User menu

Progressive and merging-proof taxation

Bibliographic reference Ju, Biung-Ghi ; moreno ternero, juan. Progressive and merging-proof taxation. In: International Journal of Game Theory, Vol. 40, no. 1, p. 43-62 (2011)
Permanent URL http://hdl.handle.net/2078.1/73722
  1. Chambers Christopher P., Thomson William, Group order preservation and the proportional rule for the adjudication of conflicting claims, 10.1016/s0165-4896(02)00038-0
  2. de Frutos MA (1999) Coalitional manipulations in a bankruptcy problem. Rev Econ Des 4: 255–272
  3. Eichhorn Wolfgang, Funke Helmut, Richter Wolfram F., Tax progression and inequality of income distribution, 10.1016/0304-4068(84)90012-0
  4. Fellman J., The Effect of Transformations of Lorenz Curves, 10.2307/1913450
  5. FLEURBAEY MARC, MANIQUET FRANCOIS, Fair Income Tax, 10.1111/j.1467-937x.2006.00369.x
  6. Herrero Carmen, Villar Antonio, The three musketeers: four classical solutions to bankruptcy problems, 10.1016/s0165-4896(01)00075-0
  7. Hokari Toru, Thomson William, On properties of division rules lifted by bilateral consistency, 10.1016/j.jmateco.2008.01.001
  8. Jakobsson Ulf, On the measurement of the degree of progression, 10.1016/0047-2727(76)90066-9
  9. Ju B-G (2003) Manipulation via merging and splitting in claims problems. Rev Econ Des 8: 205–215
  10. Ju Biung-Ghi, Moreno-Ternero Juan D., On the equivalence between progressive taxation and inequality reduction, 10.1007/s00355-007-0254-z
  11. Ju Biung-Ghi, Miyagawa Eiichi, Sakai Toyotaka, Non-manipulable division rules in claim problems and generalizations, 10.1016/j.jet.2005.08.003
  12. Mirrlees J. A., An Exploration in the Theory of Optimum Income Taxation, 10.2307/2296779
  13. Moreno-Ternero Juan D., Composition, Securement, and Concede-and-divide, 10.1007/s10108-006-9003-1
  14. MORENO-TERNERO JUAN D., ERRATUM: "BANKRUPTCY RULES AND COALITIONAL MANIPULATION", 10.1142/s0219198907001497
  15. Moreno-Ternero JD, Villar A (2006) New characterizations of a classical bankruptcy rule. Rev Econ Des 10: 73–84
  16. Moulin Hervé, Chapter 6 Axiomatic cost and surplus sharing, Handbook of Social Choice and Welfare (2002) ISBN:9780444829146 p.289-357, 10.1016/s1574-0110(02)80010-8
  17. Moulin Hervé, Proportional scheduling, split-proofness, and merge-proofness, 10.1016/j.geb.2006.09.002
  18. Musgrave R. A., Thin Tun, Income Tax Progression, 1929-48, 10.1086/256742
  19. O'Neill Barry, A problem of rights arbitration from the Talmud, 10.1016/0165-4896(82)90029-4
  20. Sprumont Yves, On the Discrete Version of the Aumann-Shapley Cost-Sharing Method, 10.1111/j.1468-0262.2005.00633.x
  21. Thomson William, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey, 10.1016/s0165-4896(02)00070-7
  22. Thomson W (2006) How to divide when there isn’t enough: From the Talmud to game theory, Manuscript. University of Rochester, Rochester
  23. Thomson William, Yeh Chun-Hsien, Operators for the adjudication of conflicting claims, 10.1016/j.jet.2007.12.005
  24. Young H. Peyton, On Dividing an Amount According to Individual Claims or Liabilities, 10.1287/moor.12.3.398
  25. Young H.P, Distributive justice in taxation, 10.1016/0022-0531(88)90007-5
  26. Young P (1994) Equity. Princeton University Press, Princeton