
Summary

This paper shows how the geometry of one of Robert Maillart’s most intriguing 
projects, the Chiasso Shed, was created using graphics. Originating in the six-
teenth century, graphic vectorial equilibrium has been used for studying a wide 
variety of structural problems. Among other things, it allows a form to be adjust-
ed so that it only encounters axial loads while guaranteeing equilibrium. Here, 
we see that the general appearance of the structure was determined with refer-
ence to a uniformly distributed load, and then concrete was placed along force 
trajectories. Maillart allowed for some geometric inaccuracies remaining with 
regard to the way he designed asymmetric loadings to be supported by stiffening 
members. In so doing, emphasis is placed on efficient axial forces, similar to our 
modern strut-and-tie approach, in the design of concrete structures.

Keywords: structural design; graphic statics; concrete; strut-and-tie; Maillart; 
Chiasso; Magazzini Generali.

beam with cantilevers,5 reference to 
the Vierendeel truss6 etc. Despite Max 
Bill’s observation that “the form fol-
lows the flow of forces”,4 it seems that 

few would have considered the form 
as resulting from a simple vectorial 
equilibrium obtained by graphic stat-
ics in accordance with the contextual 
constraints imposed by the warehouse 
building. Vectorial equilibrium is par-
ticularly evident in the scheme of forces 
published by Bill (Fig. 2). Furthermore, 
studying the Maillart archives leaves 
little doubt that he used graphic statics 
for designing the structures. However, 
the working drawings of the Chiasso 
Shed are lost.

Graphic Statics

The first use of graphic vectorial repre-
sentation to analyse a structure can be 
encountered as early as 1586 in the writ-
ings of Simon Stevin7 who established 
a kind of parallelogram law of forces. 
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Introduction

Over a career spanning 40 years, 
Robert Maillart (1872–1940) designed 
and collaborated nearly 300 differ-
ent projects. These include around 50 
well-known railway and road bridges; 
others are mainly structures for build-
ings. Among these, the Chiasso Shed 
is perhaps the most interesting and 
intriguing. Maillart designed the five-
storey warehouse building (Fig. 1) with 
architect Brenni in early 1924, but he 
found a solution for the shed only 
6 months later.1 Shortly after comple-
tion, the form of the shed was criticised 
for being forced and arbitrary.2

Many authors have given their own 
justification to explain the shed form: 
an analogy with natural forms,3 stylis-
tic references,4 an analogy of the flex-
ural behaviour of a simply supported 

Fig. 1: Magazzini Generali in Chiasso, Robert Maillart, 1924 (ETH-Bibliothek Zurich, 
image archive/Robert Maillart archive)
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Fig. 2: Loads (left) and forces (right) in Robert Maillart’s Magazzini Generali Shed in Chiasso, after Bill (1955)4
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Pierre Varignon8,9 demonstrates the law 
of force polygon and introduces the use 
of funicular polygons. Graphic means 
were used or investigated by Poleni 
(1748), Lame and Clapeyron (1826), 
Poncelet (1840), Rankine (1858) and 
Maxwell (1864).10–14 However, it is Karl 
Culmann who is considered the found-
er of the science of graphic statics with 
the publication of Die graphische Sta-
tik in 1866.14 After him, Cremona, Bow, 
Mohr, Ritter and Levy, all contributed 
to developing and broadening the use 
of graphic statics in Europe. Culmann 
also belongs to the first generation of 
professors at the ETH in Zürich, whose 
students included Maurice Koechlin 
(co-designer of the Eiffel Tower) and 
Robert Maillart (who attended classes 
given by Wilhelm Ritter, Culmann’s 
successor at ETH). Graphic statics use 
at least two figures simultaneously: a 
force polygon that guarantees the equi-
librium of translation forces, and either 
a truss or a funicular polygon that guar-
antees rotational equilibrium. A recip-
rocal relationship exists between the 
lines of the two polygons, as shown by 
Maxwell in 1864.

Design of the Chiasso Shed

When superimposing sections of the 
warehouse and the shed, we immedi-
ately see that the entire height of the 
central part of the shed structure is 

held between the surfaces of the first 
and second floor (in blue in Fig. 4). In 
the same way, new structural compo-
nents emerge from others at the same 
height, as the capitals emerge from the 
columns (red in Fig. 4).

The span combines a compressed con-
crete slab and a (funicular) lower chord 
in tension. In so doing, through graphi-
cal construction we can determine the 
right form to encounter only axial forc-
es under one reference loading case. 
But, since structures encounter a wide 
variety of loadings, another structural 
component is useful in guaranteeing 
that the structure behaves correctly. 
Maillart achieved this by giving the 
slab a rib, making a kind of T-beam. 
While the upper chord of the structure 
is maintained in axial compression (i.e. 
the ideal case), dimensions are given to 
place the centre of gravity just between 
the slab and the rib. Thus, during the 
design phase the compression chord 
is modelled as a 10-cm slab with 1-m 
flanges on each side of a 30-cm deep 
rib. At a later stage, the neutral axis will 
be maintained at the same level with a 
9 cm slab and a curved junction with 
the slab (see Fig. 3). It will be demon-
strated (Fig. 5) that, due to an inclina-
tion of the slab, the lower chord must 
rise in the central part of the struc-
ture beyond the axis FG (according 
to Robert Bow’s interval notation: see 
below).

With interval notation, the numbers in 
the main diagram represent areas re-
stricted by structural elements and the 
letters represent spaces between the 
lines of action of the applied forces, so 
that the bars of the structure are labelled 
by two numbers or by a number and 
a letter (Fig. 5). Thus, in the main dia-
gram 4E represents the segment of 
upper chord between areas labelled 
4 and E and the force in this segment 
is represented by the ray 4e in a force 
polygon. The corresponding small let-
ters are used on the force polygon to 
label the two marks defining the length 
of the vectorial force associated with a 
bar or an axis in the main diagram. The 
lengths on the force polygon define the 
forces’ magnitude at scale. On the main 
figure, forces are labelled with capital 
letters placed directly on either side of 
their lines of action, which are the tra-
jectories of the forces up to the point 
of contact with the structure. Zalewski 
and Allen12 provide a clear overview 
of graphical design procedures using 
Bow’s notation.

Here, the vertical axes pattern is used 
as a support for the force trajectories 
applied on the roof’s structure. The 
axes of the shed are spaced at half the 
distance between the axes of the ware-
house column (Fig. 4). So, doubling 
axes allows the roof ridge to be sup-
ported and the span of the upper chord 
to be limited.
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Values of the applied forces are a sim-
plification of those obtained with the 
weight information in Fig. 2, i.e. self 
weight of 2,5 t/m3 (~25 kN/m3) and a 
snow load of 100 kg/m2 (~1 kN/m2). 
The loads shown in Fig. 2 include all 
the geometric details (thus a verifica-
tion stage), while we will use simplified 
ones for the design. In so doing, we use 
only the weight of a 10 cm deep slab 
+ snow, obtaining 4,11 t on each axis, 
rounded to 4 t (tonnes and centimetres 
were Robert Maillart’s preferred work-
ing units) for a longitudinal span of 4,5 
m. Referring to Fig. 5, the purpose is 
to equilibrate the pull of the funicular 
lower chord at its anchorage with a 
compressed upper chord (the roof slab, 
acting as a strut). The segments of a 
funicular polygon are drawn parallel to 
the rays joining the corresponding loads 
to a pole o on a force polygon. Force 
vectors are drawn first (vertical loads 
line: a, b... j...). Due to the symmetry of 
both the structure and the loading, the 
pole must remain on a horizontal sym-
metry axis passing through the mid-
length of segment gh (corresponding 
vector of the load of the roof’s ridge). 
In order to avoid a horizontal pull at 
the extremities of lower chord, the 
horizontal distance between o and the 
mid-length of gh must be zero. 

If the blue central segment o8 is hori-
zontal, so as to define an intersection 
8 with g8 (parallel to the roof’s axis), 
the vertical line 2–4–6–8 can be con-
structed and all the rays can be drawn. 
But the corresponding funicular on the 
main figure (shown in blue) appears 
too low to be effective. Therefore, all 
shallower funiculars need to have a 
central segment inclined towards the 
exterior (see o8´ for example). Since 
the width of the shed’s columns and 
their position unit: cms are determined 
by those of the warehouse, no axis 
corres ponds to the axis of the column. 
So the support for the central part of 
the structure is logically better placed 
on the CD axis.

We can now undertake a new geomet-
ric construction with a central part of 
the structure situated above the first 
floor (the lower chord is 20 cm high) 
and passing through the intersection 
between the upper chord and the CD 
axis (Fig. 6). Superimposing the result-
ing funicular on the structure (Fig. 7), 
we verify that the geometry is the 
same except for segment D of the 
lower chord, which varies only slightly. 
(The structure is drawn according to 
dimensions given in Maillart’s plan no. 
4020/41/2.) Thus, we only need to use 
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vertical members between the upper 
and lower chords. In fact, to Maillart, 
for economical and practical rea-
sons it is preferable to avoid diagonal 
members, since such members com-
plicate nodes, particularly in a con-
crete structure. So Maillart opted for a 
Vierendeel-like structure. For the same 
reason, Maillart avoided using a third 
member between 1A and 1P.

We can now examine the structural part 
of the work associated with columns 
and ground connection. In Fig. 2, 
we see that all vectorial resultants are 
situated within the thickness of the 
members. The reason is that in so doing, 
all forces can theoretically be borne by 
any material that can carry only com-
pression forces, such as unreinforced 
concrete. Such a design procedure can 
be seen today as an application of the 
lower bound theorem.15 Therefore, 
Maillart did not need large amounts of 
reinforcing steel or members of a sig-
nificant size. Subsequently, the bearing 
area of the foundation was evenly dis-
tributed around the resulting normal 
force and he did not need fixed-end 
conditions in the ground, which were 
difficult (and costly) to obtain for a 
simple industrial building in 1924.

The force polygons are completed by 
adding the vertical members (Fig. 8: 
2–4, 4–6, 6–8, 8–9). On the main fig-
ure, we draw the axes of struts starting 
from the column (blue axis line 1P and 
dashed lines A1 and BC1). 

Thereafter, we construct the corres-
ponding parallel forces on the force 
polygon (a1, bc1 and 1p). Point p is 
obtained by intersecting the horizon-
tal symmetry axis passing through the 
mid-point of gh parallel to 1P. But for 
the equilibrium, pole o of the funicu-
lar rays and point p must correspond. 
Thus, we need to correct the force poly-
gon (on Fig. 9). On the same figure, we 
draw line ap (with the dotted blue line) 
on the force polygon, and immediately 
after on the main figure with a parallel 
line passing through the intersection 
of struts A1 and 1P. The resulting vec-
tor goes beyond the column envelop; 
therefore, the bending moment in the 
column is not negligible.

We can graphically correct the direc-
tion of the resultant force on the main 
figure. To do this, we impose the direc-
tion of the resulting force inside the 
column, for example, at a maximum 
distance of 15 cm from the edges (see 
the blue axis line on the main figure 
of Fig. 10). However, we also need to 
correct the orientation of strut A1 and 
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1P by moving the former and inclining 
the latter. We can see that the main fig-
ure is no longer entirely correct: force 
AB is now applied just on the side of 
the top of strut 1A, causing bending. 

Further correction of the force poly-
gon is now needed: segments ap’ and 
1p’ are drawn, but their intersection, 
p’, no longer lies on the horizontal 
symmetry axis.

This must be corrected by inclining 1p’ 
to 1p* on the force polygon (blue axis 
line on Fig. 11). The rays of the funic-
ular’s segments must again be placed 
so that their pole corresponds with p*. 
On the main figure, 1P must be drawn 
parallel to 1p*; 1P and 2P no longer in-
tersect on the axis of the upper chord. 
Therefore, a new 2P segment is drawn 
to intersect with 1P (blue continuous 
line). Again, 2p* must be corrected on 
the force polygon.

We can compare the newly obtained 
geometry with that of the real struc-
ture from the construction drawings: all 
lines now match (Fig. 12), with a toler-
ance of less than 1 cm (all drawings are 
made using a CAD system at full size). 
Consequently, we now understand 
how Maillart determined the details 
of the form: just below the ground, the 
column widens to maintain the result-
ing forces in the material; the founda-
tion had been shaped for equilibrium. 
The column has taken a T-shape in the 
upper zone while loaded on one side 
(and later rounded for sustaining de-
tailed loading as in Fig. 2) but remains 
massive in the lower part.

We can also see that the main figure 
includes some errors when lines of ac-
tion (axes) no longer correspond to 
the intersections of members. Similarly, 
we can see that intersections between 
forces of the upper and the lower 
chords do not converge on the force 
polygon if transition members have 
to remain vertical. Maillart could have 
corrected this by inclining the segments 
of the lower chord, but he did not.

Would Maillart disregard an appro-
priately worked out geometry? If we 
construct a new correct solution (in 
yellow on Fig 13) at a median position 
on the main figure, we can observe a 
positioning error of between 3,7 and 
6 cm. If Maillart drew his figure on an 
A1 document at a scale of 1:50, where 
a real 5 cm is represented by 1 mm on 
the drawing, this correction would not 
be practical. But to aim for an opti-
mum would require detailing the self 
weight of the structure; so it makes no 
sense to correct the geometry for our 
simplified loading.

Discussion

Our examination of the values of forces 
in Fig. 2 would lead us to suppose that 
geometry was determined with refer-
ence to the given (detailed) loads: forc-
es in the lower and upper chords are 
said to be constant, as in a well-designed 
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constant-stress truss. Values are said to 
be the same: approximately 40 t minus 
a shared 6 t horizontal force for col-
umn equilibrium. However, they are 
not. We can show that, under this load-
ing, funicular geometrical error is even 
greater. The author’s recent doctoral 
dissertation16 demonstrates that be-
cause of the way asymmetric loads are 
managed by the T-shape beam (made 
of the slab with its rib), such a correc-
tion would be meaningless. We must 
conclude from this that Maillart first 
imagined the geometry of the Chiasso 
Shed with reference to a uniformly dis-
tributed loading (regardless of wheth-
er snow is included or not since, this is 
uniformly distributed). Following this, 
he designed a stiffening system on the 
same principles he used during this 
period with his stiffened arch bridg-
es.1,6 And this T-beam will effectively 
take all flexural moments.

Conclusion

Maillart often earned commissions by 
providing the cheapest possible solu-
tion. He achieved this by using concrete 
with structural efficiency and sound 
consideration of building methods. 
Graphic statics permitted him to guar-
antee that vectorial equilibrium was 

satisfied, so that he achieved mainly 
efficient axial forces, just as when we 
are tempted today to design structures 
with struts and ties according to plastic 
theory. By using graphical methods to 
determine the form, Maillart created 
an original and elegant structure for 
the Chiasso Shed roof.
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