User menu

A mesh adaptation procedure for periodic domains

Bibliographic reference Dobrzynski, Cecile ; Melchior, Maxime ; Delannay, Laurent ; Remacle, Jean-Francois. A mesh adaptation procedure for periodic domains. In: International journal for numerical methods in engineering, Vol. 86, no. 12, p. 1396-1412 (2011)
Permanent URL
  1. GONZALEZ C, Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models, 10.1016/j.jmps.2004.01.002
  2. Kouznetsova V.G., Geers M.G.D., Brekelmans W.A.M., Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, 10.1016/j.cma.2003.12.073
  3. Delannay L., Melchior M.A., Signorelli J.W., Remacle J.-F., Kuwabara T., Influence of grain shape on the planar anisotropy of rolled steel sheets – evaluation of three models, 10.1016/j.commatsci.2008.06.013
  4. Zhao Z., Kuchnicki S., Radovitzky R., Cuitiño A., Influence of in-grain mesh resolution on the prediction of deformation textures in fcc polycrystals by crystal plasticity FEM, 10.1016/j.actamat.2006.11.035
  5. Kaczmarczyk Łukasz, Pearce Chris J., Bićanić Nenad, Scale transition and enforcement of RVE boundary conditions in second-order computational homogenization, 10.1002/nme.2188
  6. Béchet Éric, Moës Nicolas, Wohlmuth Barbara, A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, 10.1002/nme.2515
  7. Wenk, Texture and Anisotropy, Preferred Orientations in Polycrystals and their Effect on Materials Properties (1998)
  8. Resk H, Delannay L, Bernacki M, Coupez T, Logé R, Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations, 10.1088/0965-0393/17/7/075012
  9. Kuroda, International Journal of Plasticity (2009)
  10. Bernacki M., Chastel Y., Coupez T., Logé R.E., Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, 10.1016/j.scriptamat.2008.02.016
  11. Melchior Maxime A., Delannay Laurent, A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size, 10.1016/j.commatsci.2005.12.002
  12. George, Encyclopedia of Computational Mechanics (2004)
  13. Alauzet F Frey PJ Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. partie 1: aspects théoriques 2003
  14. Leservoisier D George P-L Dervieux A Métrique continue et optimisation de maillage 2001
  15. Frey, Maillages: applications aux éléments finis (1999)
  16. Compère, International Journal for Numerical Methods in Engineering (2000)
  17. Li Xiangrong, Shephard Mark S., Beall Mark W., 3D anisotropic mesh adaptation by mesh modification, 10.1016/j.cma.2004.11.019
  18. Compère G., Remacle J. -F., Marchandise E., Transient Mesh Adaptivity with Large Rigid-Body Displacements, Proceedings of the 17th International Meshing Roundtable ISBN:9783540879206 p.213-230, 10.1007/978-3-540-87921-3_13
  19. Dobrzynski C Frey P Anisotropic delaunay mesh adaptation for unsteady simulations
  20. Frey PJ Yams: A fully automatic adaptive isotropic surface remeshing procedure 2001
  21. George P-L Tet meshing: construction, optimization and adaptation
  22. Mishra S.K., Pant P., Narasimhan K., Rollett A.D., Samajdar I., On the widths of orientation gradient zones adjacent to grain boundaries, 10.1016/j.scriptamat.2009.03.062
  23. Delannay Laurent, Jacques Pascal J., Kalidindi Surya R., Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons, 10.1016/j.ijplas.2006.01.008
  24. Hughes TJR Consider a spherical cow-conservation of geometry in analysis: Implications for computational methods in engineering
  25. 2008
  26. Kuroda Mitsutoshi, Tvergaard Viggo, Effects of texture on shear band formation in plane strain tension/compression and bending, 10.1016/j.ijplas.2006.03.014
  27. Delannay, Ceramic Transactions, 201, 745 (2008)