User menu

Algebras with involution that become hyperbolic over the function field of a conic

Bibliographic reference Quéguiner-Mathieu, Anne ; Tignol, Jean-Pierre. Algebras with involution that become hyperbolic over the function field of a conic. In: Israel Journal of Mathematics, Vol. 180, no. 1, p. 317-344 (2010)
Permanent URL http://hdl.handle.net/2078.1/77234
  1. Arason Jón Kr, Cohomologische invarianten quadratischer Formen, 10.1016/0021-8693(75)90145-3
  2. Bayer-Fluckiger E., Shapiro Daniel B., Tignol J. -P., Hyperbolic involutions, 10.1007/bf02572417
  3. Bayer-Fluckiger E, Parimala R, Quéguiner-Mathieu A, Pfister involutions, 10.1007/bf02829631
  4. Becher Karim Johannes, A proof of the Pfister Factor Conjecture, 10.1007/s00222-007-0107-5
  5. I. Dejaiffe, Formes antihermitiennes devenant hyperboliques sur un corps de déploiement, Comptes Rendus Mathématique Série I 332 (2001), 105–108.
  6. Dejaiffe I., Somme orthogonal d'algebres a involution et algebra de clifford, 10.1080/00927879808826224
  7. R. S. Garibaldi, Clifford algebras of hyperbolic involutions, Mathematische Zeitschrift 236 (2001), 321–349.
  8. Garibaldi Skip, Orthogonal involutions on algebras of degree 16 and the Killing form of 𝐸₈, 10.1090/conm/493/09667
  9. Gille Philippe, Szamuely Tamas, Central Simple Algebras and Galois Cohomology, ISBN:9780511607219, 10.1017/cbo9780511607219
  10. D. W. Hoffmann, Function fields of quadratic forms, Doctoral dissertation, University of California, Berkeley, California, 1992.
  11. D. W. Hoffmann, D.W. Lewis and J. Van Geel, Minimal forms for function fields of conics, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proceedings of Symposia in Pure Mathematics, Vol. 58, Amer. Math. Soc., Providence, RI, 1995, pp. 227–237.
  12. Hoffmann D. W., Van Geel J., Minimal forms wit respect to function fields of conics, 10.1007/bf02567976
  13. M.-A. Knus, T. Y. Lam, D. Shapiro and J.-P. Tignol, Discriminants of involutions on biquaternion algebras, in K-theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1992), Proceedings of Symposia in Pure Mathematics, Vol. 58, Part 2, Amer. Math. Soc., Providence, RI, 1995, pp. 279–303.
  14. Knus Max-Albert, Merkurjev Alexander, Rost Markus, Tignol Jean-Pierre, The Book of Involutions, ISBN:9780821809044, 10.1090/coll/044
  15. T. Y. Lam, Introduction to Quadratic Forms over Fields, American Mathematical Society, Providence, RI, 2005.
  16. A. S. Merkurjev, Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR, Ser. Mat. 55 (1992), no. 1, 218–224; English translation: Math. USSR-Izv. 38 (1992), no. 1, 215–221.
  17. Parimala R, Sridharan R, Suresh V, Hermitian Analogue of a Theorem of Springer, 10.1006/jabr.2001.8830
  18. Pierce Richard S., Associative Algebras, ISBN:9781475701654, 10.1007/978-1-4757-0163-0
  19. Scharlau Winfried, Quadratic and Hermitian Forms, ISBN:9783642699733, 10.1007/978-3-642-69971-9
  20. Sivatski A. S., APPLICATIONS OF CLIFFORD ALGEBRAS TO INVOLUTIONS AND QUADRATIC FORMS, 10.1081/agb-200051166
  21. Tao D., The Generalized Even Clifford Algebra, 10.1006/jabr.1995.1058
  22. J.-P. Tignol, Réduction de l’indice d’une algèbre simple centrale sur le corps des fonctions d’une quadrique, Bulletin de la Société Mathématique de Belgique. Série A 42 (1990), 735–745.
  23. Tignol J.-P., A Cassels–Pfister Theorem for Involutions on Central Simple Algebras, 10.1006/jabr.1996.0149
  24. J.-P. Tignol and A. R. Wadsworth, Value functions and associated graded rings for semisimple algebras, Transactions of the American Mathematical Society 369 (2010), 687–726.
  25. J.-P. Tignol and A. R. Wadsworth, Valuations on algebras with involution, preprint arXiv:0902.0849.