User menu

Log-density deconvolution by wavelet thresholding

Bibliographic reference Van Bellegem, Sébastien ; Bigot, Jérémie. Log-density deconvolution by wavelet thresholding. In: Scandinavian Journal of Statistics : theory and applications, Vol. 36, no. 4, p. 749-763 (December)
Permanent URL http://hdl.handle.net/2078.1/75862
  1. Antoniadis, Ann. Statist., 34, 2132 (2006)
  2. Barron, Ann. Statist., 19, 1347 (1991)
  3. Buckheit, Wavelab reference manual (1995)
  4. Carroll, J. Amer. Statist. Assoc., 83, 1184 (1988)
  5. Comte, Can. J. Statist., 34, 431 (2006)
  6. Comte, J. Statist. Comput. Simul., 7, 977 (2007)
  7. Csiszár, Ann. Probab., 3, 146 (1975)
  8. De Canditiis, Scand. J. Statist., 33, 293 (2006)
  9. Donoho, Int. J. Wavelets Multiresolut. Inf. Process., 4, 415 (2004)
  10. Fan, Ann. Statist., 19, 1257 (1991)
  11. Fan, IEEE Trans. Inform. Theory, 48, 734 (2002)
  12. Hall, Biometrika, 92, 135 (2005)
  13. Johannes, Convergence rates for ill-posed inverse problems with an unknown operator (2009)
  14. Johnstone, J. Roy. Statist. Soc. Ser. B, 66, 547 (2004)
  15. Juditsky, Bernoulli, 10, 187 (2004)
  16. Kolaczyk, Wavelet methods for the inversion of certain homogeneous linear operators in the presence of noisy data (1994)
  17. Koo, Scand. J. Statist., 26, 73 (1999)
  18. Koo, Ann. Statist., 26, 335 (1998)
  19. Koo, Statist. Probab. Lett., 26, 271 (1996)
  20. Mallat, A wavelet tour of signal processing (1998)
  21. Meyer, Wavelets and operators (1992)
  22. Pensky, Ann. Statist., 27, 2033 (1999)
  23. Rosenthal, Proceedings of Sixth Berkeley Symposium on Mathematical Statistics and Probability, 2, 149 (1972)