User menu

Vibrational versus electronic first hyperpolarizabilities of mono- and disubstituted benzenes: An ab initio coupled Hartree-Fock investigation

Bibliographic reference Champagne, Brigitte. Vibrational versus electronic first hyperpolarizabilities of mono- and disubstituted benzenes: An ab initio coupled Hartree-Fock investigation.37th Annual Sanibel Symposium (UNIV FLORIDA, PONCE DE LEON CONF CTR, ST AUGUSTINE (Fl), Mar 01-07, 1997). In: International Journal of Quantum Chemistry, Vol. 65, no. 5, p. 689-696 (1997)
Permanent URL http://hdl.handle.net/2078.1/62813
  1. (a) and Eds., Organic Materials for Nonlinear Optics (Academic Press, New York, 1987),. Vols. I and II.
  2. (b) and Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  3. (c) Nonlinear Optics (Academic Press, New York, 1992).
  4. (d) P. O. L�wdin, Ed., Int. J. Quantum Chem., special issue on Molecular Nonlinear Optics 43 (1) (1992).
  5. (e) Ed., Molecular Nonlinear Optics, Materials, Physics, and Devices (Academic Press, New York, 1993).
  6. (f) J. Michl, Ed., Chem. Rev., thematic issue on Optical Nonlinearities in Chemistry 94 (1) (1994).
  7. Bishop David M., Aspects of Non-Linear-Optical Calculations, Advances in Quantum Chemistry (1994) ISBN:9780120348251 p.1-45, 10.1016/s0065-3276(08)60017-9
  8. (h) and Eds., Theoretical and Computational Modeling of NLO and Electronic Materials, ACS Symposium Series (American Chemical Society, New York, 1995).
  9. and Int. Rev. Phys. Chem. (in press).
  10. Bishop David M., Molecular vibrational and rotational motion in static and dynamic electric fields, 10.1103/revmodphys.62.343
  11. and submitted.
  12. and in ref. 1f, p. 195.
  13. Del Zoppo, Nonlin. Opt., 9, 73 (1995)
  14. Zuliani P., Del Zoppo M., Castiglioni C., Zerbi G., Marder S. R., Perry J. W., Solvent effects on first‐order molecular hyperpolarizability: A study based on vibrational observables, 10.1063/1.469882
  15. Zuliani P., Del Zoppo M., Castiglioni C., Zerbi G., Andraud C., Brotin T., Collet A., Molecular Hyperpolarizabilities from Vibrational Spectroscopy: Polyenovanillins, 10.1021/j100044a007
  16. Castiglioni C., Del Zoppo M., Zerbi G., Molecular first hyperpolarizability of push-pull polyenes: Relationship between electronic and vibrational contribution by a two-state model, 10.1103/physrevb.53.13319
  17. and Phys. Rev. B (in press).
  18. Hehre W. J., Taft R. W., Topsom R. D., Ab Initio Calculations of Charge Distributions in Monosubstituted Benzenes and in Meta- and Para-Substituted Fluorobenzenes. Comparison with1H,13C, and19F Nmr Substituent Shifts, Progress in Physical Organic Chemistry ISBN:9780470171912 p.159-187, 10.1002/9780470171912.ch6
  19. Cheng Lap Tak, Tam Wilson, Stevenson Sylvia H., Meredith Gerald R., Rikken Geert, Marder Seth R., Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives, 10.1021/j100179a026
  20. Ulman Abraham, Calculations of dipole moments, optical spectra, and second-order hyperpolarizability coefficients of some mono- and disubstituted stilbene models for the design of nonlinear optical materials, 10.1021/j100319a056
  21. Jacquemin Denis, Champagne Benoît, André Jean-Marie, Electronic first hyperpolarizability of polymethineimine chains with donor and acceptor groups, 10.1016/s0379-6779(96)03704-6
  22. Dykstra Clifford E., Jasien Paul G., Derivative Hartree—Fock theory to all orders, 10.1016/0009-2614(84)85607-9
  23. Sekino Hideo, Bartlett Rodney J., Frequency dependent nonlinear optical properties of molecules, 10.1063/1.451255
  24. Karna S. P., Dupuis M., Frequency dependent nonlinear optical properties of molecules: Formulation and implementation in the HONDO program, 10.1002/jcc.540120409
  25. Hehre W. J., Ditchfield R., Pople J. A., Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules, 10.1063/1.1677527
  26. Kirtman Bernard, Bishop David M., Evaluation of vibrational hyperpolarizabilities, 10.1016/0009-2614(90)85588-4
  27. Bishop David M., Kirtman Bernard, A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities, 10.1063/1.460917
  28. Bishop David M., Kirtman Bernard, Compact formulas for vibrational dynamic dipole polarizabilities and hyperpolarizabilities, 10.1063/1.463806
  29. Bishop David M., Dispersion formula for the average first hyperpolarizability β̄, 10.1063/1.461645
  30. Bishop David M., De Kee D. W., The frequency dependence of nonlinear optical processes, 10.1063/1.471752
  31. Bishop David M., De Kee D. W., The frequency dependence of hyperpolarizabilities for noncentrosymmetric molecules, 10.1063/1.472676
  32. Elliott D.S., Ward J.F., Vibrational mode contributions to molecular third order polarizabilities, 10.1080/00268978400100031
  33. Bishop David M., Hasan Muhammed, Kirtman Bernard, A simple method for determining approximate static and dynamic vibrational hyperpolarizabilities, 10.1063/1.469600
  34. and Gaussian 94, Revision B.1 (Carnegie-Mellon University, Pittsburgh, PA, 1995).
  35. Champagne Benoît, Vibrational polarizability and hyperpolarizability of p-nitroaniline, 10.1016/0009-2614(96)00928-1
  36. Exner Otto, A Critical Compilation of Substituent Constants, Correlation Analysis in Chemistry (1978) ISBN:9781461588337 p.439-540, 10.1007/978-1-4615-8831-3_10
  37. Oudar J. L., Chemla D. S., Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment, 10.1063/1.434213
  38. Zyss J., Hyperpolarizabilities of substituted conjugated molecules. II. Substituent effects and respective σ–π contributions, 10.1063/1.437919