User menu

Finding minimum cost directed trees with demands and capacities

Bibliographic reference Bousba, C. ; Wolsey, Laurence. Finding minimum cost directed trees with demands and capacities.Topological Network Design: Analysis and Synthesis. NATO Advanced Research Workshop (Copenhagen, Denmark, 19-23 June 1989). In: Annals of Operations Research, 1991, p.Vol. 33, p. 285-303
Permanent URL http://hdl.handle.net/2078.1/68299
  1. Adams R.N., Laughton M.A., Optimal planning of power networks using mixed-integer programming. Part 1: Static and time-phased network synthesis, 10.1049/piee.1974.0024
  2. Y.P. Aneja, An integer linear programming approach to the Steiner problem in graphs, Networks 10(1980)167–178.
  3. A. Balakrishnan, T.L. Magnanti and R.T. Wong, A network design problem,Oberwolfach Conf. on Applications of Combinatorial Optimization (1989).
  4. M.O. Ball, W.G. Liu and W.R. Pulleyblank, Two terminal Steiner tree polyhedra, in:Contributions to Operations Research and Economics: The 20th Anniversary of CORE, ed. B. Cornet and H. Tulkens (MIT Press, 1990).
  5. I. Barany, J. Edmonds and L.A. Wolsey, Packing and covering a tree by subtrees, Combinatorica 6(1986)221–233.
  6. J.E. Beasley, An algorithm for the Steiner problem in graphs, Networks 14(1984)147–160.
  7. Ch. Bousba, Planification des réseaux électriques de distribution: une approache par la programmation mathématique en nombres entiers, Thèse de Doctorat en Sciences Appliquées, Université de Louvain, Louvain-la-Neuve, Belgium (1989).
  8. H. Crowder, E.L. Johnson and M.W. Padberg, Solving large-scale zero-one linear programming problems, Oper. Res. 31(1983)803–834.
  9. B. Gavish, Topological design of centralized computer networks. Formulations and algorithms, Networks 12(1982)355–377.
  10. B. Gavish, Formulations and algorithms for the capacitated minimal directed tree problem, J. ACM 30(1983)118–132.
  11. B. Gavish, Augmented Lagrangian based algorithms for centralized network design, Working Paper 8321, Graduate School of Management, University of Rochester.
  12. Gönen T., Ramirez-Rosado I.J., Review of distribution system planning models: a model for optimal multistage planning, 10.1049/ip-c.1986.0060
  13. M. Minoux, Network synthesis and dynamic network optimization, Ann. Discr. Math. 31(1987)283–324.
  14. M. Minoux, Network synthesis and optimum network design problems, Networks 19(1989)313–360.
  15. Ch. Papadimitriou, The complexity of the capacitated tree problem, Networks 8(1978)217–230.
  16. A. Prodon, T.M. Liebling and H. Gröflin, Steiner's problem on two-trees, Technical Report RO 850315, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne (1985).
  17. T.J. Van Roy and L.A. Wolsey, Solving mixed integer programs by automatic reformulation, Oper. Res. 35(1987)45–57.
  18. L.A. Wolsey, Valid inequalities for knapsack problems with generalized upper bounds, Technical Report RO 870630, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne (1987).
  19. R.T. Wong, A dual ascent approach for Steiner tree problems on a directed graph, Math. Progr. 28(1984)271–287.