User menu

Fraud detection and prevention in smart card based environments using artificial intelligence

Bibliographic reference Malek, W.W.Z. ; Mayes, K. ; Markantonakis, K.. Fraud detection and prevention in smart card based environments using artificial intelligence.Smart Card Research and Advanced Applications. 8th IFIP WG 8.8/11.2 International Conference, CARDIS 2008 (London, UK, 8-11 September 2008). In: Grimaud, G.; Standaert, F.-X.;, Smart Card Research and Advanced Applications. 8th IFIP WG 8.8/11.2 International Conference, CARDIS 2008, Springer-verlag2008, p. 118-132
Permanent URL http://hdl.handle.net/2078.1/67654
  1. Harris, S.: CISSP, 3rd edn. Hardcover. Osborne (2005)
  2. John, P., Jesan, D.M.L.: Human brain and neural network behavior: A comparison 1, 2–5 (2003) [accessed on 3/04/2007], http://www.acm.org
  3. Dewri, R.: Evolutionary neural networks: Design methodologies 1, 1–5 (2003) [accessed on 9/02/2007], http://aidepot.com/articles/evolutionary-neural-networks-design-methodologies/
  4. Davalo Eric, Naïm Patrick, Neural Networks, ISBN:9780333549964, 10.1007/978-1-349-12312-4
  5. Nicholls, J.G., Martin, A.R., Wallace, B.G., Fuchs, P.A.: From Neuron To Brain, 4th edn. Sinauer Associates Inc. (2001)
  6. Stergiou, C.: Neural networks, the human brain and learning 1, 1–3 (1996) [accessed on 14/06/2007], http://www-dse.doc.ic.ac.uk/nd/surprise96/journal/vol2/cs11/article2.html
  7. Khanna, T.: Foundations of Neural Networks. Addison-Wesley, Reading (1990)
  8. Fausett, L.: Fundamentals of Neural Networks. Prentice-Hall, Englewood Cliffs (1994)
  9. Omid Omidvar, J.D.: Neural Networks and Pattern Recognition. Academic Press, London (1998)
  10. Dimension, N.: Fraud detection using neural networks and sentinel solutions (smartsoft).  1, 1–3 (2006) [accessed on 17/06/2007], http://www.nd.com/resources/smartsoft.html
  11. Khan, A.: Feedforward Neural Networks with Constrained Weights. PhD thesis, Univ. of Warwick, Dept. of Engineering (1996)
  12. VeriSign: Verisign identity protection fraud detection service an overview. Whitepaper, VeriSign (2006)
  13. University, M.: Exponential function 1, 1–3 (2004) (12/07/2007), http://www.cs.mtu.edu/shene/COURSES/cs201/NOTES/chap04/exp.html
  14. Vassilis, P., Plagianakos, M.N.V.: Parallel evolutionary training algorithms for hardware-friendly neural networks. Technical report, University of Patras, GR-26110 Patras, Greece (2002)
  15.  Pavlidis, N.G.,  Tasoulis, D.K., Plagianauos, V.P., Nikifuridis, G., Vrahatis, M.N.: Spiking neural network training using evolutionary algorithms. Technical report, 3Department of Pathology, University Hospital, GR26500 Patras, Greece (2001)
  16. Vassilis, P., Plagianakos, M.N.V.: Training neural networks with threshold activation functions and constrained integer weights. Technical report, University of Patras, GR-26500, Greece (2001)
  17. Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N.: Hybrid methods using evolutionary algorithms for online training. Technical report, Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH (2001)
  18. Sutton, J.Z.P.: Fpga implementations of neural networks - a survey of a decade of progress. Technical report, University of Queensland, Brisbane, Queensland 4072, Australia (2004)
  19. SharpNeat-Developers: An integer based neural network, sharpneat.sourceforge.net. 1, 1–5 (2004), http://www.sharpneat.sourceforge.net/integernetwork.html