User menu

Hunting down the best model of inflation with bayesian evidence

Bibliographic reference Martin, Jérôme ; Ringeval, Christophe ; Trotta, Roberto. Hunting down the best model of inflation with bayesian evidence. In: Physical Review. D, Particles, Fields, Gravitation and Cosmology, Vol. 83, p. 063524 (2010)
Permanent URL http://hdl.handle.net/2078.1/71659
  1. Guth Alan H., Inflationary universe: A possible solution to the horizon and flatness problems, 10.1103/physrevd.23.347
  2. Linde A.D., A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, 10.1016/0370-2693(82)91219-9
  3. Albrecht Andreas, Steinhardt Paul J., Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, 10.1103/physrevlett.48.1220
  4. Linde A.D., Chaotic inflation, 10.1016/0370-2693(83)90837-7
  5. Linde Andrei, Inflationary Cosmology, Inflationary Cosmology ISBN:9783540743521 p.1-54, 10.1007/978-3-540-74353-8_1
  6. Mukhanov V, Theory of cosmological perturbations, 10.1016/0370-1573(92)90044-z
  7. Martin Jérôme, Inflation and precision cosmology, 10.1590/s0103-97332004000700005
  8. Martin J., Inflationary Cosmological Perturbations of Quantum-Mechanical Origin, Planck Scale Effects in Astrophysics and Cosmology ISBN:3540252630 p.199-244, 10.1007/11377306_7
  9. Martin Jérôme, Inflationary Perturbations: The Cosmological Schwinger Effect, Inflationary Cosmology ISBN:9783540743521 p.193-241, 10.1007/978-3-540-74353-8_6
  10. V. F. Mukhanov, JETP Lett., 33, 532 (1981)
  11. Hawking S.W., The development of irregularities in a single bubble inflationary universe, 10.1016/0370-2693(82)90373-2
  12. Starobinsky A.A., Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations, 10.1016/0370-2693(82)90541-x
  13. Guth Alan H., Pi So-Young, Fluctuations in the New Inflationary Universe, 10.1103/physrevlett.49.1110
  14. Bardeen James M., Steinhardt Paul J., Turner Michael S., Spontaneous creation of almost scale-free density perturbations in an inflationary universe, 10.1103/physrevd.28.679
  15. Stewart Ewan D., Lyth David H., A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, 10.1016/0370-2693(93)90379-v
  16. Liddle Andrew R., Parsons Paul, Barrow John D., Formalizing the slow-roll approximation in inflation, 10.1103/physrevd.50.7222
  17. Martin Jérôme, Ringeval Christophe, Inflation after WMAP3: confronting the slow-roll and exact power spectra with CMB data, 10.1088/1475-7516/2006/08/009
  18. Turner Michael S., Coherent scalar-field oscillations in an expanding universe, 10.1103/physrevd.28.1243
  19. Kofman Lev, Linde Andrei, Starobinsky Alexei A., Towards the theory of reheating after inflation, 10.1103/physrevd.56.3258
  20. Bassett Bruce A., Tsujikawa Shinji, Wands David, Inflation dynamics and reheating, 10.1103/revmodphys.78.537
  21. Mazumdar Anupam, Rocher Jonathan, Particle physics models of inflation and curvaton scenarios, 10.1016/j.physrep.2010.08.001
  22. Martin Jérôme, Ringeval Christophe, First CMB constraints on the inflationary reheating temperature, 10.1103/physrevd.82.023511
  23. Nakayama Kazunori, Saito Shun, Suwa Yudai, Yokoyama Jun’ichi, Probing the reheating temperature of the universe with a gravitational wave background, 10.1088/1475-7516/2008/06/020
  24. Kuroyanagi Sachiko, Gordon Christopher, Silk Joseph, Sugiyama Naoshi, Forecast constraints on inflation from combined CMB and gravitational wave direct detection experiments, 10.1103/physrevd.81.083524
  25. Ringeval Christophe, The Numerical Treatment of Inflationary Models, Inflationary Cosmology ISBN:9783540743521 p.243-273, 10.1007/978-3-540-74353-8_7
  26. Salopek D. S., Bond J. R., Bardeen J. M., Designing density fluctuation spectra in inflation, 10.1103/physrevd.40.1753
  27. Grivell Ian J., Liddle Andrew R., Inflaton potential reconstruction without slow roll, 10.1103/physrevd.61.081301
  28. Leach Samuel M., Liddle Andrew R., Inflationary perturbations near horizon crossing, 10.1103/physrevd.63.043508
  29. Adams Jennifer, Cresswell Bevan, Easther Richard, Inflationary perturbations from a potential with a step, 10.1103/physrevd.64.123514
  30. Makarov Alexey, Accuracy of slow-roll inflation given current observational constraints, 10.1103/physrevd.72.083517
  31. Bird Simeon, Peiris Hiranya V., Baumann Daniel, Brane inflation and the overshoot problem, 10.1103/physrevd.80.023534
  32. Lamarre J.M, Puget J.L, Bouchet F, Ade P.A.R, Benoit A, Bernard J.P, Bock J, De Bernardis P, Charra J, Couchot F, Delabrouille J, Efstathiou G, Giard M, Guyot G, Lange A, Maffei B, Murphy A, Pajot F, Piat M, Ristorcelli I, Santos D, Sudiwala R, Sygnet J.F, Torre J.P, Yurchenko V, Yvon D, The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey, 10.1016/j.newar.2003.09.006
  33. Trotta Roberto, Bayes in the sky: Bayesian inference and model selection in cosmology, 10.1080/00107510802066753
  34. Ballesteros G, Casas J A, Espinosa J R, Ruiz de Austri R, Trotta R, Flat tree-level inflationary potentials in the light of cosmic microwave background and large scale structure data, 10.1088/1475-7516/2008/03/018
  35. Ringeval Christophe, Brax Philippe, van de Bruck Carsten, Davis Anne-Christine, Boundary inflation and the WMAP data, 10.1103/physrevd.73.064035
  36. Lewis Antony, Challinor Anthony, Lasenby Anthony, Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann‐Robertson‐Walker Models, 10.1086/309179
  37. Feroz F., Hobson M. P., Multimodal nested sampling: an efficient and robust alternative to Markov Chain Monte Carlo methods for astronomical data analyses : Multimodal nested sampling, 10.1111/j.1365-2966.2007.12353.x
  38. Feroz F., Hobson M. P., Bridges M., MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, 10.1111/j.1365-2966.2009.14548.x
  39. Trotta Roberto, Feroz Farhan, Hobson Mike, Roszkowski Leszek, Austri Roberto Ruiz de, The impact of priors and observables on parameter inferences in the constrained MSSM, 10.1088/1126-6708/2008/12/024
  40. Lewis Antony, Bridle Sarah, Cosmological parameters from CMB and other data: A Monte Carlo approach, 10.1103/physrevd.66.103511
  41. Schwarz Dominik J., Terrero-Escalante César A., Garcı́a Alberto A., Higher order corrections to primordial spectra from cosmological inflation, 10.1016/s0370-2693(01)01036-x
  42. A. D. Linde, JETP Lett., 38, 176 (1983)
  43. Silverstein Eva, Westphal Alexander, Monodromy in the CMB: Gravity waves and string inflation, 10.1103/physrevd.78.106003
  44. Linde Andrei, Hybrid inflation, 10.1103/physrevd.49.748
  45. Copeland Edmund J., Liddle Andrew R., Lyth David H., Stewart Ewan D., Wands David, False vacuum inflation with Einstein gravity, 10.1103/physrevd.49.6410
  46. Lyth David H., Riotto Antonio, Particle physics models of inflation and the cosmological density perturbation, 10.1016/s0370-1573(98)00128-8
  47. A. D. Linde, Contemp. Phys., 5, 1 (2005)
  48. Clesse Sébastien, Ringeval Christophe, Rocher Jonathan, Fractal initial conditions and natural parameter values in hybrid inflation, 10.1103/physrevd.80.123534
  49. Clesse Sébastien, Hybrid inflation along waterfall trajectories, 10.1103/physrevd.83.063518
  50. Liddle A. R., Information criteria for astrophysical model selection, 10.1111/j.1745-3933.2007.00306.x
  51. Gordon Christopher, Trotta Roberto, Bayesian calibrated significance levels applied to the spectral tilt and hemispherical asymmetry : Bayesian calibrated significance levels, 10.1111/j.1365-2966.2007.12707.x
  52. Trotta R., Applications of Bayesian model selection to cosmological parameters, 10.1111/j.1365-2966.2007.11738.x
  53. Heavens A. F., Kitching T. D., Verde L., On model selection forecasting, dark energy and modified gravity : On model selection, dark energy and gravity, 10.1111/j.1365-2966.2007.12134.x
  54. Mukherjee Pia, Parkinson David, Liddle Andrew R., A Nested Sampling Algorithm for Cosmological Model Selection, 10.1086/501068
  55. Serra P., Heavens A., Melchiorri A., Bayesian Evidence for a cosmological constant using new high-redshift supernova data, 10.1111/j.1365-2966.2007.11924.x
  56. March M. C., Starkman G. D., Trotta R., Vaudrevange P. M., Should we doubt the cosmological constant? : Should we doubt the cosmological constant?, 10.1111/j.1365-2966.2010.17614.x
  57. Kullback S., Leibler R. A., On Information and Sufficiency, 10.1214/aoms/1177729694
  58. Kunz Martin, Trotta Roberto, Parkinson David R., Measuring the effective complexity of cosmological models, 10.1103/physrevd.74.023503
  59. McAllister Liam, Silverstein Eva, Westphal Alexander, Gravity waves and linear inflation from axion monodromy, 10.1103/physrevd.82.046003
  60. Kallosh Renata, Linde Andrei, New models of chaotic inflation in supergravity, 10.1088/1475-7516/2010/11/011
  61. Alabidi Laila, Lyth David H, Inflation models and observation, 10.1088/1475-7516/2006/05/016
  62. Alabidi Laila, Lidsey James E., Single-field inflation after the WMAP five-year data, 10.1103/physrevd.78.103519
  63. Lorenz Larissa, Martin Jérôme, Ringeval Christophe, Brane inflation and the WMAP data: a Bayesian analysis, 10.1088/1475-7516/2008/04/001
  64. Brax Philippe, Martin Jérôme, Shift symmetry and inflation in supergravity, 10.1103/physrevd.72.023518
  65. Komatsu E., Smith K. M., Dunkley J., Bennett C. L., Gold B., Hinshaw G., Jarosik N., Larson D., Nolta M. R., Page L., Spergel D. N., Halpern M., Hill R. S., Kogut A., Limon M., Meyer S. S., Odegard N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L., SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION, 10.1088/0067-0049/192/2/18
  66. Larson D., Dunkley J., Hinshaw G., Komatsu E., Nolta M. R., Bennett C. L., Gold B., Halpern M., Hill R. S., Jarosik N., Kogut A., Limon M., Meyer S. S., Odegard N., Page L., Smith K. M., Spergel D. N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L., SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: POWER SPECTRA ANDWMAP-DERIVED PARAMETERS, 10.1088/0067-0049/192/2/16
  67. Jarosik N., Bennett C. L., Dunkley J., Gold B., Greason M. R., Halpern M., Hill R. S., Hinshaw G., Kogut A., Komatsu E., Larson D., Limon M., Meyer S. S., Nolta M. R., Odegard N., Page L., Smith K. M., Spergel D. N., Tucker G. S., Weiland J. L., Wollack E., Wright E. L., SEVEN-YEARWILKINSON MICROWAVE ANISOTROPY PROBE(WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS, 10.1088/0067-0049/192/2/14
  68. Riess Adam G., Macri Lucas, Casertano Stefano, Sosey Megan, Lampeitl Hubert, Ferguson Henry C., Filippenko Alexei V., Jha Saurabh W., Li Weidong, Chornock Ryan, Sarkar Devdeep, A REDETERMINATION OF THE HUBBLE CONSTANT WITH THEHUBBLE SPACE TELESCOPEFROM A DIFFERENTIAL DISTANCE LADDER, 10.1088/0004-637x/699/1/539
  69. Kawasaki Masahiro, Sekiguchi Toyokazu, Probing the primordial power spectra with inflationary priors, 10.1088/1475-7516/2010/02/013
  70. Parkinson David, Liddle Andrew R., Application of Bayesian model averaging to measurements of the primordial power spectrum, 10.1103/physrevd.82.103533
  71. BOYANOVSKY D., DESTRI C., DE VEGA H. J., SANCHEZ N. G., THE EFFECTIVE THEORY OF INFLATION IN THE STANDARD MODEL OF THE UNIVERSE AND THE CMB+LSS DATA ANALYSIS, 10.1142/s0217751x09044553
  72. Mortonson Michael J., Peiris Hiranya V., Easther Richard, Bayesian analysis of inflation: Parameter estimation for single field models, 10.1103/physrevd.83.043505