User menu

A comparison of the GWCE and mixed P1NC–P1 formulations in finite-element linearized shallow-water models

Bibliographic reference Le Roux, Daniel ; Walters, Roy ; Hanert, Emmanuel ; Pietrzak, Julie. A comparison of the GWCE and mixed P1NC–P1 formulations in finite-element linearized shallow-water models. In: International Journal for Numerical Methods in Fluids, Vol. 68, p. 1497-1523
Permanent URL
  1. Walters Roy A., Lane E.M., Henry R.F., Semi-Lagrangian methods for a finite element coastal ocean model, 10.1016/j.ocemod.2007.06.008
  2. Hanert Emmanuel, Roux Daniel Y. Le, Legat Vincent, Deleersnijder Eric, An efficient Eulerian finite element method for the shallow water equations, 10.1016/j.ocemod.2004.06.006
  3. Dresback Kendra M., Kolar Randall L., Dietrich J. Casey, A 2D implicit time-marching algorithm for shallow water models based on the generalized wave continuity equation, 10.1002/fld.697
  4. Henry, Mausam, 48, 519 (1997)
  5. Hanert E., Le Roux D.Y., Legat V., Deleersnijder E., Advection schemes for unstructured grid ocean modelling, 10.1016/s1463-5003(03)00029-5
  6. Leendertse JJ Aspects of a computational model for long period water-wave propagation 1967
  7. Porter, Stability Criteria for Linear Dynamical Systems (1968)
  8. Thomasset François, Implementation of Finite Element Methods for Navier-Stokes Equations, ISBN:9783642870491, 10.1007/978-3-642-87047-7
  9. Walters R. A., Barragy E. J., COMPARISON OFH ANDP FINITE ELEMENT APPROXIMATIONS OF THE SHALLOW WATER EQUATIONS, 10.1002/(sici)1097-0363(19970115)24:1<61::aid-fld479>;2-y
  10. LeBlond, Waves in the Ocean, 602 (1978)
  11. Atkinson J. H., Westerink J. J., Luettich R. A., Two-dimensional dispersion analyses of finite element approximations to the shallow water equations, 10.1002/fld.701
  12. Gray William G., Lynch Daniel R., Time-stepping schemes for finite element tidal model computations, 10.1016/0309-1708(77)90026-4
  13. Foreman M.G.G, A two-dimensional dispersion analysis of selected methods for solving the linearized shallow water equations, 10.1016/0021-9991(84)90097-4
  14. Pe Kinnmark Ingemar, Gray William G, Stability and accuracy of spatial approximations for wave equation tidal models, 10.1016/0021-9991(85)90030-0
  15. Foreman M.G.G, An analysis of the “wave equation” model for finite element tidal computations, 10.1016/0021-9991(83)90032-3
  16. Le Roux D. Y., Hanert E., Rostand V., Pouliot B., Impact of mass lumping on gravity and Rossby waves in 2D finite-element shallow-water models, 10.1002/fld.1837
  17. Hanert Emmanuel, Walters Roy A., Le Roux Daniel Y., Pietrzak Julie D., A tale of two elements: and RT0, 10.1016/j.ocemod.2008.07.002
  18. Roux Daniel Y. Le, Pouliot Benoit, Analysis of Numerically Induced Oscillations in Two-Dimensional Finite-Element Shallow-Water Models Part II: Free Planetary Waves, 10.1137/070697872
  19. Comblen, International Journal for Numerical Methods in Fluids, 63, 701 (2010)
  20. Kolar RL Westerink JJ A look back at 20 years of GWC-based shallow-water models 2000 899 906
  21. Kolar R.L., Westerink J.J., Cantekin M.E., Blain C.A., Aspects of nonlinear simulations using shallow-water models based on the wave continuity equation, 10.1016/0045-7930(94)90017-5
  22. Kinnmark Ingemar, Introduction, Lecture Notes in Engineering (1986) ISBN:9783540160311 p.1-11, 10.1007/978-3-642-82646-7_1
  23. Le Bars Yoann, Lyard Florent, Jeandel Catherine, Dardengo Leonardo, The AMANDES tidal model for the Amazon estuary and shelf, 10.1016/j.ocemod.2009.11.001
  24. Westerink Joannes J., Luettich Richard A., Feyen Jesse C., Atkinson John H., Dawson Clint, Roberts Hugh J., Powell Mark D., Dunion Jason P., Kubatko Ethan J., Pourtaheri Hasan, A Basin- to Channel-Scale Unstructured Grid Hurricane Storm Surge Model Applied to Southern Louisiana, 10.1175/2007mwr1946.1
  25. Dawson Clint, Westerink Joannes J., Feyen Jesse C., Pothina Dharhas, Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations, 10.1002/fld.1156
  26. Luettich RA Westerink JJ Scheffner NW An advanced three-dimensional circulation model of shelves, coasts, and estuaries 1992
  27. Kinnmark Ingemar P. E., Gray William G., A two-dimensional analysis of the wave equation model for finite element tidal computations, 10.1002/nme.1620200214
  28. Lynch Daniel R., Gray William G., A wave equation model for finite element tidal computations, 10.1016/0045-7930(79)90037-9
  29. Staniforth Andrew N., Mitchell Herschel L., A Semi-Implicit Finite-Element Barotropic Model, 10.1175/1520-0493(1977)105<0154:asifeb>;2
  30. Cullen M. J. P., Hall C. D., Forecasting and general circulation results from finite element models, 10.1002/qj.49710544506
  31. Hughes Thomas J.R., Franca Leopoldo P., Balestra Marc, A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the stokes problem accommodating equal-order interpolations, 10.1016/0045-7825(86)90025-3
  32. Le Roux Daniel Y., A New Triangular Finite-Element with Optimum Constraint Ratio for Compressible Fluids, 10.1137/s1064827500367403
  33. HUA BACH-LIEN, THOMASSET FRANCOIS, A noise-free finite element scheme for the two-layer shallow water equations, 10.1111/j.1600-0870.1984.tb00235.x
  34. Williams R. T., On the Formulation of Finite-Element Prediction Models, 10.1175/1520-0493(1981)109<0463:otfofe>;2
  35. Sigurdsson, Computational Methods in Water Resources IX, Volume 1: Numerical Methods in Water Resources, 291 (1992)
  36. Raviart, Mathematical Aspects of the Finite Element Method (1977)
  37. King, Finite Elements in Flow Problems, 133 (1974)
  38. Williams R. T., Zienkiewicz O. C., Improved finite element forms for the shallow-water wave equations, 10.1002/fld.1650010107
  39. Randall David A., Geostrophic Adjustment and the Finite-Difference Shallow-Water Equations, 10.1175/1520-0493(1994)122<1371:gaatfd>;2
  40. Roux Daniel Y. Le, Carey G. F., Stability/dispersion analysis of the discontinuous Galerkin linearized shallow-water system, 10.1002/fld.893
  41. Le Roux Daniel Y., Dispersion Relation Analysis of the $P^NC_1 - P^_1$ Finite-Element Pair in Shallow-Water Models, 10.1137/030602435
  42. Rostand V., Le Roux D. Y., Raviart–Thomas and Brezzi–Douglas–Marini finite‐element approximations of the shallow‐water equations, 10.1002/fld.1668
  43. Kleptsova O., Pietrzak J.D., Stelling G.S., On the accurate and stable reconstruction of tangential velocities in C-grid ocean models, 10.1016/j.ocemod.2008.12.007
  44. Rostand Virgile, Roux Daniel Y. Le, Carey Graham, Kernel Analysis of the Discretized Finite Difference and Finite Element Shallow-Water Models, 10.1137/070695198
  45. Walters R., Carey G.F., Numerical noise in ocean and estuarine models, 10.1016/0309-1708(84)90025-3
  46. Adcroft A. J., Hill C. N., Marshall J. C., A New Treatment of the Coriolis Terms in C-Grid Models at Both High and Low Resolutions, 10.1175/1520-0493(1999)127<1928:antotc>;2
  47. BATTEEN MARY L., HAN Y.-J., On the computational noise of finite-difference schemes used in ocean models, 10.1111/j.2153-3490.1981.tb01761.x
  48. Le Roux Daniel Y., Rostand Virgile, Pouliot Benoit, Analysis of Numerically Induced Oscillations in 2D Finite‐Element Shallow‐Water Models Part I: Inertia‐Gravity Waves, 10.1137/060650106
  49. Iskandarani Mohamed, Haidvogel Dale B., Boyd John P., A staggered spectral element model with application to the oceanic shallow water equations, 10.1002/fld.1650200504
  50. Mixed and Hybrid Finite Element Methods, ISBN:9781461278245, 10.1007/978-1-4612-3172-1
  51. Arakawa, Methods in Computational Physics, 17, 173 (1977)
  52. Walters Roy A., Carey Graham F., Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations, 10.1016/0045-7930(83)90013-0
  53. Pedlosky Joseph, Geophysical Fluid Dynamics, ISBN:9780387963877, 10.1007/978-1-4612-4650-3
  54. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics (1994)