User menu

Control of bimanual rhythmic movements: trading efficiency for robustness depending on the context

Bibliographic reference Ronsse, Renaud ; Thonnard, Jean-Louis ; Lefèvre, Philippe ; Sepulchre, Rodolphe. Control of bimanual rhythmic movements: trading efficiency for robustness depending on the context. In: Experimental Brain Research, Vol. 187, no. 2, p. 193-205 (2008)
Permanent URL http://hdl.handle.net/2078.1/75438
  1. Åström KJ, Murray RM (2008) Feedback systems. An introduction for scientists and engineers. Princeton University Press, New Jersey
  2. Bays Paul M., Wolpert Daniel M., Computational principles of sensorimotor control that minimize uncertainty and variability : Computational principles of sensorimotor control, 10.1113/jphysiol.2006.120121
  3. Boulet B, Duan Y (2007) The fundamental tradeoff between performance and robustness—a new perspective on loop shaping. IEEE Control Syst Mag 27(3):30–44
  4. Bryson AE, Ho YC (1969) Applied optimal control: optimization, estimation, and control. Blaisdell, Waltham
  5. Buschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93(3):1127–1135
  6. Clarke A. H., Ditterich J., Drüen K., Schönfeld U., Steineke C., Using high frame rate CMOS sensors for three-dimensional eye tracking, 10.3758/bf03195484
  7. Collins SH, Wisse M, Ruina A (2001) A three-dimensional passive-dynamic walking robot with two legs and knees. Int J Robot Res 20(7):607–615
  8. Collins S, Ruina A, Tedrake R, Wisse M (2005) Efficient bipedal robots based on passive-dynamic walkers. Science 307(5712):1082–1085
  9. Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4(11):423–431
  10. Dijkstra TMH, Katsumata H, de Rugy A, Sternad D (2004) The dialogue between data and model: Passive stability and relaxation behavior in a ball bouncing task. Nonlinear Stud 11(3):319–344
  11. Franklin G, Powell JD, Emami-Naeini A (2005) Feedback control of dynamic systems, 5th edn. Prentice Hall, Englewood Cliffs
  12. Goswami A, Thuilot B, Espiau B (1998) A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int J Robot Res 17(12):1282–1301
  13. Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394(6695):780–784. http://dx.doi.org/10.1038/29528
  14. Harris CM, Wolpert DM (2006) The main sequence of saccades optimizes speed-accuracy trade-off. Biol Cybern 95(1):21–29. http://dx.doi.org/10.1007/s00422-006-0064-x
  15. Haruno M, Wolpert DM, Kawato M, (2001) Mosaic model for sensorimotor learning and control. Neural Comput 13(10):2201–2220
  16. Hogan N, Sternad D (2007) On rhythmic and discrete movements: reflections, definitions and implications for motor control. Exp Brain Res 181(1):13–30
  17. Huys R, Beek PJ (2002) The coupling between point-of-gaze and ball movements in three-ball cascade juggling: the effects of expertise, pattern and tempo. J Sports Sci 20(3):171–186
  18. Ijspeert A, Nakanishi J, Schaal S (2003) Learning attractor landscapes for learning motor primitives. In: Advances in neural information processing systems, vol 15. MIT Press, Cambridge, pp 1547–1554
  19. Jordan MI, Wolpert DM (1999) Computational motor control. In: Gazzaniga M (ed) The cognitive neurosciences. MIT Press, Cambridge
  20. Karniel A, Inbar GF (2000) Human motor control: Learning to control a time-varying, nonlinear, many-to-one system. IEEE Trans Syst Man Cybern C Appl Rev 30(1):1–11
  21. Katsumata Hiromu, Zatsiorsky Vladimir, Sternad Dagmar, Control of ball-racket interactions in rhythmic propulsion of elastic and non-elastic balls, 10.1007/s00221-002-1331-2
  22. Kelso JAS (1995) Dynamic patterns. The self-organization of brain and behavior. MIT Press, Cambridge
  23. Kelso JAS, Southard DL, Goodman D (1979) On the nature of human interlimb coordination. Science 203(4384):1029–1031
  24. Kuo Arthur D., The Relative Roles of Feedforward and Feedback in the Control of Rhythmic Movements, 10.1123/mcj.6.2.129
  25. Land MF, McLeod P (2000) From eye movements to actions: how batsmen hit the ball. Nat Neurosci 3(12):1340–1345
  26. Liu D, Todorov E (2007) Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J Neurosci 27(35):9354–9368. http://dx.doi.org/10.1523/JNEUROSCI.1110-06.2007
  27. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82
  28. Nakano E, Imamizu H, Osu R, Uno Y, Gomi H, Yoshioka T, Kawato M (1999) Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. J Neurophysiol 81(5):2140–2155
  29. Novak KE, Miller LE, Houk JC (2002) The use of overlapping submovements in the control of rapid hand movements. Exp Brain Res 144(3):351–364
  30. Ronsse R, Lefevre P, Sepulchre R (2006) Sensorless stabilization of bounce juggling. IEEE Trans Robot 22(1):147–159
  31. Ronsse R, Lefevre P, Sepulchre R (2007) Rhythmic feedback control of a blind planar juggler. IEEE Trans Robot 23(4):790–802
  32. Ronsse R, Lefevre P, Sepulchre R (2008) Robotics and neuroscience: a rhythmic interaction. Neural Netw (accepted for publication)
  33. de Rugy A, Wei K, Muller H, Sternad D (2003) Actively tracking ‘passive’ stability in a ball bouncing task. Brain Res 982(1):64–78
  34. Schaal S, Schweighofer N (2005) Computational motor control in humans and robots. Curr Opin Neurobiol 15(6):675–682
  35. Schaal Stefan, Atkeson Christopher G., Sternad Dagmar, One-Handed Juggling: A Dynamical Approach to a Rhythmic Movement Task, 10.1080/00222895.1996.9941743
  36. Schaal S, Sternad D, Osu R, Kawato M (2004) Rhythmic arm movement is not discrete. Nat Neurosci 7(10):1136–1143
  37. Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5(7):532–546
  38. Sternad D (1999) Juggling and bouncing balls: parallels and differences in dynamic concepts and tools. Int J Sport Psychol 30(4):462–489
  39. Sternad D, Duarte M, Katsumata H, Schaal S (2001a) Bouncing a ball: tuning into dynamic stability. J Exp Psychol Hum Percept Perform 27(5):1163–1184
  40. Sternad D, Duarte M, Katsumata H, Schaal S (2001b) Dynamics of a bouncing ball in human performance. Phys Rev E 6301(1), art. no. 011902
  41. Swinnen SP (2002) Intermanual coordination: from behavioural principles to neural-network interactions. Nat Rev Neurosci 3(5):348–359
  42. Swinnen SP, Wenderoth N (2004) Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn Sci 8(1):18–25
  43. Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7(9):907–915
  44. Todorov E (2006) Optimal control theory. In: Doya K, Ishii S, Pouget A, Rao RP (eds) Bayesian brain. MIT Press, Cambridge
  45. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5(11):1226–1235
  46. Wei K, Dijkstra TMH, Sternad D (2007) Passive stability and active control in a rhythmic task. J Neurophysiol 98:2633–2646. http://dx.doi.org/10.1152/jn.00742.2007
  47. Wolpert DM, Ghahramani Z (2000) Computational principles of movement neuroscience. Nat Neurosci 3(Suppl):1212–1217
  48. Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11(7–8):1317–1329