User menu

Multi-item lot-sizing with joint set-up costs

Bibliographic reference Anily, Soshana ; Tzur, Michal ; Wolsey, Laurence. Multi-item lot-sizing with joint set-up costs. In: Mathematical Programming, Vol. 119, no. 1, p. 79-94 (2009)
Permanent URL
  1. Anily S. and Tzur M. (2005). Shipping multiple-items by capacitated vehicles—an optimal dynamic programming approach. Transportation Sci. 39: 233–248
  2. Anily S. and Tzur M. (2006). Algorithms for the multi-item capacitated dynamic lot sizing problem. Naval Res. Logistics 53: 157–169
  3. Anily, S., Tzur, M., Wolsey, L.A.: Multi-item lot-sizing with joint set-up cost, CORE Discussion Paper DP 2005/70, Louvain-la-Neuve, 2005 (revised November 2006) (2005)
  4. Bitran G.R. and Yanasse H.H. (1982). Computational complexity of the capacitated lot size problem. Manage. Sci. 28: 1174–1186
  5. Eppen G.D. and Martin R.K. (1987). Solving multi-item lot-sizing problems using variable definition. Oper. Res. 35: 832–848
  6. Federgruen A. and Tzur M. (1991). A simple forward algorithm to solve general dynamic lot-size models with n periods in O(n log n) or O(n) time. Manage. Sci. 37: 909–925
  7. Florian M. and Klein M. (1971). Deterministic production planning with concave costs and capacity constraints. Manage. Sci. 18: 12–20
  8. Florian M., Lenstra J.K. and Rinnooy K.A.N. (1980). Deterministic production planning: Algorithms and complexity. Manage. Sci. 26: 669–679
  9. Lee C.Y. (1989). A solution to the multiple set-up problem with dynamic demand. IIE Trans. 21: 266–270
  10. Levi, R., Lodi, A., Sviridenko, M.: Approximation algorithms for the multi-item capacitated lot-sizing problem via flow cover inequalities, Report, 5th Feb. 2007 (2007)
  11. Levi R., Roundy R.O. and Shmoys D.B. (2006). Primal-dual algorithms for deterministic inventory problems. Math. Oper. Res. 31: 267–284
  12. Miller A. and Wolsey L.A. (2003a). Tight MIP formulations for multi-item discrete lot-sizing problems. Oper. Res. 51: 557–565
  13. Miller A. and Wolsey L.A. (2003b). Tight formulations for some simple mixed integer programs and convex objective integer programs. Math. Program. B 98: 73–88
  14. Pochet Y. and Wolsey L.A. (1993). Lot-sizing with constant batches: Formulation and valid inequalities. Math. Oper. Res. 18: 767–785
  15. Pochet Y. and Wolsey L.A. (1994). Polyhedra for lot-sizing with Wagner–Whitin costs. Math. Program. 67: 297–324
  16. Pochet Y. and Wolsey L.A. (2006). Production Planning by Mixed Integer Programming. Springer, New York
  17. van Hoesel C.P.M. and Wagelmans A.P.M. (1996). An O(T 3) algorithm for the economic lot-sizing problem with constant capacities. Manage. Sci. 42: 142–150
  18. Van Vyve M. and Wolsey L.A. (2006). Approximate extended formulations. Math. Program. B 105: 501–522
  19. Wagelmans A.P.M., van Hoesel C.P.M. and Kolen A.W.J. (1992). Economic lot-sizing: an O(n log n) algorithm that runs in linear time in the Wagner–Whitin case. Oper. Res. 40: 145–156
  20. Wolsey L.A. (2002). Solving multi-item lot-sizing problems with an MIP solver using classification and reformulation. Manage. Sci. 48: 1587–1602