User menu

Mixing MIR Inequalities with Two Divisible Coefficients.

Bibliographic reference Constantino, Miguel ; Miller, Andrew ; Van Vyve, Mathieu. Mixing MIR Inequalities with Two Divisible Coefficients.. In: Mathematical Programming, Vol. 123, no. 2, p. 451-483 (2010)
Permanent URL http://hdl.handle.net/2078.1/69227
  1. Agra A., Constantino M.F.: Description of 2-integer continuous knapsack polyhedra. Discrete Optim. 3, 95–110 (2006)
  2. Agra A., Constantino M.F.: Lifting two-integer knapsack inequalities. Math. Program. 109(1), 115–154 (2007)
  3. Balas E.: Disjunctive programming. Annal. Discrete Math. 5, 3–51 (1979)
  4. Conforti, M., Zambelli, G.: The mixing set with divisible capacities: a simple approach. Working Paper, 2008
  5. Conforti M., Di Summa M., Wolsey L.A.: The mixing set with divisible capacities. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds) IPCO. Lecture Notes in Computer Science, vol. 5035, pp. 435–449. Springer, Heidelberg (2008). ISBN 978-3-540-68886-0
  6. Constantino, M.: A Polyhedral Approach to Production Planning Models: Start-up Costs and Times, and Lower Bounds on Production. PhD thesis, Faculté des Sciences, Université Catholique de Louvain, Belgium (1995)
  7. Constantino M.: Lower bounds in lot-sizing models: a polyhedral study. Math. Oper. Res. 23, 101–118 (1998)
  8. Di Summa, M.: The mixing set with divisible capacities. Working Paper, 2007
  9. Gomory, R.E.: An algorithm for the mixed integer problem. Technical Report RM-2597, The RAND Corporation, 1960
  10. Günlük O., Pochet Y.: Mixing MIR inequalities for mixed integer programs. Math. Program. 90, 429–258 (2001)
  11. Miller A.J., Wolsey L.A.: Tight formulations for some simple mixed integer programs and convex objective integer programs. Math. Program. B 98, 73–88 (2003)
  12. Nemhauser George, Wolsey Laurence, Integer and Combinatorial Optimization : Nemhauser/Integer and Combinatorial Optimization, ISBN:9781118627372, 10.1002/9781118627372
  13. Pochet Y., Wolsey L.A.: Lot-sizing with constant batches: formulations and valid inequalities. Math. Oper. Res. 18, 767–785 (1993)
  14. Pochet Y., Wolsey L.A.: Polyhedra for lot–sizing with Wagner–Whitin costs. Math. Program. 67, 297–323 (1994)
  15. Van Vyve, M.: A Solution Approach of Production Planning Problems based on Compact Formulations for Single-Item Lot-Sizing Models. PhD thesis, CORE, Université Catholique de Louvain, Belgium (2003)
  16. Zhao, M., de Farias, I.R.: The mixing-MIR set with two nondivisible capacities. Industrial and Systems Engineering, University of Buffalo (2007a, submitted)
  17. Zhao, M., de Farias, I.R.: The mixing-mir set with divisible capacities. Math. Programm. (2007b, in press)
  18. Zhao, M., de Farias, I.R.: A note on the continuous mixing polyhedron. Industrial and Systems Engineering, University of Buffalo (2007c, submitted)