SIAM, CBMS 59, 1990.
- J. M. Varah,A practical examination of some numerical methods for linear discrete ill-posed problems, SIAM Review, 21 (1979), pp. 100–111.