User menu

Painleve II Asymptotics near the Leading Edge of the Oscillatory Zone for the Korteweg-de Vries Equation in the Small-Dispersion Limit

Bibliographic reference Claeys, Tom ; Grava, T. Painleve II Asymptotics near the Leading Edge of the Oscillatory Zone for the Korteweg-de Vries Equation in the Small-Dispersion Limit. In: Communications on pure and applied mathematics, Vol. 63, no. 2, p. 203-232 (2010)
Permanent URL http://hdl.handle.net/2078.1/73375
  1. Baik Jinho, Deift Percy, Johansson Kurt, 10.1090/s0894-0347-99-00307-0
  2. Beals, Direct and inverse scattering on the line, 28 (1988)
  3. Bleher Pavel M., Its Alexander R., Double scaling limit in the random matrix model: The Riemann-Hilbert approach, 10.1002/cpa.10065
  4. Camassa Roberto, Holm Darryl D., An integrable shallow water equation with peaked solitons, 10.1103/physrevlett.71.1661
  5. Claeys, Comm Math Phys
  6. Claeys Tom, Kuijlaars Arno B. J., Universality of the double scaling limit in random matrix models, 10.1002/cpa.20113
  7. Claeys Tom, Kuijlaars Arno, Vanlessen Maarten, Multi-critical unitary random matrix ensembles and the general Painlevé II equation, 10.4007/annals.2008.168.601
  8. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, 3 (1999)
  9. Deift P., Kriecherbauer T., McLaughlin K. T-R, Venakides S., Zhou X., Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, 10.1002/(sici)1097-0312(199911)52:11<1335::aid-cpa1>3.0.co;2-1
  10. Deift, Comm Pure Appl Math, 52, 1491 (1999)
  11. Deift, Internat Math Res Notices, 6, 285 (1997)
  12. Deift P., Venakides S., Zhou X., An extension of the steepest descent method for Riemann-Hilbert problems: The small dispersion limit of the Korteweg-de Vries (KdV) equation, 10.1073/pnas.95.2.450
  13. Deift P., Zhou X., A Steepest Descent Method for Oscillatory Riemann--Hilbert Problems. Asymptotics for the MKdV Equation, 10.2307/2946540
  14. Dubrovin Boris, On Hamiltonian Perturbations of Hyperbolic Systems of Conservation Laws, II: Universality of Critical Behaviour, 10.1007/s00220-006-0021-5
  15. Dubrovin , B. On universality of critical behaviour in Hamiltonian PDEs 2008
  16. http://arxiv.org/abs/0804.3790
  17. Dubrovin B., Grava T., Klein C., On Universality of Critical Behavior in the Focusing Nonlinear Schrödinger Equation, Elliptic Umbilic Catastrophe and the Tritronquée Solution to the Painlevé-I Equation, 10.1007/s00332-008-9025-y
  18. Dubrovin Boris, Liu Si-Qi, Zhang Youjin, On Hamiltonian perturbations of hyperbolic systems of conservation laws I: Quasi-Triviality of bi-Hamiltonian perturbations, 10.1002/cpa.20111
  19. Duits M, Kuijlaars A B J, Painlevé I asymptotics for orthogonal polynomials with respect to a varying quartic weight, 10.1088/0951-7715/19/10/001
  20. Faddeev L. D., Inverse problem of quantum scattering theory. II., 10.1007/bf01083780
  21. Flaschka Hermann, Newell Alan C., Monodromy- and spectrum-preserving deformations I, 10.1007/bf01197110
  22. Fokas A. S., Its A. R., Kitaev A. V., The isomonodromy approach to matric models in 2D quantum gravity, 10.1007/bf02096594
  23. Fokas Athanassios, Its Alexander, Kapaev Andrei, Novokshenov Victor, Painlevé Transcendents, ISBN:9780821836514, 10.1090/surv/128
  24. Fujiié Setsuro, Semiclassical Representation of the Scattering Matrix by a Feynman Integral, 10.1007/s002200050483
  25. Fujiié, Ann Inst H Poincaré Phys Théor, 69, 31 (1998)
  26. Gardner Clifford S., Greene John M., Kruskal Martin D., Miura Robert M., Korteweg-devries equation and generalizations. VI. methods for exact solution, 10.1002/cpa.3160270108
  27. Grava Tamara, 10.1023/a:1011892100149
  28. Grava Tamara, Klein Christian, Numerical solution of the small dispersion limit of Korteweg—de Vries and Whitham equations, 10.1002/cpa.20183
  29. Grava, Integrable systems and random matrices: in honor of Percy Deift, 458, 81 (2008)
  30. Grava T, Klein C, Numerical study of a multiscale expansion of the Korteweg-de Vries equation and Painleve-II equation, 10.1098/rspa.2007.0249
  31. Grava Tamara, Tian Fei-Ran, The generation, propagation, and extinction of multiphases in the KdV zero-dispersion limit, 10.1002/cpa.10050
  32. Hastings S. P., McLeod J. B., A boundary value problem associated with the second painlev� transcendent and the Korteweg-de Vries equation, 10.1007/bf00283254
  33. Lax Peter D., David Levermore C., The small dispersion limit of the Korteweg-de Vries equation. I, 10.1002/cpa.3160360302
  34. Ramond Thierry, Semiclassical study of quantum scattering on the line, 10.1007/bf02102437
  35. Šabat, Problems in mechanics and mathematical physics, 279 (1976)
  36. Tian Fei Ran, Oscillations of the zero dispersion limit of the korteweg-de vries equation, 10.1002/cpa.3160460802
  37. Venakides Stephanos, The korteweg-de vries equation with small dispersion: Higher order lax-levermore theory, 10.1002/cpa.3160430303
  38. Whitham, Linear and nonlinear waves (1974)