User menu

Origin and evolution of the Palais-Smale condition in critical point theory

Bibliographic reference Mawhin, Jean ; Willem, Michel. Origin and evolution of the Palais-Smale condition in critical point theory. In: J P Journal of Fixed Point Theory and Applications, Vol. 7, no. 2, p. 265-290
Permanent URL http://hdl.handle.net/2078.1/74696
  1. Amann H. (1972) Lusternik-Schnirelman theory and non-linear eigenvalue problems. Math. Ann 199: 55–72
  2. Ambrosetti A. (1971) Teoria di Lusternik-Schnirelman su varietà con bordo negli spazi di Hilbert. Rend. Semin. Mat. Univ. Padova 45: 37–353
  3. Ambrosetti A. (1972) Esistenza di infinite soluzioni per problemi non lineari in assenza di parametro. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52: 660–667
  4. Ambrosetti A. (1973) On the existence of multiple solutions for a class of nonlinear boundary value problems. Rend. Semin. Mat. Univ. Padova 49: 195–204
  5. Ambrosetti A., Malchiodi A. (2007) Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge Univ. Press, Cambridge
  6. Ambrosetti A., Rabinowitz P. (1973) Dual variational methods in critical point theory and applications. J. Funct. Anal. 14: 349–381
  7. Aubin J.P., Ekeland I. (1984) Applied Nonlinear Analysis. Wiley, New York
  8. Bahri A. (1981) Topological results on a certain class of functionals and application. J. Funct. Anal. 41: 397–427
  9. Bahri A. (1989) Critical Points at Infinity in some Variational Problems. Longman, Harlow
  10. Bahri A., Berestycki H. (1984) Forced vibrations of superquadratic Hamiltonian systems. Acta Math. 152: 143–197
  11. Bahri A., Berestycki H. (1984) Existence of forced oscillations for some nonlinear differential equations. Comm. Pure Appl. Math. 37: 403–442
  12. Benci V. (1984) Normal modes of a Lagrangian system constrained in a potential well. Ann. Inst. H. Poincaré. Anal. non linéaire 1: 379–400
  13. Benci V., Cerami G. (1987) Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99: 283–300
  14. Berger M.S. (1977) Nonlinearity and Functional Analysis. Academic Press, New York
  15. Berger M.S., Berger M. (1968) Perspectives in Nonlinearity. Benjamin, New York
  16. H. Brezis, Some variational problems with lack of compactness. Proc. Sympos. Pure Math. 45 (1986), Part 1, 165–201.
  17. H. Brezis, Points critiques dans les problèmes variationnels sans compacité. Sémin. Bourbaki No. 698, 1987–88.
  18. Brezis H., Coron J.M. (1985) Convergence of solutions of H-systems or how to blow bubbles. Arch. Ration. Mech. Anal. 89: 21–56
  19. Brezis H., Coron J.M., Nirenberg L. (1980) Free vibrations for a nonlinear wave equation and a theorem of Rabinowitz. Comm. Pure Appl. Math. 33: 667–689
  20. Brezis Haim, Lieb Elliott, A Relation Between Pointwise Convergence of Functions and Convergence of Functionals, 10.2307/2044999
  21. Brezis H., Nirenberg L. (1983) Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36: 437–477
  22. Brezis H., Nirenberg L. (1991) Remarks on finding critical points. Comm. Pure Appl. Math. 44: 939–963
  23. F. E. Browder, Infinite dimensional manifolds and nonlinear elliptic eigenvalue problems. Ann. of Math. (2) 82 (1965), 459–477.
  24. Caklovic L., Li S.J., Willem M. (1990) A note on Palais-Smale condition and coercivity. Differential Integral Equations 3: 799–800
  25. Cerami G. (1978) Un criterio di esistenza per i punti critici su varieta’ illimitate. Istit. Lombardo Accad. Sci. Lett. Rend. A 112: 332–336
  26. Chang K.C. (1981) Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80: 102–129
  27. Chang K.C. (1985) Infinite Dimensional Morse Theory and its Applications. Presses Univ. Montréal, Montréal
  28. Chang Kung-ching, Infinite Dimensional Morse Theory and Multiple Solution Problems, ISBN:9781461267379, 10.1007/978-1-4612-0385-8
  29. K. C. Chang and J. Eells, Unstable minimal surface coboundaries. Acta Math. Sinica (N.S.) 2 (1986), 233–247.
  30. Chow Shui-Nee, Hale Jack K., Methods of Bifurcation Theory, ISBN:9781461381617, 10.1007/978-1-4613-8159-4
  31. Clark D.C. (1972) A variant of the Lusternik-Schnirelman theory. Indiana Univ. Math. J. 22: 65–74
  32. Clarke F.H. (1983) Optimization and Non-smooth Analysis. Wiley Interscience, New York
  33. Conley C., Zehnder E. (1983) The Birkhoff-Lewis fixed point theorem and a conjecture of V. Arnold. Invent. Math. 73: 33–49
  34. Corvellec J.N. (1999) Quantitative deformation theorems and critical point theory. Pacific J. Math. 187: 263–279
  35. Costa D. (2007) An Invitation to Variational Methods in Differential Equations. Birkhäuser, Basel
  36. Costa D., Gonçalves J.V.A. (1990) Critical point theory for nondifferentiable functionals and applications. J. Math. Anal. Appl. 153: 470–485
  37. D. Costa and E. A. de B. e Silva, The Palais-Smale condition versus coercivity. Nonlinear Anal. 16 (1991), 371–381.
  38. De Figueiredo D. (1989) The Ekeland Variational Principle with Applications and Detours. Tata Institute, Bombay
  39. E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 68 (1980), 180–187.
  40. M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals. Ann. Mat. Pura Appl. (4) 16 (1994), 73–100.
  41. de Valeriola S., Willem M. (2009) On some quasilinear critical problems. Adv. Nonlinear Stud. 9: 825–836
  42. Dietrich H. (1996) On the Palais-Smale condition for nonsmooth functions over closed and convex sets of restrictions. Optimization 3: 195–211
  43. Eells J. (1966) A setting for global analysis. Bull. Amer. Math. Soc. (N.S.) 72: 751–807
  44. Ekeland I. (1974) On the variational principle. J. Math. Anal. Appl. 47: 324–353
  45. Ekeland Ivar, Convexity Methods in Hamiltonian Mechanics, ISBN:9783642743337, 10.1007/978-3-642-74331-3
  46. Ekeland I., Ghoussoub N. (2001) New aspects of the calculus of variations in the large. Bull. Amer. Math. Soc. (N.S.) 39: 207–265
  47. G. Fournier, D. Lupo, M. Ramos and M. Willem, Limit relative category and critical point theory. C. K. R. T. Jones et al. (ed.), Dynamics reported. Expositions in dynamical systems. New series. Vol. 3, Springer, Berlin, 1994, 1–24.
  48. García Azorero J.P., Peral Alonso I., Existence and nonuniqueness for the p-laplacian, 10.1080/03605308708820534
  49. Gasiński L., Papageorgiou N.S. (2006) Nonlinear Analysis. Chapman & Hall/CRC, Boca Raton, FL
  50. Ghoussoub N. (1991) Location, multiplicity and Morse indices of min-max critical points. J. Reine Angew. Math. 417: 27–76
  51. Ghoussoub N. (1993) Duality and perturbation methods in critical point theory. With appendices by David Robinson. Cambridge University Press, Cambridge
  52. Ghoussoub N., Preiss D. (1989) A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincaré Anal. Non Linéaire 6: 321–330
  53. Goeleven D. (1993) A note on Palais-Smale condition in the sense of Szulkin. Differential Integral Equations 6: 1041–1043
  54. do Rosário Grossinho Maria, Tersian Stepan Agop, An Introduction to Minimax Theorems and Their Applications to Differential Equations, ISBN:9781441948496, 10.1007/978-1-4757-3308-2
  55. Guedda M., Véron L. (1989) Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13: 879–902
  56. S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. 2 vol., Kluwer, Dordrecht, 1997, 2000.
  57. Jabri Y. (2003) The Mountain Pass Theorem. Variants, Generalizations and Some Applications. Cambridge University Press, Cambridge
  58. Kavian O. (1993) Introduction à la théorie des points critiques. Springer, Paris
  59. N. C. Kourogenis and N. S. Papageorgiou, A weak nonsmooth Palais-Smale condition and coercivity. Rend. Circ. Mat. Palermo (2) 49 (2000), 521–526.
  60. Kyritsi S., Papageorgiou N.S. (2005) Nonsmooth critical point theory on closed convex sets and nonlinear hemivariational inequalities. Nonlinear Anal. 61: 373–403
  61. S. J. Li, An existence theorem on multiple critical points and its application to nonlinear P.D.E. Acta Math. Scientica 4 (1984), No. 2.
  62. S. J. Li, Some existence theorems for critical points and applications. Preprint SISSA IC/86/90, 1986.
  63. Li S.J., Willem M. (1995) Applications of local linking to critical point theory. J. Math. Anal. Appl. 189: 6–32
  64. Lions Pierre-Louis, The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part 1, 10.4171/rmi/6
  65. J. Q. Liu and S. J. Li, Some existence theorems on multiple critical points and their applications. Kexue Tongbao 17 (1984).
  66. Ma L. (1997) Mountain pass on a closed convex set. J. Math. Anal. Appl. 205: 531–536
  67. J. Mawhin, Problèmes de Dirichlet variationnels non linéaires. Presses Univ. Montréal, Montréal, 1986. Polish translation Wydawnictwo Naukowo-Techniczne, Warsaw, 1994.
  68. Mawhin J., Willem M. (1984) Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Differential Equations 52: 264–287
  69. Mawhin Jean, Willem Michel, Critical Point Theory and Hamiltonian Systems, ISBN:9781441930897, 10.1007/978-1-4757-2061-7
  70. C. Mercuri and M. Willem, A global compactness result for the p-Laplacian involving critical nonlinearities. preprint, 2009.
  71. Nirenberg L. (1981) Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc.(N.S.) 4: 267–302
  72. Palais R.S. (1963) Morse theory on Hilbert manifolds. Topology 2: 299–340
  73. Palais R.S., Smale S. (1964) A generalized Morse theory. Bull. Amer. Math. Soc. 70: 165–172
  74. Palais R.S. (1966) Lusternik-Schnirelman theory on Banach manifolds. Topology 5: 115–132
  75. R. S. Palais, Critical point theory and the minimax principle. In: Global Analysis (Proc. Sympos. Pure Math., vol. 15), Amer. Math. Soc., Providence, 1970, 185–212.
  76. J. P. Penot, Méthode de descente : point de vue topologique et géométrique. Notes de cours 3e cycle, Université de Pau, 1975.
  77. Pucci P., Serrin J. (1985) A mountain pass theorem. J. Differential Equations 60: 142–149
  78. P. J. Rabier, Ehresmann fibrations and Palais-Smale conditions for morphisms of Finsler manifolds. Ann. of Math. (2) 146 (1997), 647–691.
  79. P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations. Amer. Math. Soc., Providence, 1986.
  80. P. H. Rabinowitz, Critical Point Theory and Applications to Differential Equations: A Survey. In: Topological Nonlinear Analysis, M. Matzeu and A. Vignoli (eds), Birkhäuser, Boston, 1995, 464–513
  81. Radulescu V. (1995) Locally Lipschitz functionals with the strong Palais-Smale property. Rev. Roumaine Math. Pures Appl. 40: 355–372
  82. M. Ramos, Teoremas de enlace na teoria dos pontos criticos. Textos de Matematica, vol. 2, Univ. Lisboa, Lisboa, 1993.
  83. E. H. Rothe, Some remarks on critical point theory in Hilbert space. In: Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), Univ. of Wisconsin Press, Madison, Wis., 1963, 233–256.
  84. Rothe E.H. (1965) Critical point theory in Hilbert space under general boundary conditions. J. Math. Anal. Appl. 11: 357–409
  85. Rothe E.H. (1971) Critical point theory in Hilbert space under regular boundary conditions. J. Math. Anal. Appl. 36: 377–431
  86. Rothe E.H. (1973) Morse theory in Hilbert space. Rocky Mountain J. Math. 3: 251–274
  87. Rothe E.H. (1975) On the theories of Morse and Lusternik-Schnirelman for open bounded sets on Fredholm Hilbert manifolds. J. Math. Anal. Appl. 50: 80–107
  88. L. Sanchez, Metodos da teoria de pontos criticos. Textos de Matematica, vol. 1, Univ. Lisboa, Lisboa, 1993.
  89. M. Schechter, A variation of the mountain pass lemma and applications. J. London Math. Soc. (2) 44 (1991), 491–502.
  90. Schechter Martin, Linking Methods in Critical Point Theory, ISBN:9781461272106, 10.1007/978-1-4612-1596-7
  91. Schwartz J.T. (1964) Generalizing the Lusternik-Schnirelman theory of critical points. Comm. Pure Appl. Math. 17: 307–315
  92. J. T. Schwartz, Nonlinear Functional Analysis. In: Lectures of the Academic Year 1963–64, Courant Institute, New York, 1965. Reprinted by Gordon and Breach, New York, 1969.
  93. Shuzhong Shi, Ekeland's variational principle and the mountain pass lemma, 10.1007/bf02564843
  94. E.A. de B. e Silva and M. A. Teixeira, A version of Rolle’s theorem and applications. Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), 301–327.
  95. S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem. Ann. Math. (2) 80 (1964), 382–396.
  96. Smets D. (2005) Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Amer. Math. Soc. 357: 2909–2938
  97. Struwe M. (1982) Multiple solutions of differential equations without the Palais-Smale condition. Math. Ann. 261: 399–412
  98. Struwe M. (1983) Quasilinear elliptic eigenvalue problems. Comment. Math. Helv. 58: 509–527
  99. Struwe M. (1984) A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 87: 511–517
  100. Struwe M. (1984) On a critical point theory for minimal surfaces spanning a wire in $${\mathbb{R}^{N}}$$ , J. Reine Angew. Math. 349: 1–23
  101. Struwe Michael, Variational Methods, ISBN:9783662032145, 10.1007/978-3-662-03212-1
  102. Suzuki T. (2008) On the relation between the weak Palais-Smale condition and coercivity given by Zhong. Nonlinear Anal. 68: 2471–2478
  103. Szulkin A. (1986) Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 3: 77–109
  104. Szulkin A. (1988) Ljusternik-Schnirelmann theory on C 1-manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire 5: 119–139
  105. S. Tersian, A note on Palais-Smale condition and mountain-pass principle for locally Lipschitz functionals. In: Variational Methods in Nonlinear Analysis (Erice, 1992), Gordon and Breach, Basel, 1995, 193–203.
  106. S. Tersian, Mountain pass theorems, deformation theorems, and Palais-Smale conditions. In: From Convexity to Nonconvexity, R. P. Gilbert et al. (eds), Kluwer, Dordrecht, 2001, 333-344.
  107. Ward J.R. Jr. (1986) A boundary value problem with a periodic nonlinearity. Nonlinear Anal. 10: 207–213
  108. M. Willem, Lectures on Critical Point Theory. Trabalho de Matematica No. 199, Fundaçao Univ. Brasilia, 1983.
  109. Willem Michel, Minimax Theorems, ISBN:9781461286738, 10.1007/978-1-4612-4146-1
  110. Zhong C.K. (1997) A generalization of Ekeland’s variational principle and application to the study of the relation between the weak P.S. condition and coercivity. Nonlinear Anal. 29: 1421–1431
  111. Zhong C.K. (1997) On Ekeland’s variational principle and a minimax theorem. J. Math. Anal. Appl. 205: 239–250
  112. Zou W.M., Schechter M. (2006) Critical Point Theory and Its Applications. Springer, New York