User menu

Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications

Bibliographic reference Giantomassi, Matteo ; Stankovski, Martin ; Shaltaf, Riad ; Gruning, Myrta ; Bruneval, Fabien ; et. al. Electronic properties of interfaces and defects from many-body perturbation theory: Recent developments and applications. In: Physica Status Solidi. B: Basic Research, Vol. 248, no. 2, p. 275–289 (2011)
Permanent URL
  1. Heterojunction Band Discontinuities: Physics and Device Applications (1987)
  2. Sze, Physics of Semiconductor Devices (2007)
  3. Defects in Microelectronic Materials and Devices (2008)
  4. Defects in Optoelectronic Materials (2001)
  5. Defects in High-k Gate Dielectric Stacks (2006)
  6. Knaup J. M., Deák P., Frauenheim Th., Gali A., Hajnal Z., Choyke W. J., Defects inSiO2as the possible origin of near interface traps in theSiC∕SiO2system: A systematic theoretical study, 10.1103/physrevb.72.115323
  7. Xiong K., Robertson J., Gibson M. C., Clark S. J., Defect energy levels in HfO2 high-dielectric-constant gate oxide, 10.1063/1.2119425
  8. Broqvist Peter, Pasquarello Alfredo, First principles investigation of defects at interfaces between silicon and amorphous high-κ oxides, 10.1016/j.mee.2007.04.075
  9. Broqvist Peter, Alkauskas Audrius, Pasquarello Alfredo, Band alignments and defect levels in Si–HfO2 gate stacks: Oxygen vacancy and Fermi-level pinning, 10.1063/1.2907704
  10. Alkauskas Audrius, Broqvist Peter, Devynck Fabien, Pasquarello Alfredo, Band Offsets at Semiconductor-Oxide Interfaces from Hybrid Density-Functional Calculations, 10.1103/physrevlett.101.106802
  11. Alkauskas Audrius, Broqvist Peter, Pasquarello Alfredo, Defect Energy Levels in Density Functional Calculations: Alignment and Band Gap Problem, 10.1103/physrevlett.101.046405
  12. Curtiss Larry A., Redfern Paul C., Raghavachari Krishnan, Pople John A., Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities, 10.1063/1.476538
  13. Muscat J., Wander A., Harrison N.M., On the prediction of band gaps from hybrid functional theory, 10.1016/s0009-2614(01)00616-9
  14. Paier J., Marsman M., Hummer K., Kresse G., Gerber I. C., Ángyán J. G., Screened hybrid density functionals applied to solids, 10.1063/1.2187006
  15. Ernzerhof Matthias, Perdew John P., Burke Kieron, Coupling-constant dependence of atomization energies, 10.1002/(sici)1097-461x(1997)64:3<285::aid-qua2>;2-s
  16. Ernzerhof Matthias, Scuseria Gustavo E., Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, 10.1063/1.478401
  17. Kümmel Stephan, Kronik Leeor, Orbital-dependent density functionals: Theory and applications, 10.1103/revmodphys.80.3
  18. Hedin, Solid State Physics, 23, p. 1 (1969)
  19. Fetter, Quantum Theory of Many-Particle Systems (1971)
  20. Abrikosov, Methods of Quantum Field Theory in Statistical Physics (1975)
  21. Landau, Statistical Physics Part II (1980)
  22. Onida Giovanni, Reining Lucia, Rubio Angel, Electronic excitations: density-functional versus many-body Green’s-function approaches, 10.1103/revmodphys.74.601
  23. Hedin Lars, New Method for Calculating the One-Particle Green's Function with Application to the Electron-Gas Problem, 10.1103/physrev.139.a796
  24. Nelson W., Bokes P., Rinke Patrick, Godby R. W., Self-interaction in Green’s-function theory of the hydrogen atom, 10.1103/physreva.75.032505
  25. Romaniello P., Guyot S., Reining L., The self-energy beyond GW: Local and nonlocal vertex corrections, 10.1063/1.3249965
  26. Godby R. W., Schlüter M., Sham L. J., Accurate Exchange-Correlation Potential for Silicon and Its Discontinuity on Addition of an Electron, 10.1103/physrevlett.56.2415
  27. Aulbur Wilfried G., Jönsson Lars, Wilkins John W., Quasiparticle Calculations in Solids, Solid State Physics (2000) ISBN:9780126077544 p.1-218, 10.1016/s0081-1947(08)60248-9
  28. Rinke Patrick, Qteish Abdallah, Neugebauer Jörg, Freysoldt Christoph, Scheffler Matthias, CombiningGWcalculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors, 10.1088/1367-2630/7/1/126
  29. Rinke Patrick, Qteish Abdallah, Neugebauer Jörg, Scheffler Matthias, Exciting prospects for solids: Exact-exchange based functionals meet quasiparticle energy calculations, 10.1002/pssb.200743380
  30. Del Sole R., Reining Lucia, Godby R. W., GWΓ approximation for electron self-energies in semiconductors and insulators, 10.1103/physrevb.49.8024
  31. Hybertsen Mark S., Louie Steven G., Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, 10.1103/physrevb.34.5390
  32. Li Je-Luen, Rignanese G.-M., Louie Steven G., Quasiparticle energy bands of NiO in theGWapproximation, 10.1103/physrevb.71.193102
  33. White I. D., Godby R. W., Rieger M. M., Needs R. J., Dynamic Image Potential at an Al(111) Surface, 10.1103/physrevlett.80.4265
  34. Rohlfing Michael, Wang Neng-Ping, Krüger Peter, Pollmann Johannes, Image States and Excitons at Insulator Surfaces with Negative Electron Affinity, 10.1103/physrevlett.91.256802
  35. Pulci Olivia, Reining Lucia, Onida Giovanni, Del Sole Rodolfo, Bechstedt Friedhelm, Many-body effects on one-electron energies and wave functions in low-dimensional systems, 10.1016/s0927-0256(00)00186-5
  36. Rinke Patrick, Delaney Kris, García-González P., Godby R. W., Image states in metal clusters, 10.1103/physreva.70.063201
  37. Bruneval Fabien, Vast Nathalie, Reining Lucia, Effect of self-consistency on quasiparticles in solids, 10.1103/physrevb.74.045102
  38. Rieger Martin M., Steinbeck L., White I.D., Rojas H.N., Godby R.W., The GW space-time method for the self-energy of large systems, 10.1016/s0010-4655(98)00174-x
  39. Holm B., von Barth U., Fully self-consistentGWself-energy of the electron gas, 10.1103/physrevb.57.2108
  40. Schöne Wolf-Dieter, Eguiluz Adolfo G., Self-Consistent Calculations of Quasiparticle States in Metals and Semiconductors, 10.1103/physrevlett.81.1662
  41. Ku Wei, Eguiluz Adolfo G., Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency, 10.1103/physrevlett.89.126401
  42. Faleev Sergey V., van Schilfgaarde Mark, Kotani Takao, All-Electron Self-ConsistentGWApproximation: Application to Si, MnO, and NiO, 10.1103/physrevlett.93.126406
  43. van Schilfgaarde M., Kotani Takao, Faleev S., Quasiparticle Self-ConsistentGWTheory, 10.1103/physrevlett.96.226402
  44. Kotani Takao, van Schilfgaarde Mark, Faleev Sergey V., Quasiparticle self-consistentGWmethod: A basis for the independent-particle approximation, 10.1103/physrevb.76.165106
  45. Godby R. W., Needs R. J., Metal-insulator transition in Kohn-Sham theory and quasiparticle theory, 10.1103/physrevlett.62.1169
  46. Ashcroft, Solid State Physics (1976)
  47. Johnson David Linton, Local field effects and the dielectric response matrix of insulators: A model, 10.1103/physrevb.9.4475
  48. Taut M, Frequency moments of the dielectric function for an inhomogeneous electron gas, 10.1088/0022-3719/18/13/014
  49. von der Linden Wolfgang, Horsch Peter, Precise quasiparticle energies and Hartree-Fock bands of semiconductors and insulators, 10.1103/physrevb.37.8351
  50. Engel G. E., Farid Behnam, Generalized plasmon-pole model and plasmon band structures of crystals, 10.1103/physrevb.47.15931
  51. Lundqvist B. I., Single-particle spectrum of the degenerate electron gas : III. Numerical results in the random phase approximation, 10.1007/bf02422898
  52. Bruneval Fabien, Gonze Xavier, AccurateGWself-energies in a plane-wave basis using only a few empty states: Towards large systems, 10.1103/physrevb.78.085125
  53. Anglade P.-M., Gonze X., Preconditioning of self-consistent-field cycles in density-functional theory: The extrapolar method, 10.1103/physrevb.78.045126
  54. Kotani Takao, van Schilfgaarde Mark, All-electron GW approximation with the mixed basis expansion based on the full-potential LMTO method, 10.1016/s0038-1098(02)00028-5
  55. Gómez-Abal Ricardo, Li Xinzheng, Scheffler Matthias, Ambrosch-Draxl Claudia, Influence of the Core-Valence Interaction and of the Pseudopotential Approximation on the Electron Self-Energy in Semiconductors, 10.1103/physrevlett.101.106404
  56. Marini Andrea, Onida Giovanni, Del Sole Rodolfo, Quasiparticle Electronic Structure of Copper in theGWApproximation, 10.1103/physrevlett.88.016403
  57. Delaney Kris, García-González P., Rubio Angel, Rinke Patrick, Godby R. W., Comment on “Band-Gap Problem in Semiconductors Revisited: Effects of Core States and Many-Body Self-Consistency”, 10.1103/physrevlett.93.249701
  58. Tiago Murilo L., Ismail-Beigi Sohrab, Louie Steven G., Effect of semicore orbitals on the electronic band gaps of Si, Ge, and GaAs within the GW approximation, 10.1103/physrevb.69.125212
  59. Rohlfing Michael, Krüger Peter, Pollmann Johannes, Quasiparticle Band Structure of CdS, 10.1103/physrevlett.75.3489
  60. Jiang Hong, Gomez-Abal Ricardo I., Rinke Patrick, Scheffler Matthias, Localized and Itinerant States in Lanthanide Oxides United byGW @ LDA+U, 10.1103/physrevlett.102.126403
  61. Blöchl P. E., Projector augmented-wave method, 10.1103/physrevb.50.17953
  62. Hamann D. R., Schlüter M., Chiang C., Norm-Conserving Pseudopotentials, 10.1103/physrevlett.43.1494
  63. Torrent Marc, Jollet François, Bottin François, Zérah Gilles, Gonze Xavier, Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure, 10.1016/j.commatsci.2007.07.020
  64. Arnaud B., Alouani M., All-electron projector-augmented-waveGWapproximation: Application to the electronic properties of semiconductors, 10.1103/physrevb.62.4464
  65. Rotenber, The 3-j and 6-j Symbols (1959)
  66. Yamasaki Takahiro, Kaneta Chioko, Uchiyama Toshihiro, Uda Tsuyoshi, Terakura Kiyoyuki, Geometric and electronic structures ofSiO2/Si(001)interfaces, 10.1103/physrevb.63.115314
  67. Van de Walle Chris G., Martin Richard M., Theoretical study of band offsets at semiconductor interfaces, 10.1103/physrevb.35.8154
  68. Zhang S.B., Tománek D., Louie Steven G., Cohen Marvin L., Hybertsen Mark S., Quasiparticle calculation of valence band offset of AlAs-GaAs(001), 10.1016/0038-1098(88)90213-x
  69. Shaltaf R., Rignanese G.-M., Gonze X., Giustino Feliciano, Pasquarello Alfredo, Band Offsets at theSi/SiO2Interface from Many-Body Perturbation Theory, 10.1103/physrevlett.100.186401
  70. Zhu Xuejun, Louie Steven G., Quasiparticle band structure of thirteen semiconductors and insulators, 10.1103/physrevb.43.14142
  71. Fleszar A., Hanke W., Spectral properties of quasiparticles in a semiconductor, 10.1103/physrevb.56.10228
  72. Watarai Masatoshi, Nakamura Jun, Natori Akiko, Band discontinuity at ultrathinSiO2/Si(001)interfaces, 10.1103/physrevb.69.035312
  73. Tuttle B. R., Theoretical investigation of the valence-band offset between Si(001) andSiO2, 10.1103/physrevb.70.125322
  74. Giustino Feliciano, Pasquarello Alfredo, Electronic and dielectric properties of a suboxide interlayer at the silicon–oxide interface in MOS devices, 10.1016/j.susc.2005.05.012
  75. Keister J. W., Rowe J. E., Kolodziej J. J., Niimi H., Madey T. E., Lucovsky G., Band offsets for ultrathin SiO[sub 2] and Si[sub 3]N[sub 4] films on Si(111) and Si(100) from photoemission spectroscopy, 10.1116/1.590834
  76. Afanas’ev V. V., Houssa M., Stesmans A., Heyns M. M., Electron energy barriers between (100)Si and ultrathin stacks of SiO2, Al2O3, and ZrO2 insulators, 10.1063/1.1366366
  77. Peacock P. W., Robertson J., Bonding, Energies, and Band Offsets ofSi−ZrO2andHfO2Gate Oxide Interfaces, 10.1103/physrevlett.92.057601
  78. Peacock P. W., Xiong K., Tse K., Robertson J., Bonding and interface states ofSi:HfO2andSi:ZrO2interfaces, 10.1103/physrevb.73.075328
  79. Puthenkovilakam Ragesh, Carter Emily A., Chang Jane P., First-principles exploration of alternative gate dielectrics: Electronic structure ofZrO2/SiandZrSiO4/Siinterfaces, 10.1103/physrevb.69.155329
  80. Puthenkovilakam Ragesh, Chang Jane P., An accurate determination of barrier heights at the HfO2∕Si interfaces, 10.1063/1.1778213
  81. Chen G. H., Hou Z. F., Gong X. G., Density functional calculations on atomic and electronic structures of amorphous HfO2/Si(001) interface, 10.1063/1.3226636
  82. Miyazaki S, Narasaki M, Ogasawara M, Hirose M, Characterization of ultrathin zirconium oxide films on silicon using photoelectron spectroscopy, 10.1016/s0167-9317(01)00671-2
  83. Oshima M., Toyoda S., Okumura T., Okabayashi J., Kumigashira H., Ono K., Niwa M., Usuda K., Hirashita N., Chemistry and band offsets of HfO2 thin films for gate insulators, 10.1063/1.1611272
  84. Wang S. J., Huan A. C. H., Foo Y. L., Chai J. W., Pan J. S., Li Q., Dong Y. F., Feng Y. P., Ong C. K., Energy-band alignments at ZrO[sub 2]∕Si, SiGe, and Ge interfaces, 10.1063/1.1819988
  85. Rayner G. B., Kang D., Zhang Y., Lucovsky G., Nonlinear composition dependence of x-ray photoelectron spectroscopy and Auger electron spectroscopy features in plasma-deposited zirconium silicate alloy thin films, 10.1116/1.1493788
  86. Sayan S., Garfunkel E., Suzer S., Soft x-ray photoemission studies of the HfO2/SiO2/Si system, 10.1063/1.1450049
  87. Afanas’ev V. V., Stesmans A., Chen F., Shi X., Campbell S. A., Internal photoemission of electrons and holes from (100)Si into HfO2, 10.1063/1.1495088
  88. Sayan S., Bartynski R. A., Zhao X., Gusev E. P., Vanderbilt D., Croft M., Banaszak Holl M., Garfunkel E., Valence and conduction band offsets of a ZrO2/SiOxNy/n-Si CMOS gate stack: A combined photoemission and inverse photoemission study, 10.1002/pssb.200404945
  89. Renault O., Barrett N.T., Samour D., Quiais-Marthon S., Electronics of the SiO2/HfO2 interface by soft X-ray photoemission spectroscopy, 10.1016/j.susc.2004.05.105
  90. Bersch Eric, Rangan Sylvie, Bartynski Robert Allen, Garfunkel Eric, Vescovo Elio, Band offsets of ultrathin high-κoxide films with Si, 10.1103/physrevb.78.085114
  91. Králik Balázs, Chang Eric K., Louie Steven G., Structural properties and quasiparticle band structure of zirconia, 10.1103/physrevb.57.7027
  92. Fiorentini Vincenzo, Gulleri Gianluca, Theoretical Evaluation of Zirconia and Hafnia as Gate Oxides for Si Microelectronics, 10.1103/physrevlett.89.266101
  93. Dong Y. F., Feng Y. P., Wang S. J., Huan A. C. H., First-principles study ofZrO2∕Siinterfaces: Energetics and band offsets, 10.1103/physrevb.72.045327
  94. Tuttle Blair R., Tang Chunguang, Ramprasad R., First-principles study of the valence band offset between silicon and hafnia, 10.1103/physrevb.75.235324
  95. Grüning Myrta, Shaltaf Riad, Rignanese Gian-Marco, Quasiparticle calculations of the electronic properties ofZrO2andHfO2polymorphs and their interface with Si, 10.1103/physrevb.81.035330
  96. R. Shaltaf M. Grüning M. Stankovski G.-M. Rignanese
  97. Morris Andrew J., Stankovski Martin, Delaney Kris T., Rinke Patrick, García-González P., Godby R. W., Vertex corrections in localized and extended systems, 10.1103/physrevb.76.155106
  98. Tiago Murilo L., Chelikowsky James R., Optical excitations in organic molecules, clusters, and defects studied by first-principles Green’s function methods, 10.1103/physrevb.73.205334
  99. Tiago Murilo L., Idrobo Juan C., Öğüt Serdar, Jellinek Julius, Chelikowsky James R., Electronic and optical excitations inAgnclusters(n=1–8): Comparison of density-functional and many-body theories, 10.1103/physrevb.79.155419
  100. Van de Walle Chris G., Neugebauer Jörg, First-principles calculations for defects and impurities: Applications to III-nitrides, 10.1063/1.1682673
  101. Hedström Magnus, Schindlmayr Arno, Schwarz Günther, Scheffler Matthias, Quasiparticle Corrections to the Electronic Properties of Anion Vacancies at GaAs(110) and InP(110), 10.1103/physrevlett.97.226401
  102. Rinke Patrick, Janotti Anderson, Scheffler Matthias, Van de Walle Chris G., Defect Formation Energies without the Band-Gap Problem: Combining Density-Functional Theory and theGWApproach for the Silicon Self-Interstitial, 10.1103/physrevlett.102.026402
  103. Leung W.-K., Needs R. J., Rajagopal G., Itoh S., Ihara S., Calculations of Silicon Self-Interstitial Defects, 10.1103/physrevlett.83.2351
  104. Batista Enrique R., Heyd Jochen, Hennig Richard G., Uberuaga Blas P., Martin Richard L., Scuseria Gustavo E., Umrigar C. J., Wilkins John W., Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects, 10.1103/physrevb.74.121102
  105. Martin-Samos L., Roma G., Rinke P., Limoge Y., Charged Oxygen Defects inSiO2: Going beyond Local and Semilocal Approximations to Density Functional Theory, 10.1103/physrevlett.104.075502
  106. Bruneval Fabien, GWApproximation of the Many-Body Problem and Changes in the Particle Number, 10.1103/physrevlett.103.176403
  107. Slater, The Self-Consistent Field for Molecules and Solids, 4 (1974)