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Prof. Pierre-Yves Willems Université catholique de Louvain
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Louvain-la-Neuve, Belgium

December 2007



I would like to express my deepest gratitude to:

Paul Fisette, for his friendship, for being of constant help and support to me,

for guiding perfectly my work on this thesis from the very beginning – with his

precious ideas, advice and remarks, his words of encouragement and motivation,

when I needed them the most,

Jean-Claude Samin, for so many fruitful discussions and enlightening remarks, as

well as for his valuable supervision of this work,

Pierre-Yves Willems, for being such a magnificent mentor to me, in the scientific

and every other sense of this term,

Paul Thibaut, another precious friend and colleague, with whom we spent many

hours together, tackling mechatronic design problems,

Thierry Daras, for his kind assistance with respect to some hardware implemen-

tation aspects of this thesis,

Guy Campion, Joris De Schutter and Bram Demeulenaere, for their helpful advice

on some robot control issues,

All my past and present colleagues at the PRM Division of the UCL, where I

have been working for almost nine years, in a wonderful atmosphere of team spirit,

union and friendship,

Maxime Raison, Vincent Spinewine and François Nicolas, for being such good

office mates,

Paul Fisette and Jean-Claude Samin, once more, as well as Benôıt Raucent – for
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List of symbols

Subscripts

n : corresponds to the number of degrees of freedom of the

multibody system;

k : corresponds to the number of joints of the multibody sys-

tem;

u : stands for the independent coordinates of the multibody

system;

v : stands for the dependent coordinates of the multibody

system;

a : stands for the actuated (active) coordinates of the multi-

body system;

p : stands for the non-actuated (passive) coordinates of the

multibody system;

ad : stands for the actuated (active) coordinates, correspond-

ing in number to the degrees of freedom of the multibody

system;

ar : stands for the actuated (active) coordinates, correspond-

ing in number to the redundant actuators of the multi-

body system;

c : stands for the kinematic constraint equations;

m : stands for the parallel manipulator Jacobian;

Superscripts

n : stands for ”power n”;

d : stands for desired (reference) values of the controlled

variables;

Operators

ȧ : first time derivative of a;

ä : second time derivative of a;

ã : tilde matrix associated with a (3 × 1) array a;

ã : tilde tensor associated with a vector a;

Main symbols

X : set of end-effector (absolute) generalized coordinates of

the manipulator;

q : set of joint (relative) generalized coordinates of the ma-

nipulator;

J : Jacobian matrix;

u : sub-set of independent generalized coordinates of the par-

allel manipulator;
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v : sub-set of dependent generalized coordinates of the par-

allel manipulator;

a : sub-set of actuated (active) generalized coordinates of the

multibody system;

p : sub-set of non-actuated (passive) generalized coordinates

of the multibody system;

W : end-effector ”wrench” - resultant vector of the external

torques and forces, applied on the end-effector;

τ : vector of torques/forces applied to the manipulator joints;

ℜn : Euclidean space of a dimension n;

ǫn : ellipsoid, defined in the n-dimensional Euclidean space

ℜn;

ςu : sphere of radius equal to 1 (unit sphere);

Ψ : surface (set of points), defined in the n-dimensional Eu-

clidean space ℜn;

U : left unitary matrix of the singular value decomposition

J = U Σ V T ;

Σ : diagonal matrix (with nonnegative elements in decreasing

order) of the singular value decomposition J = U Σ V T ;

V : right unitary matrix of the singular value decomposition

J = U Σ V T ;

λ : vector of Lagrange multipliers;

Nact : number of independent actuators (actuated joints);

dAR (dFR) : number of degrees of actuation (force) redundancy;

deff : number of end-effector degrees of freedom that the par-

allel manipulator;

dmbs : number of degrees of freedom of the multibody system;

N body : number of bodies of the multibody system;

N joint : number of joints of the multibody system;

{O, {Î}} : orthonormal inertial frame of origin O in the three-

dimensional Euclidian space, rigidly fixed to the base

(body 0) of the multibody system;

{X̂i} : orthonormal reference frame in the three-dimensional Eu-

clidian space, attached to body i;

Ri : (3 × 3) absolute rotation matrix of {X̂i} with respect to

{Î};
Ri,h : (3×3) relative rotation matrix between frames {X̂i} and

{X̂h};
Ωi : relative angular velocity vector of body i with respect to

its parent h;

ωi : absolute angular velocity vector of body i;
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Oi, O
′i : reference attachment points of joint i on the parent body

h and its child i, respectively;

zi : relative position vector
−−−→
OiO′i;

dik : position vector of the reference attachment point Ok with

respect to O′i;

dik
z : extended position vector of Ok with respect to O′i;

Gi : center of mass of body i;

dii : position vector of the center of mass Gi with respect to

O′i;

dii
z : augmented position vector of Gi with respect to Oi;

xi : absolute position vector of the center of mass Gi;

mi : mass of body i;

Ii : inertia matrix of body i with respect to its center of mass

Gi;

Ii : inertia tensor of body i with respect to its center of mass

Gi;

g : gravity vector;

Fi : vector of the forces applied to body i by its parent h

through joint i;

Fi
ext : resultant vector of the external forces (excluding the grav-

ity), applied to body i;

Fi
tot : resultant vector of all the forces applied to body i;

Li : vector of the torques applied to body i by its parent h

through joint i;

Li
ext : resultant vector of the external torques, applied to body

i;

Li
tot : resultant vector of all the torques applied to body i;

Qi : generalized force associated with the generalized joint co-

ordinate qi;

Sd : diagonal selection matrix of a hybrid controller;

Sr : diagonal selection matrix of a redundant hybrid

controller;

Abbreviations

MBS : multibody system;

d.o.f. : degrees of freedom;

RPPM : reconfigurable planar parallel manipulator;

RAPM : redundantly actuated parallel manipulator;

PD : proportional-derivative;

PDFF : proportional-derivative plus feed forward;

FCTT : feed-forward computed-torque.
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Introduction

Only recently, the redundantly actuated manipulators have really interested the scientists

of the domain of parallel robotics. The significant advantages in terms of enlarged effective

workspace, higher payload ratio and better manipulability of this type of parallel struc-

tures with respect to non-redundantly actuated systems will undoubtedly engender more

and more applications in different directions: high-precision machining, fault-tolerant ma-

nipulators, transport and outer-space applications, surgical operations, etc.

However, to the present day, the number of real applications of redundantly actuated

parallel manipulators is still quite limited. This is partially due to the fact that to develop

effective strategies for actuation of such type of closed-loop structures is not so obvi-

ous. The solutions for the redundant actuator efforts are usually sought via optimization

techniques targeting their minimization with respect to energy considerations, actuator

performance limits, etc. As another application of the redundant actuation principles,

in some recent researches the force redundancy is used to cancel the backlash, existing

in the manipulator structure (joints), by bringing the latter into internally loaded state

throughout the motion it has to accomplish.

Another major difficulty when dealing with redundant actuation of parallel manipula-

tor arises from their control. The majority of controllers that can be found in most robotic

applications, are developed to act over non-redundantly actuated systems, in which the

number of actuators corresponds to the number of system degrees of freedom. There-

fore, finding control algorithms that are appropriate to parallel structures (closed-loop

topologies) subjected to redundant actuation remains a challenging task.

Framework and main achievements of the present

research

The present research aims first of all at modeling the dynamics of redundantly actuated

parallel manipulators, using multibody formalisms [1, 2, 3]. The modeling approach is

based on relative coordinates, recursive Newton/Euler formulation with Lagrange mul-

tipliers, and the coordinate partitioning technique [4], allowing for the construction of

compact, computation efficient and numerically stable direct and inverse dynamic models.

The developed inverse models allow for finding solutions to the non-redundant or redun-

dant manipulator actuation tasks. These models are robust with respect to singularity



2 CONTENTS

problems and lead to torque optimization in cases of actuator redundancy. The direct

dynamic models are used either for validation of the computed actuator torque solutions,

or for real-time control simulations, used to tune or test different algorithms for non-

redundant/redundant actuation control.

Along with the development of specific models, cited above, as another goal (and

achievement) of this research work can be considered the original approach for actuation

of parallel manipulators that successfully eliminates the effects of the so-called parallel

(force) singular configurations. The force singularities depend on the actuator configura-

tion and are specific to parallel manipulators. They degrade the manipulator force/torque

performances, locally causing uncontrollable motion of its end-effector and incapability to

withstand external loads applied.

The proposed approach for modeling and actuation provides a global solution for tak-

ing advantage of the actuator redundancy, when parallel manipulators have to accomplish

trajectories that contain force singularities. The complete approach algorithm and its

corresponding computer implementation in MATLAB/SIMULINK consist in several, con-

secutive stages:

• Description of the considered manipulator topology, type and performances of the

actuator to be used, the joints that can be actuated, the trajectories to be followed

in the end-effector space, etc.

• Symbolic generation of compact and computationally efficient kinematic and dy-

namic models, on the basis of the Newton/Euler recursive algorithm and using a

dedicated symbolic generation software [5, 3, 6];

• Solution of the parallel manipulator inverse kinematics, numerically stable with

respect to kinematic loop closure problems. Transformation in joint coordinates of

the trajectories to be followed;

• Application of a piecewise actuation strategy generating active/passive coordinate

partition sequences to eliminate local force singularity problems. Depending on the

trajectory, the manipulator topology, the presence of internal friction forces/torques,

the joints available for actuation and the actuator performance specifications, the

strategy produces non-redundant or redundant actuation configurations;

• Inverse dynamics solution: pseudoinverse or infinite-norm torque minimization in

cases of redundant actuation;

• Direct dynamics real-time integration, validating the obtained actuation solutions.

As a second result of the integration process, independent/dependent coordinate par-

tition sequences are generated to provide for control simulations that are numerically

stable with respect to kinematic loop closure problems;
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• Real-time control simulations, applying the obtained solutions for the actuator

torques and the piecewise coordinate partitioning sequences. Controller tuning by

means of exhaustive control simulations, testing of different control laws in cases of

redundantly actuated parallel closed-loop multibody systems.

Finally, the design of a redundantly actuated prototype and the real-time control ex-

periments carried out on it can be cited as another achievements of this work. The

experimental results permitted to practically verify the strategies for effective actuation,

proposed by the author, and their application to the control of over-actuated parallel

manipulators.

As we shall see, the results from simulations and experiments show the advantages of

using redundant actuation on parallel manipulators in terms of force singularity elimina-

tion. The over-actuation allows for a better control over smooth, continuous manipulator

motion in a singularity-free workspace.

Chapter overview

This research work is organized as follows.

In Chapter 1, a general introduction to the domain of parallel robotics is given with

some historical facts and going through some basic robotic terminology, manipulator ar-

chitecture elements, characteristics, and definitions. Then, in Chapter 2, the principal

types of parallel manipulator configurations: assembly modes and poses, are defined, their

description as solutions to the direct and inverse kinematic problem is presented, and some

common difficulties when finding these solution are commented.

Chapter 3 is dedicated to the robot singular configurations of different kind, degrading

the manipulator performances in terms of end-effector velocities and forces/torques. Sin-

gularity classifications are given in the chapter, which concern parallel robots and are made

using the manipulator kinematic equations or velocity and force ellipsoid definitions. The

singularity problematics is followed by an extensive discussion on the redundant actuation

of parallel manipulators in Chapter 4. In the latter, a comparison of the force redundancy

with the kinematic redundancy of serial robots is given first, then a classification and state

of the art outlining the fields of application of the redundant actuation are presented, as

well as methods used by the researchers to solve for it.

Chapter 5 describes the principal concepts of the multibody formalism [1, 2, 3], its

terminology and the basic notations it employs so as to define tree-like and closed-loop

multibody systems. Then, in Chapter 6, the generation of kinematic models of paral-

lel manipulators is discussed, detailing the kinematic loop cutting procedures used, and

the difference between the two coordinate partitioning schemes, considered both for the

kinematic and the dynamic modeling stage. The closed-loop multibody system dynamics

is dealt with in Chapter 7. The dynamic model reduced forms, obtained by using the

coordinate partitioning technique [4] and Lagrange multiplier elimination, and the model
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computation, based on the Newton-Euler recursive formalism, are presented. The mod-

eling is then extended to cases, in which internal joint friction forces/torques are present

in the system. A short review of the methods for direct dynamics time integration is

then given. At the end of the chapter, one of the contributions of the present research

is described, namely, the development of a piecewise time integration procedure that is

numerically robust with respect to loop closure problems and allows for stable real-time

control simulations over any trajectory in the manipulator workspace.

In Chapter 8, a special piecewise actuation approach, proposed in this work, is com-

mented in detail. This approach targets the elimination of force singularities that exist in

the manipulator workspace, and produces non-redundant or redundant actuator solutions

for the treated parallel manipulators. In cases of actuator redundancy, two practically ori-

ented torque optimization solutions are presented – a pseudoinverse-equivalent solution,

and an infinity-norm torque minimization solution respecting the actuator torque perfor-

mance limits. At the end of the chapter, a computer implementation of the piecewise

actuation algorithm that makes use of the efficiently generated symbolic dynamic models,

is proposed.

Chapter 9 is devoted to the control of redundantly actuated parallel manipulators,

demonstrating the advantage of applying the force redundancy by widely used control

schemes. A short review of the latter and some basic methods for controller tuning are

followed by a description of the control applications of the present work and their corre-

sponding computer implementations. Control simulation results for two studied closed-

loop multibody systems: a four-bar mechanism and a planar parallel manipulator, are

systematized and commented at the end of this chapter.

Finally, a prototype, created at the Center for Research in Mechatronics of the UCL,

and used for experimental validation of the obtained theoretical results, is described in

Chapter 10 in terms of mechanical, hardware and software design solutions adopted. The

chapter presents as well the experimental results, obtained from the real-time prototype

control.

In the very end of this work, conclusions are drawn on the applicability of the redun-

dant actuation to the control of closed-loop multibody systems, before summarizing the

contributions of this work and giving some perspective directions.
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Chapter 1

Definitions and Classification

1.1 Some History About Robots

One of the first documented evidences of a sophisticated mechanism is that of the Clepsydra

(or water clock), which was made in 250 B.C. It was created by Ctesibius of Alexandria –

a Greek physicist and inventor, and can be considered as one of the first primitive robots

ever made in the human history.

The swiss inventors Pierre and Henri-Louis Jacquet-Droz created some of the most

complicated automatons of this period. In 1774 their Automatic Scribe was announced

to the society. The mechanized boy-like automaton could draw and write any message

up to 40 characters long. A robot-woman playing a piano was another one of their great

inventions. A century later – in 1892, Seward Babbitt created a motorized crane with

gripper to remove ingots from a furnace.

The word ”robot” was introduced for the first time in 1921 by the czhech writer Karel

Capek in his play R.U.R. – Rossum’s Universal Robots. The word comes from the Czech

”robota”, which means tedious labor. The plot was simple: robotic workers – ”mechanical

men” – rebel against their masters and assume control of the world after slaughtering them,

i.e. man makes robot then robot kills man!

Seventeen years later, a parallel mechanism for automated spray painting was designed

by Willard L. Pollard. This extraordinary invention (Figure 1.1) represented in fact a real

three-branched parallel robot intended for spray painting, but unfortunately was never

built. It was the son Willard Pollard Jr.. in fact, who succeeded in getting a patent1 in

1942 for this ingenious mechanism, that he has been a co-designer of.

In 1941, the science fiction writer Isaac Asimov used for the first time the word

”robotics” to describe the technology of robots, and predicted the rise of a powerful robot

industry. A year later Asimov wrote ”Runaround”, a story about robots, which contained

the ”Three Laws of Robotics”. This story was later included in Asimov’s famous book ”I,

Robot” [7].

In 1946 George Devol patented a general purpose playback device for controlling ma-

1US Patent No. 2,286,571
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Figure 1.1: Left: The first industrial parallel robot, patented in 1942. Right: The first

octahedral hexapod or the original Gough platform in 1954 (Proc. IMechE, 1965-66).

chines. The device used a magnetic process recorder. In the same year the computer

emerged for the first time. The american scientists J. Presper Eckert and John Mauchly

built the first large electronic computer, called the Eniac, at the University of Pennsylva-

nia.

In 1947 another parallel mechanism was invented - the infamous variable-length-strut

octahedral hexapod (Figure 1.1). It was designed by Dr. Eric Gough – a distinguished

automotive engineer at Dunlop Rubber Co., Birmingham, England, in response to the

needs of a machine that would permit to determine the properties of tires under combined

loads.

Among the early robots (1940’s - 50’s) were Grey Walter’s Elsie the tortoise, also called

”Machina speculatrix”, and Shakey – a small, unstable box on wheels, that used memory

and logical reasoning to solve problems and navigate in its environment. It was developed

at the Stanford Research Institute (SRI) in Palo Alto, California in the 1960s (Figure 1.2).

These robots were probably the first representatives of a future robotics sub-domain called

mobile robotics.

The first industrial robot patent was granted to George Devol Jr, in 1954. Devol named

the control system of his robots ”unimation”. Then he sold his idea to Joseph Engelberger,

who transformed his machines into what he called Unimates. Engelberger started the first

robotics company – ”Unimation”, and has been often called the ”father of robotics”. Yet,

during the sixties the robotics was not seen by the industrial companies in the USA and

Europe as capable of bringing significant benefits. The idea of large introduction of robots

in the industry was firstly embraced by the japans, which quickly created a huge market

segment in Japan.

During the seventies thousands of Unimates and Pumas (another well known Unima-

tion industrial robot family) entered the human workplaces in the plants and factories.

They influenced different industries, especially the automotive and the aircraft industry,
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Figure 1.2: Left: Grey Walter’s tortoise, restored recently by Owen Holland and fully

operational (from Arkin, 1998). Right: Shakey the robot (from Wickelgren, 1996).

remarkably improving the effectiveness in terms of production rate and precision of differ-

ent kinds of operations - riveting, arc-welding, spray painting, part and module assembly,

etc. In the eighties the industrial robotics knew its highs and lows, and the excitement

over the incoming ”next industrial revolution”, brought by the intentions of extensively

using robots, progressively calmed down.

Nevertheless, during the last thirty years the robot manipulators found their places in

warehouses, laboratories, hospitals, harmful environments, even outer space. Numerous

applications appeared. The majority of the industrial manipulators were and presently

still are of the so called serial morphology – a term that we will precise in Section 1.2.1.

Many of the serial manipulators are of special class, called anthropomorphic. The term

is derived from two greek words: ανθρωπoς (anthropos), meaning human, and µoρϕη

(morphe), meaning shape or form, i.e. the morphology of these manipulators is a human-

like, usually resembling the human arm.

In the late eighties, demands started appearing for robots possessing lower inertia and

high robustness, motion rapidity and precision, along with capability of manipulating

bigger loads. This pushed further the research and development in terms of novel robot

morphologies with improved functional characteristics. Bit by bit, the parallel robotics

drew bigger interest, to become today a central robotic research domain with multiple

application segments: from machining operations to surgery assistance and vehicle, aircraft

and spacecraft simulators. Many scientists put the milestones to this direction, creating

novel parallel robot types. Starting back from the first parallel manipulators, created

during the period 1945-1970, we could cite here some famous ones, such as:

• The Gough platform - a parallel manipulator (Figure 1.1), created in 1947 by Eric

Gough. The motion simulator of Klaus Cappel that he came up with in 1962 as a so-

lution to the request of the Franklin Institute Research Laboratories in Philadelphia

to improve an existing conventional vibration system (Figure 1.3) and the platform

of D. Stewart [8] he proposed to use in a flight simulator (Figure 1.4) in 1965, can
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be mentioned here as well. These manipulators gave birth to the well-known class

of parallel octahedral hexapods, called also hexapod positioners (Figure 1.4).

Figure 1.3: The flight simulator of Klaus Cappel, based on an octahedral hexapod (cour-

tesy of Klaus Cappel)

Figure 1.4: Left: Schematic drawing of the platform, proposed by D. Stewart [8]. Right:

Contemporary hexapod manipulator (image courtesy of PI (Physik Instrumente) GmbH

and Co. KG.).

• The Delta robot family. The ingenious idea in the early 80’s of Raymond Clavel [9],

professor at the Ecole Polytechnique Fédérale de Lausanne, of using light parallelo-

grams as constitutive elements of the legs of a parallel robot (Figure 1.5), gave birth

to the Deltas. The use of base-mounted actuators and low-mass elements allows the

manipulator to achieve accelerations of up to 50 g in experimental environments

and 12 g in industrial applications, which makes it convenient for pick-and-place

operations of light objects (from 10 gr to 1 kg) at high speeds. Nowadays, the
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Delta robots find multiple applications, including industrial machining operations

like drilling, etc.

Figure 1.5: Left: Schematic drawing of the Delta robot (from R. Clavel US patent [10]).

Right: ABB Flexible Automation’s IRB 340 FlexPicker (courtesy of ABB Flexible Au-

tomation)

• The left hand parallel manipulator (Figure 1.6), developed in 1986 at the INRIA

(Institut National de Recherche en Informatique et en Automatique), intended to

serve as a dexterity enhancer for another manipulators, mostly of serial type.

Figure 1.6: The Left Hand robot, developed in 1986 at the INRIA (image from [11])

• The articulated truss structures, e.g. the Logabex LX4 robot of the Logabex com-

pany (Figure 1.7) or the UTIAS Trussarm, designed at the University of Toronto.

These robots consist of piled up identical parallel mechanisms and possess large

workspace, and good ratio ”load capacity/manipulator mass’. The Logabex robot,

for example, is a series of left-hand parallel robots.

• The Agile Eye (a spherical parallel mechanism) developed by Gosselin and Hamel

[12] in the Robotics Laboratory at Laval University, Canada (Figure 1.8) and prin-
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Figure 1.7: The Logabex robot LX4 (image from [11], taken by kind permission of the

Logabex company)

cipally destined to fast video camera orientation tasks. Because of its low inertia

and inherent stiffness, the mechanism can achieve angular velocities superior to 1000

deg/sec and angular accelerations greater than 20000 deg/sec2, largely outperform-

ing the human eye. Since patented in 1993, the Agile Eye gained popularity, giving

birth to some simpler, yet very effective mechanisms.

Figure 1.8: The Agile Eye parallel robot (images courtesy of Robotics Laboratory at

University of Laval, Canada)

These are, of course, only some examples of widely known parallel manipulator inventions.

There are many others, subject to mentioning, review or extensive analysis, that we shall

not give here, as this would go beyond the scope of the present work. Let us though

conclude this section with an indication of a very good and thorough parallel architecture

history and classification that the reader could find in [11].
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1.2 General terminology

Before we proceed with the description of some basic manipulator topologies (architec-

tures), examples of which we shall use further in this work, let us recall a few fundamental

definitions from the domain of mechanics and robotics. We address them here with the

intention to recall, on the one hand, at least some of the scientists, whose contributions

in this direction are significant, and to gradually build, on the other hand, a sufficient

theoretical basis for the comprehension of the concepts of this work.

For any rigid body, which can move in the space, its motion can always be described

as a combination of at most six basic motions - three independent translations and three

independent rotations along/around three mutually orthogonal axes. These motions are

also known as degrees of freedom (D.O.F.) of the rigid body and are represented for every

time instant by a set of independent variables (coordinates), completely defining the body’s

position and orientation with respect to an inertial reference frame.

A convenient set of coordinates is usually chosen for a particular problem in mechanics.

If several rigid bodies that form a mechanical system (e.g. a robot) are treated, then scalar

variables are needed to define the configuration of each one of them. These variables are

known as generalized coordinates, as they can be of different kind and serve to obtain

a complete description of the system configuration. Cartesian coordinates and spherical

(polar) coordinates are examples of generalized coordinates.

In the universal language of mechanics, the basic constitutive element of every chain

(mechanism, manipulator, etc.) is a body , often considered rigid. The bodies are inter-

connected by joints – simple mechanical devices, allowing relative motions between the

connected elements.

According to the terminology of the International Federation for the Promotion of

Mechanism and Machine Science (IFToMM) and the document ISO 8373:1994 of the

International Standart Organization, the following definitions of principal interest to our

work can be given:

• A kinematic chain is an assemblage of links and joints (IFToMM).

• A mechanism is a system of bodies designed to convert motions of, and forces

on, one or several bodies into constrained motions of, and forces on, other bodies

(IFToMM).

• A machine is a mechanical system that performs a specific task, such as forming of

material, and the transference and transformation of motion and force (IFToMM).

• A manipulator is a machine, the mechanism of which usually consists of a series

of segments, jointed or sliding relative to one another, for the purpose of grasping

and/or moving objects (pieces or tools) usually in several degrees of freedom. It

may be controlled by an operator, a programmable electronic controller, or any

logic system (ISO8373).
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In order to avoid the confusion between the terms link, segment and joint, and be com-

pliant with the terminology of the multibody formalism that will be used in this work, we

shall rely on bodies and joints.

A definition that explicits the difference between manipulator and robot, is given by

the French standard document Norme Française E 61-100:

• A robot (or industrial robot) is an automated manipulator, which features position

control; it shall be multi-usage, flexible and re-programmable. The device shall

be able to accomplish various programmable displacement paths which means to

position and orient materials, parts, tools, instruments or specialized equipments.

In the pages to follow, manipulator will be used more often than robot. The only reason

is that, even if the second term obviously comprises the first one, the use of robot in a

scientific context is generally less common.

1.2.1 Manipulator architecture elements and characteristics

As we mentioned previously, while during the 70ies and the 80ies most of the develop-

ments and industrial applications concerned serial manipulators, in the last twenty years

broader research has been carried out in the field of parallel robotics, because of numerous

new applications that require higher payload ratio2, together with high rigidity, rapidity

and very high precision. Table 1.2.1 sums up the characteristics of serial and parallel

manipulators.

Serial Manipulators Parallel Manipulators

Workspace Larger Smaller

Compliance Higher Low

Payload ratio Limited High

Precision Limited Very high

Rapidity Limited Very High

Repeatability Good Very good

Table 1.1: Comparison between serial and parallel manipulator characteristics

In every robotic arm or leg of a serial structure, the first moving body of the kinematic

chain is connected to another, fixed body, called base or fixed platform, whereas the last

one - to a terminal moving body, called wrist, tool plate or flange, usually carrying an

application-specific tool - end-effector. The term end-effector degrees of freedom is very

often used in robotics, meaning in fact the degrees of freedom at the tool-plate, because

the tool itself is assumed a body, rigidly fixed to it.

2The payload ratio is defined as the mass of the manipulated load divided by the mass of the

structure
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Two classical examples of serial robots are the widely known and used SCARA (selective

compliant articulated robot arm) robot, developed by Sankyo and IBM Corp. in 1975,

and the PUMA560 manipulator of Unimation (Figure 1.9). Designed more that 25 years

ago, today still they demonstrate precision and payload ratio that are quite acceptable

for industrial serial manipulators. The SCARA robot is typically used for sorting and

stocking, and can perform different machining operations like drilling, cutting and welding,

but it’s end-effector is of limited mobility (restrained orientation). The PUMA robot

itself is of an anthropomorphic structure and much more flexible in terms of end-effector

position/orientation combinations.

Figure 1.9: Typical industrial serial robots. Left: IBM SCARA robot. Right: Unimation

PUMA 560 robot.

Different definitions of the term serial kinematic chain can be found in the literature,

most of them being quite similar and describing it as a set of rigid bodies interconnected in

series by joints. An example of such definition can be found in [11]: ”A serial manipulator

is defined as simple kinematic chain, for which all the connection degrees are equal to 2,

except for the base and the end-effector”. But this definition requires the definition of two

other terms:

• connection degree of a manipulator link – the number of rigid bodies3 attached to

it by a joint,

• simple kinematic chains – kinematic chains, in which each member possesses a

connection degree less or equal to 2.

As regards the different manipulator topologies and basic constitutive elements, in our

work we shall rather use the definitions, based on the multibody formalism terminology

3Here again, we would like to note that ”rigid body” should be understood under the term

”link”!
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[2], which, while being more general than those of the field of robotics, remain nevertheless

straightforward and clear when dealing with the latter.

1.2.2 Parallel manipulator definitions

As the present work concerns parallel manipulators, in this section more attention is paid

to definitions related to them.

Two examples of parallel topologies are given in Figure 1.10. When parallel manipu-

lators are dealt with, the tool plate is very often called moving platform, usually of lesser

dimensions than the fixed one.

Fixed platform

Moving  platform

Moving platform

Figure 1.10: Two parallel robots. Left: 3-dimensional Motion base by Hydra-Power

Systems, Inc. Right: Planar parallel robot prototype (image courtesy of F. Frimani and

R. Podhorodeski of Robotics and Mechanisms Laboratory at the University of Victoria,

Canada).

Merlet defined comprehensively in [11] the notions of generalized parallel manipulator

and parallel robot :

Definition 1: A generalized parallel manipulator is a closed-loop mechanism whose

moving platform is linked to the base by several independent chains.

Definition 2: A parallel robot is made up of an end-effector with n-degrees of freedom,

and of fixed base, linked together by at least two independent kinematic chains.

The definitions of fully parallel manipulator and light parallel manipulator that can

also be found in [11] are useful for the classification and analysis of parallel robots:

Definition 3: A fully parallel manipulator is a closed-loop mechanism, the number

of chains of which is strictly equal to the moving platform number of degrees of freedom
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(Figure 1.11, left and right).

Definition 4: A light parallel manipulator is a parallel manipulator, all of the actuators

of which are fixed to its base (Figure 1.11, right).

Figure 1.11: Example of planar manipulator schematics. Left: A planar fully parallel

manipulator. Right: The same manipulator in a ”light” version (the black joints show the

actuator locations).

The light parallel manipulators show better kinematic and dynamic performances, due

to lack of actuator mass and inertia influence on the moving parts of the mechanism. As

we shall see later, the prototype discussed in this work is an example of a light parallel

manipulator as well.

Some of the scientists have amused themselves in finding formulas that characterize from

different points of view parallel manipulators, giving numerical values for their parallelism,

mobility, etc. The formula of Gosselin, for example, that must be fulfilled for fully parallel

manipulators, can be found in the literature [11]:

p(n− 6) = −6 (1.1)

Here p is the number of chains of the parallel manipulator and n is the number of rigid

bodies in each chain. In order for this formula to be correct, for each chain the base must

be counted as a first body and the moving platform – as a terminal body.

Quite often the different characteristic formulas are specific to particular sets of ma-

nipulator architectures (number of chains, type of joints, ...) and, what is more, differ

in the manner of body counting (see the example above). Therefore, when it comes to

defining manipulator topologies, number of degrees of freedom, etc. we shall hold only

to the definitions and formulas, based on the multibody formalism we already mentioned.

This formalism allows for a generalized, clear and compact description of any multibody

system, i.e. any mechanical system, composed of rigid bodies connected by joints. We

shall implement the multibody formalism in the modeling and analysis of kinematics and

dynamics of parallel manipulators. In Part II, we shall discuss its conventions and hy-

potheses.
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Concluding this chapter, we would finally note the existence of hybrid manipulators

(see Figure 1.12 for example), the topology of which is a assembled sequence of a serial

and a parallel structure. The latter is often called active wrist in this particular robot

topology case.

Figure 1.12: McGill-IRIS C3 hybrid manipulator
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Parallel Manipulator

Configurations

In this chapter we shall briefly review the two main types of configurations for parallel

manipulators: assembly modes and poses. In order to define them, a description of ma-

nipulator direct and inverse kinematic problem will be introduced.

The direct and inverse kinematic problems concern important aspects of the robotics:

manipulator design, geometry and performance optimizations, etc. In the literature they

can also be found as forward and backward kinematics. In this introductory chapter we

shall limit their description to a manipulator position (configuration) level. More detailed

analysis and modeling of the kinematics, extended to velocity and acceleration levels, will

be presented in Chapter 6.

Let X = [X1 ... Xn]T be the set of absolute generalized coordinates, describing the

position and the orientation of the parallel manipulator moving platform, and q = [q1 ...

qk]
T – the set of joint generalized coordinates of the manipulator. Because of the existing

closed-loop constraints (detailed later in Section 6.2) over the mechanism topology, the

mapping between X and q is feasible through a sub-set qu = [qu1
... qun ]T , which contains

the so-called independent joint generalized coordinates and corresponds in dimension to

X. This sub-set is determined using the coordinate partitioning method [4], to which we

shall refer systematically throughout this work, giving more detail on it in Section 3.2 and

mostly in Section 6.2.2. The number n represents the number of degrees of freedom of the

moving platform (the end-effector).

The two sets of coordinates are mutually dependent, their dependency can be expressed

mathematically by nonlinear equations of the form:

F (X, qu) = 0 (2.1)

This form is similar to the one, used for serial manipulators, in which all the joint

coordinates can be considered independent (qu ≡ q). It is used as a starting point of the
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manipulator kinematic modeling. As parallel robots are in the scope of the present work

and the analysis of kinematics is limited to manipulator positions (configurations), we

shall describe the two kinematic problems and define the two basic types of configuration

for parallel manipulators.

2.1 Inverse kinematic problem

The inverse kinematic problem consists in finding the possible solutions for the set qu,

given the position and the orientation of the moving platform X. In the domain of parallel

robotics these solutions are also known as poses of the parallel manipulator (Figure 2.2).

The inverse kinematic problem of parallel manipulators depends on the manipulator

geometry and the type of joints. A unique or multiple poses could exist. For example, if a

planar fully parallel manipulator with prismatic joints (representing translational actua-

tors) (Figure 2.1) is considered, there is only one possible set of values for the coordinates

qu (one manipulator pose) that gives the desired X, whereas for the manipulator of Figure

2.2 there exist four different sets of values and thus four different poses.

Figure 2.1: A planar fully parallel manipulator with translational actuators possesses

a unique solution to its inverse kinematics

Figure 2.2: Different poses of a parallel manipulator: the black joints correspond to

qu.
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An example of an analytical method for solving the inverse position kinematics of

parallel manipulators, proposed by Merlet in [11], consists in expressing the vectors
−−−→
AiBi,

formed by the origins Ai and the extremities Bi of each manipulator leg i, as functions

of the moving platform generalized coordinates. This approach eventually leads to an

explicit form of the inverse kinematic problem:

qu = g(X) (2.2)

The solution could become difficult in case of spatial parallel manipulators with complex

leg topology. But the legs usually are identical, which partially simplifies the inverse

kinematic task.

2.2 Direct kinematic problem

The parallel manipulator direct kinematic problem consists in finding the possible solutions

for the position and the orientation of the moving platform X, given a pose qu. It can be

found in the literature in the following explicit form:

X = f(qu) (2.3)

In the domain of parallel robotics the solutions to this problem are also known as

assembly modes of the manipulator (Figure 2.3).

Figure 2.3: Different assembly modes of a planar parallel manipulator: the black

joints correspond to qu and the pose is the same for both cases.

When for given parallel manipulator topology this solution is not unique (see Figure

2.3), to express analytically the platform coordinatesX as functions of qu can become quite

a fastidious task. Different methods (analytical and numerical) for finding the possible

solutions exist. Quite often they are not advantageous in terms of computational efficiency

and thus - less suitable for use in real-time applications. Special attention has thus been

paid to computational algorithms that comply with the time constraints imposed by real-

time robotic applications.
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2.2.1 Maximal number of direct kinematic problem solu-

tions

Initially, the efforts were concentrated on finding all the direct kinematic solutions for

any parallel manipulator, but as this task is quite demanding, methods were developed

concerning families of parallel manipulators or particular parallel structures. For exam-

ple, Dietmaier showed that for a Gough platform 40 assembly modes (i.e. direct model

solutions) exist [13].

A systematic approach is the polynomial direct kinematics, proposed by Gosselin [14]

and discussed by Merlet in [11], which consists in transforming the direct kinematic prob-

lem into solving the polynomial characteristic equation of the inverse kinematic equations.

2.2.2 A possible solution from a given manipulator config-

uration

In cases when not all of the direct kinematics solutions are needed, one of them could

be found using numerical methods (e.g. the Newton-Raphson algorithm) or optimization

techniques, for instance. The solution could be problematic, however, if the configuration

is singular or nearly singular. The singular configurations are a major problem in robotics

that has been treated in numerous research works, including the present one.

As parallel manipulators following trajectories with singularities are in the scope of this

work, we shall devote the next chapter to the description and the classification of these

particular configurations. We shall propose in Part II a robust technique for solving the

mechanism kinematics in any of its existing configurations, singular or not.



Chapter 3

Singularities

Singular configurations (or singularities) in mechanics are configurations at which a given

mechanism adopts an unpredictable behavior. This behavior is usually indicated by drastic

changes in the mechanism performances, e.g. a velocity of a point or sustained external

force at this point, going to infinity or zero. As shown further in this chapter, when dealing

with parallel robots, the singularities could lie within the manipulator workspace or at its

boundaries and lead to a local loss or ”gain” of end-effector degrees of freedom. The

uncontrollable behavior and performance deterioration due to singularities is undesirable

for most practical applications.

The correct description and detection of singular configurations allow for their analysis.

This is useful not only for predicting the MBS behavior, but for developing remedies in

order to attenuate or eliminate their negative effects as well, e.g. following specific design

rules, task planning, actuation and control strategies.

In this work, special attention is paid to the:

• Development of parallel manipulator kinematic and dynamic modeling approach,

robust with respect to singularity numerical problems,

• Development of special parallel manipulator actuation strategy and subsequent con-

trol applications, robust with respect to singularity physical problems.

3.1 Problematics

Identifying the singular configurations is often a problem that is difficult to treat analyti-

cally. Many of the approaches in this direction are based on the analysis of the so-called

manipulator Jacobian – the matrix that gives the mapping between the joint and end-

effector velocities (see Section 3.2). As this matrix loses rank at the singularities, they are

identified as corresponding to the roots of its determinant1 [15]. This approach is prac-

tically sufficient for serial manipulators, but as we shall see, deeper analysis is required

1Provided that the Jacobian is a square matrix, which is valid for serial manipulators with up

to 6 end-effector d.o.f. and a corresponding number of coordinates qu.
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for parallel manipulators, because singularities of different types exist. Furthermore, the

difficulties in finding the roots of the Jacobian determinant for complex topologies are

increased by the fact that the kinematic equations are nonlinear. With respect to this,

methods based on screw theory and line geometry [16, 17], Grassman geometry [11] and

differential geometry [18, 19] have been developed.

As the singular configurations of a parallel manipulator not only define the manip-

ulator workspace limits, but can also appear during the manipulator motion within its

workspace, their prior knowledge and analysis have preoccupied many scientists. For ex-

ample, Gosselin and Wang defined the singularity loci for planar parallel manipulators

[20]. Mohammadi Daniali, Zsombor-Murray and Angeles derived Jacobian matrices for

two classes of planar parallel manipulators and identified from them three types of sin-

gularities [21]. Yang, Chen, Lin and Angeles analyzed the singularities of three-legged

parallel robots, using a product-of-exponentials formula [22]. Tchon found the singular-

ities of an Euler wrist [23]. Husty and Karger gave an overview of the self-motions and

architectural singularities of Stewart-Gough platforms [24]. Choudhury and Ghosal stud-

ied kinematic and force singularities in parallel manipulators and closed-loop mechanisms

and their relationship with the accessibility and control of such mechanisms [25]. Basu

and Ghosal found a common tangent geometric conditions, useful for finding singularities

of multi-loop platform-type spatial mechanisms [26].

Some of the researchers in this domain have been working on different remedies of

avoiding singularities: specific mechanism synthesis [27, 28], proper trajectory generation

modifications [29, 30], variational approaches [31], differential-form approaches [32], task

pose optimization [33], etc.

We shall see that in the redundant actuation strategy proposed in this work, the singu-

larity detection plays an important role as well. But it is not done as a process, separate

from the mechanism kinematics and dynamics computation, and is not used to modify

the manipulator task trajectories or to reduce the workspace, trying to avoid singularities.

Thus, the a priori knowledge of the singular configurations that the parallel manipulators

could exhibit is not an issue of this work. The proximity of singularities that could appear,

when a given trajectory is followed, is in fact ”sensed” by numerical means and/or via eval-

uation of actuator (joint effort) limits. This procedure is used in conjunction with special

actuation strategy, developed in order to pass through these problematic configurations,

preserving the manipulator motion and force capabilities.

As we already mentioned in the beginning of this chapter, the singular configurations in

parallel manipulators provoke local ”loss” or ”gain” of end-effector degrees of freedom. It is

sometimes said that for these specific (or singular) configurations the mechanism behavior

”bifurcates” (takes an unpredictable form), hence the singularities are sometimes called

”bifurcation configurations” instead.

In this research work and for parallel manipulators we shall distinguish two degree-of-

freedom characteristics:

Definition 5: End-effector degrees of freedom deff are degrees of freedom that the
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parallel manipulator can perform at its moving platform, the number of which can locally

change, depending on the type of manipulator singularity, and can not exceed 6 (in case

of spatial manipulator).

Definition 6: Multibody system (MBS) degrees of freedom (manipulator degrees

of mobility) are global degrees of freedom of the parallel manipulator multibody struc-

ture, the number of which is constant for a given manipulator, depends on its architecture

(number and type of independent actuated joints) and can be found using the following

formula:

dmbs = N joint −m (3.1)

where N joint is the number of system 1-d.o.f. joints and m is the number of independent

kinematic constraints, resulting for example from the closed loops in the multibody me-

chanical system. dmbs is positive for any moving mechanism, and can exceed the 6 degrees

of freedom characterizing the spatial motion of the end-effector.

For serial manipulators we will obviously obtain for the second of the above definitions:

dmbs = N joint.

3.2 Singularity classification through kinematics

Because of the constraints existing over the generalized velocities q̇ in case of parallel

manipulator topology, the mapping between Ẋ and q̇ is feasible only over a sub-set of

q̇, the size of which corresponds to the number of manipulator end-effector degrees of

freedom. A feasible sub-set is that of the so-called independent velocities q̇u, obtained by

applying the coordinate partitioning technique2 [4] we already mentioned. According to

it, the vectors of joint generalized coordinates, their velocities and accelerations can be

partitioned (divided) into vectors of u independent and v dependent variables:

q =

[

qu

qv

]

; q̇ =

[

q̇u

q̇v

]

; q̈ =

[

q̈u

q̈v

]

(3.2)

Let h(q) = 0 be the system of holonomic constraint equations over the set of generalized

joint coordinates q, arising for instance from the MBS kinematic loops. The constraint

equations over the generalized joint velocities q̇ can then be obtained by deriving h(q) = 0

with respect to time:
∂h(q)

∂t
= 0 ⇒ Jc q̇ = 0 (3.3)

with Jc being the constraint Jacobian of the parallel manipulator.

If we derive with respect to time the system of equations F (X, q) = 0, similar to (2.3),

but describing the kinematic model of a serial manipulator, we obtain the mapping between

the joint and end-effector velocities, corresponding to the direct kinematic problem at

velocity level:

Ẋ = J(q) q̇ (3.4)

2See Chapter 6 for more details.
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In case of a parallel manipulator, we apply the partitioning {u, v} to the Jacobian

matrices J and Jc, as well as to the constraint equations at velocity level, obtaining:

J =
[

Ju Jv

]

; Jc =
[

Jcu Jcv

]

(3.5)

Ẋ = J q̇ = Ju q̇u + Jv q̇v (3.6)

and

Jc q̇ = 0 =⇒ Jcu q̇u + Jcv q̇v = 0 =⇒ q̇v = Bvu q̇u (3.7)

where Bvu = −J−1
cv
Jcu , assuming that Jcv is of full rank for independent constraints.

Further, we obtain:

Ẋ = (Ju + Jv Bvu) q̇u = Jm q̇u (3.8)

in which the so-called manipulator Jacobian is defined as:

Jm
△
= Ju + Jv Bvu = Ju − Jv J

−1
cv
Jcu (3.9)

It can be written in the form:

Jm(qu) =
[

Jm1
(qu) Jm2

(qu) ... Jmn(qu)
]T

(3.10)

every line of which contains the partial derivatives of the functions fi(qu) of (2.3) with

respect to the set of independent generalized coordinates qu:

Jmi
(qu)

△
=
(

∂fi(qu)
∂qu1

∂fi(qu)
∂qu2

... ∂fi(qu)
∂qun

)

(3.11)

On the other hand, for cases of parallel manipulator topology the system of equations

(2.1) can be transformed after deriving it with respect to time as follows:

F (X, qu) = 0 =⇒ Jx Ẋ + Jqu q̇u = 0 (3.12)

If we compare equations 3.8 and 3.12, we obtain Jm = −J−1
x Jqu , provided that Jx is non

singular.

Analyzing the two Jacobian sub-matrices in equation 3.12 gives the following principal

types of singular configurations:

• Serial singularities - arise when Jqu becomes singular. This case corresponds to

a non-zero joint velocity vector q̇u (for example, q̇ = [ 0 0 q̇u3
] in Figure 3.1), for

which the end-effector does not (locally) move (Ẋ = 0). When the manipulator is

in such configuration, it looses end-effector degrees of freedom. Conversely, it can

bear infinite external forces or moments in certain directions (see Section 3.3.2). If

a given configuration is a serial-type singularity, this sometimes corresponds to a

manipulator workspace limit.
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q1

q2

q3

Figure 3.1: Comparison of a serial robot singularity (left) with serial-type singularity of

a planar parallel robot (right). The alignment of two bodies in the serial robot chain and

in the serial chain of one of the parallel robot legs locally cancels one end-effector degree

of freedom (q1, q2 and q3 - independent actuated variables).

• Parallel singularities - arise when Jx becomes singular. In this case, a non-zero

vector Ẋ of end-effector velocities can be found, for which the actuated joint velocities

are zero (see eq.(3.12) and Figure 3.2). Around such configurations, the end-effector

can have an infinitesimal motion without any change in the parallel manipulator

legs. As a result some of the end-effector degrees of freedom become uncontrollable

(”gain” of end-effector d.o.f. or end-effector self motion) and the manipulator can

not withstand external loads in spite of the fact that all the actuators are locked.

The parallel singularities are also known as self-motion singularities.

Figure 3.2: Parallel-type singularities of a planar parallel manipulator. Left: a local

infinitesimal self motion of the end-effector. Right: a local end-effector macro self motion.

• Mixed singularities - appear when both Jqu and Jx become singular (Figure 3.3,

right). For such configurations, neither the end-effector moves when joint velocities

exist, nor can some of its degrees of freedom be controlled.

The above singularities correspond to the physical configuration of the mechanism, what-

ever the choice of the end-effector coordinates X.
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1

2

Figure 3.3: Mixed-type singularity of a planar parallel manipulator (actuated joints filled

in black): a mix of actuated joint motion without end-effector motion (No.1 in the figure)

and uncontrollable end-effector motion (No.2 in the figure).

• Mathematical singularities3 – depend on the way the kinematic relations be-

tween X and q are formulated: the type of generalized coordinates used, the geomet-

rical description of the kinematic constraints. These singularities do not necessarily

have a physical meaning and can be eliminated by an appropriate mathematical

modeling reformulation. For example, if a spherical joint exists as an element of

a parallel manipulator leg serial chain4 and its three degrees of freedom are repre-

sented as a sequence of three successive rotations about mutually orthogonal axes

(known in mechanics as Tait-Bryan or nautical rotational angles (see [1, 3] for de-

tails)), this leads to cases of singularities in the input-output rotation matrix when

the intermediate angle equals π/2, even if the real physical joint does not introduce

any physical singularity problems.

A dual way of detecting the previous singular configurations is considering the manip-

ulator static force/torque balance equation [11]. In a static situation (Ẋ = 0, q̇u = 0), we

can write the following system of equations:

W T Ẋ + τT
u q̇u = 0 (3.13)

whatever W and τu, where W is the vector of external forces and torques applied to

the end-effector, often called wrench, and τu is the vector of joint efforts acting on the

independent joints qu. It is straightforward to expressW in terms of τu, using the definition

of Jm from (3.12):

W T Ẋ + τT
u (J−1

qu
Jx)Ẋ = 0 ⇒ W = (JT

x J
−T
qu

)τu (3.14)

which gives the well-known form of the static force balance equations:

W = (J−1
m )T τu = J−T

m τu (3.15)

3also known as representational singularities [34].
4Spherical joints are often used as anchor joints for the moving platform in 3D parallel robots.
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valid for a well-conditioned Jqu . This system of equations is linear in terms of τu and

admits a unique solution, except if J−1
m becomes singular. Then the manipulator will not

be in equilibrium and its structure will exhibit infinitesimal motions (parallel singularity).

In other words, in order the manipulator to be able to withstand a given wrench W in a

nearness of a singular configuration, the joint forces would have to be very large, which

could even lead to a structural breakdown.

3.3 Velocity and force ellipsoids

A meaningful way to describe the robot singularities is to use the concept of velocity and

force ellipsoids [35], which quantify the manipulator kinematic performances and static

force capabilities, respectively, in different directions of the task space.

In the language of mathematics, an ellipsoid ǫn is a geometric surface, defined in a

sub-set of the n-dimensional Euclidean space ℜn, all plane sections of which are either

ellipses or circles. For the particular, common case of 3-dimensional Euclidean space ℜ3,

it can be redefined as a surface ǫ3 (Figure 3.4), consisting of points (x, y, z) ∈ ℜ3 such

that:

ǫ3 :
(x

a

)2
+
(y

b

)2
+
(z

c

)2
= 1 (3.16)

for some constants a, b, c > 0.

Figure 3.4: Ellipsoid in the 3-dimensional space.

A unit sphere ςu can be straightforwardly obtained from the ellipsoid definition (3.16),

if we take a = b = c = 1:

ǫ3 ≡ ςu : x2 + y2 + z2 = 1 , ‖ςu‖ =
√

x2 + y2 + z2 = 1 (3.17)

Hence, the ellipsoid ǫ3, being a surface defined by a set of points Ψ that obey (3.16), can

be considered as an image of the unit sphere ςu, obtained by means of a linear mapping

fm:

fm : ςu 7→ ǫ3 ⇒ ǫ3 = {Ψ : Ψ = fmςu, ‖ςu‖ = 1} , fm = diag(
1

a
,
1

b
,
1

c
) (3.18)
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3.3.1 Velocity ellipsoid

For serial manipulators with revolute joints, the velocity ellipsoid ǫv can be defined as the

image of a unit joint space velocity sphere, mapped into the task space by the manipulator

Jacobian, i.e.:

ǫv =
{

Ẋ : Ẋ = J q̇, ‖q̇‖ = 1
}

(3.19)

Performing the singular value decomposition (SVD) of J :

J = U Σ V T (3.20)

the velocity ellipsoid becomes:

ǫv =
{

Ẋ : Ẋ = U Σ V T q̇, ‖q̇‖ = 1
}

(3.21)

Its principal axes are defined by the columns ui of the left unitary matrix U . The lengths

of these axes are given by the singular values σi, that form the diagonal matrix Σ. If the

rank of J is less than its maximal value at a certain configuration, then J is singular and

the ellipsoid is said to be ”degenerate”. In this case one or more of the ellipsoid axes have

zero length and the ellipsoid will have zero volume. The degenerate ellipsoid means an

end-effector local motion ”incapability” in one (or more) of the principal axes directions

(see the serial manipulator configuration in Figure 3.1 for instance).

In case of parallel manipulators with revolute joinyt, the velocity ellipsoid is redefined

as an image of a unit sphere formed by the subset of independent joint velocities:

ǫv =
{

Ẋ : Ẋ = J q̇, Jc q̇ = 0, ‖q̇u‖ = 1
}

(3.22)

A constrained velocity ellipsoid is then written in the following manner:

ǫvc =
{

Ẋ : Ẋ = Jm q̇u, ‖q̇u‖ = 1
}

(3.23)

assuming that Jcv is of full rank.

3.3.2 Force ellipsoid

The static force balance (equation (3.15)), to which the notion of force ellipsoid refers,

can be considered as a dual to the direct kinematics (3.4) of the manipulator. It considers

the balance between the joint forces/torques τ that have to be applied to the manipula-

tor joints in order to withstand an external wrench W , applied to the end-effector. For

static cases the existing internal friction force/torques and gravity components are often

neglected.

Analogically, as a dual to the velocity ellipsoid, the force ellipsoid ǫf can then be defined

as the end-effector force/torque space image of a unit sphere in the joint effort space [35].

For a serial manipulator, it is written as:

ǫf =
{
W : JTW = τ, ‖τ‖ = 1

}
(3.24)
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Applying again the SVD to J , we obtain:

τ = V ΣT UT W (3.25)

Assuming that J is square5 and the system configuration is not singular, the force ellipsoid

definition then becomes:

ǫf =
{
W : W = U Σ−1V T τ, ‖τ‖ = 1

}
(3.26)

Comparing (3.21) and (3.26) helps to see that the principal axes of the force ellipsoid are

the same as those of the velocity ellipsoid, but their lengths are reciprocal. Recalling the

velocity ellipsoid degeneracy singularities, revealed by one (or more) diagonal entries of Σ

being zero, would imply that in such configurations the force ellipsoid is infinite along the

corresponding directions, found in U . In such singularity the mechanism can bear external

efforts W of very large amplitudes, so in spite of the fact that end-effector motions are

canceled, such singularities (equivalent to serial-type ones of the classification of Section

3.2) can be advantageous in terms of static effort balance.

For parallel manipulators, to the vector τ have to be added the components of the

constraint (joint) forces/torques that maintain the existing kinematic loops of the parallel

topology closed. If we recall the well-known semi-explicit form of the direct dynamics of

such manipulators (discussed in detail in Section 7.4):

M(q)q̈ + c(q, q̇, g, ...) + JTW = τ + JT
c λ (3.27)

in which:

• M is the symmetric positive definite generalized mass matrix of the system,

• c is a vector that contains the Coriolis, centrifugal and gravity terms as well as

the contribution of external resultant forces acting on the manipulator constitutive

bodies, except on its end-effector,

• g is the gravity vector,

• λ ∈ ℜm represent the vector of Lagrange multipliers, associated with the explicit

constraints over the manipulator topology,

and consider a static case (q̇ = 0, q̈ = 0, c(q, q̇, g, ...) = 0), for which the internal friction

forces/torques are neglected, then the static force balance equations of the manipulator

will read:

τ = JT W − JT
c λ (3.28)

The vector of Lagrange multipliers associated with the constraints corresponds to the

components of the constraint forces in the joints, maintaining the manipulator structure

closed.

5meaning that the number of actuators equals the number of end-effector d.o.f.
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Applying to (3.28) the coordinate partitioning into independent and dependent coordi-

nates , we obtain:

τu = JT
u W − JT

cu
λ (3.29)

τv = JT
v W − JT

cv
λ

Considering the joints, corresponding to the dependent coordinates as passive (or non-

actuated, i.e. τv = 0), we can substitute λ from the second set of equations into the first

one (assuming that Jcv is non singular), thus obtaining:

τu =
(
JT

u +BT
vuJ

T
v

)
W = JT

m W (3.30)

Hence, the constrained force ellipsoid can be written as:

ǫfc
=
{
W : W = J−T

m τu, ‖τu‖ = 1
}

(3.31)

3.4 Singularity classification through velocity and

force ellipsoids

Taking into account the duality of the velocity and force ellipsoids of parallel manipulators,

we can distinguish (as already proposed in [35, 36]) two main classes of singularities6:

• Velocity singularities7 – corresponding to those configurations of the mechanism,

at which Jm loses rank. At such configurations the velocity ellipsoid degenerates and

the force ellipsoid is infinite along one or more of its principal axes. The mechanism

can bear infinite loads, but finite joint motion does not produce any task motion.

This kind of singularity can occur for both serial and parallel manipulators. It cor-

responds to the serial-type singularities, defined earlier in this chapter (see Section

3.2 and Figure 3.1).

• Force singularities8 – corresponding to those configurations of the mechanism, at

which Jcv loses rank. At these configurations the force ellipsoid becomes degenerate

and the velocity ellipsoid is infinite along one or more of its principal axes. As

a result, the task frame can move even if all the active joints are locked. This

type of singularity is specific to parallel robotic structures. It corresponds to the

parallel-type singularities, defined earlier in this chapter (see Section 3.2 and Figure

3.2).

In conclusion to this chapter’s matter, we would mention the extensive singularity classi-

fication, established by Zlatanov, Fenton and Benhabib [37]. The correspondence between

the general types of singularity we already described here and those of the mentioned

6This distinction can also be made on the basis of the definition (3.9) of Jm
7Named ”mechanically advantageous singularities” in [36]
8Named ”mechanically unstable singularities” in [36]
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researchers is not difficult to notice. In terms of example, let us compare the singular

configurations of a 6-d.o.f. parallel manipulator, depicted in Figure 3.5, with those of

Figures 3.1 and 3.2.

Ri

Ri 1+

Ri

Ri 1+

Figure 3.5: Singular configurations of a 6-d.o.f. parallel manipulator (according to Zla-

tanov, Fenton and Benhabib [37]). Parallel singularity (left) and serial singularity (right)

appear when the indicated revolute joints Ri and Ri+1 are passive (non actuated).
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Chapter 4

Redundant actuation

The application of redundant actuation in order to eliminate force singularities in the

workspace of parallel manipulators when they follow desired task trajectories, can be con-

sidered as a core of the present research work. A special actuation strategy on the basis

of force singularity detection was developed by the author for this purpose (see Chapter 8).

In this chapter, definitions and principal classification of the redundant actuation will

be discussed at first. Then, a state of the art of redundant actuation applications will be

presented. Finally, existing redundancy solution methods will be briefly reviewed.

4.1 Definitions and Classification

The redundancy in robotics is of significant importance, because of its advantages when

augmented task versatility and manipulator performances are sought. To our knowledge,

this subject has not drawn significant scientific attention till the early 90s, with the interest

growing mostly during the last decade.

Non-redundant robots, be they serial or parallel, perform well over a certain range of

task operations, corresponding to the limitations of their structural and actuation char-

acteristics. The latter define the manipulator performances in terms of load handling,

precision and rapidity, as well as the workspace aspect and volume. If, for instance,

avoidance of obstacles in the workspace is necessary for a successful task accomplishment,

depending on the robot architecture and the obstacle location this avoidance could be

proved impossible.

Redundant manipulators, for their part, possess ”additional inputs” that offer means for

improving the above-mentioned performances and increasing the manipulator versatility.

In particular, redundancy in parallel manipulators recently attracted research interest,

revealing such possibilities as: active modulation of the manipulator internal pre-load

state (”internal stiffness”), fault tolerance, reconfigurability, singularity elimination, joint

backlash (clearance) elimination. The aspects of redundancy in parallel manipulators is

in the main scope of this work as well, its principles being advantageously exploited. We
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shall proceed with its definition.

4.1.1 Definitions

When considering serial manipulators, a kinematic redundancy is defined. It consists in

adding to the manipulator serial structure new bodies with their corresponding joints and

actuators, in order to increase the multibody system degrees of freedom (manipulator

mobility), discussed in the previous chapter, to an extent greater than the number of end-

effector degrees of freedom. An example of a serial manipulator with redundant kinematics

is shown in Figure 4.1.

Figure 4.1: Kinematically redundant 7-d.o.f. serial manipulator, developed as a part of

AMADEUS HUMAN COMPUTER INTERFACE at University of Genoa, Italy

With respect to this, the following definition can be formulated:

Definition 7: A kinematic redundancy of a serial manipulator is the difference, repre-

sented by a positive integer, between the number of multibody system degrees of freedom

and the number of end-effector degrees of freedom.

It is worth mentioning that a non-redundant serial robot could be considered redundant

with respect to a given task or set of tasks. For example, if a task consists in sliding a

cube on a plane, maintaining contact between one of its faces and the plane surface, this

would allow the object to exhibit three degrees of freedom at most (two translations and

one rotation) and require the same three d.o.f. from the end-effector. If a PUMA robot is

used for this task, it would be redundant with respect to it, because its architecture assures

6 d.o.f. at the end-effector. But we will limit the notion of kinematic redundancy to the

definition stated above, as to our opinion this characteristic should reflect the presence

of an ”excess” in the manipulator architecture with maximum 6 (3 for the planar case)

d.o.f., and not possible task d.o.f. reduction.
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The kinematic redundancy allows for achieving various improvements, e.g. increasing

the robot workspace volume, avoiding obstacles in it, increasing the manipulator dexterity,

its fault tolerances, etc. An interesting example of highly redundant serial chains are the

so called snake robots (Figure 4.2), often categorized as hyper-redundant, i.e. possessing

more than 10 multibody system d.o.f. Hybrid snake robots exist as well. The one shown

Figure 4.2: Hyper-redundant serial chain snake robot. Left: 3-D virtual reality model;

Right: a developed prototype

here is a serial-chain micro-robot (Figure 4.3 - left), every element of which is a miniature

parallel mechanism itself (Figure 4.3 - right). As another example of hyper-redundant

Figure 4.3: Hybrid snake robot, designed in the frame of a Copernicus project at the

University of Metz (France).

structures can be cited the articulated truss structures, mentioned in Chapter 1 (Figure

1.7).

It is important to note that this type of redundancy does not cancel serial singularities

[38]. As already pointed in the previous chapter, the latter provoke local end-effector d.o.f.

loss, but the end-effector degrees of freedom are not influenced by kinematic redundancy.

It is the kinematic redundancy, on the contrary, that locally increases in case of singular

configuration. The redundant kinematics changes the workspace volume, but not the

singularity manifold dimension (see Figure 4.4).

In contrast with the kinematic redundancy, the redundancy in parallel manipulators

concerns mainly their static and dynamic performances, influencing their force capabil-

ities, manipulability and control under external and internal (joint friction, joint damp-

ing) loads. It can be used to eliminate force (parallel-type) singularities, present in the
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Obstacle

Collision!

Figure 4.4: Kinematic redundancy and serial singularities. The 3-d.o.f. planar serial

robot (3 revolute joints of mutually parallel axes) to the left has the same singularity for

the configuration shown, as its redundant 5-d.o.f. analogue (5 revolute joints of parallel

axes) to the right. However, the latter has larger workspace, allowing obstacle avoidance,

for example.

workspace. This type of redundancy is often named redundant actuation or actuation

redundancy :

Definition 8: A degree of actuation (force) redundancy dAR (dFR) of a parallel ma-

nipulator is the difference, represented by a positive integer, between the number of its

actuators (actuated joins) and the number of its MBS degrees of freedom.

According to this definition, the degree of force redundancy can be calculated as follows:

dAR = Nact − dmbs (4.1)

whereNact is the number of independent actuators (actuated joints) and dmbs – the number

of degrees of freedom of the multibody system, defined in Section 3.1. dAR is positive if

redundant actuation is present, zero if the manipulator is not redundantly actuated and

negative, when it is under-actuated. Under-actuated manipulators exist (e.g. the under-

actuated grasping applications of [39], allowing the robotic hand to adjust itself to an

irregularly shaped object without complex control strategies and sensors), but are not in

the scope of this research work, therefore we shall not mention them further.

A typical example of redundant actuation, existing in the nature, is the human arm,

which has a total of 29 muscles (actuators), but can perform ”only” 6 degrees of freedom

at its ”end-effector” – the human hand, giving rise to a degree of actuation redundancy,
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equal to 23! The strong ”excess” of actuation in the arm serves to augment its force

performances and workspace, so the nature says all.

Sometimes the role of active wrist in hybrid manipulators is played by redundantly

actuated parallel mechanisms. Here we could cite the hybrid manipulator of the McGill

university in Canada (Figure 1.12), the wrist of which is a spatial 4-d.o.f. parallel ma-

nipulator that transforms into 3-d.o.f. redundantly actuated one, when the sliding of the

central rod is locked (see Figure 4.5, left).

Figure 4.5: The redundantly actuated active wrist of the IRIS C3 hybrid manipulator

(McGill University - Canada).

4.1.2 Redundant actuation classification

According to [40], the redundant actuation (dAR > 0) can be divided into three main

categories:

1. Actuation of some of the passive joints in the mechanism parallel branches (Figure

4.6, right).

Actuated passive joint

Figure 4.6: Redundant actuation of a 3-d.o.f. planar parallel manipulator (actuated joints

in black). The redundancy is achieved actuating a passive joint in the parallel branch.

2. Addition of more parallel branches with actuators in order for the total number of

the latter to exceed the minimal one, required for proper actuation of the mechanism

(Figure 4.7, left)
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Figure 4.7: Redundantly actuated 3-d.o.f. planar parallel manipulator. Left: the redun-

dancy is achieved adding a parallel branch with a motor; Right: redundancy of mixed

type, obtained actuating passive joints and adding additional parallel branch (actuated

joints in black)

3. Redundant actuation that is a mix of the previous two types (Figure 4.7, right)

It is easily understandable that if force redundancy by means of adding more parallel

branches is used, it would tend to reduce the manipulator workspace due to the addi-

tional kinematic constraints added by every new parallel branch. Furthermore, from an

”economic” point of view, more resources would be required to add a new branch with its

actuation to an existing parallel structure, than just to add an actuator on a passive joint,

suitable (accessible) for actuation. That is why, in this research work redundant actuation

of the first type: actuation of available passive joints of a predefined parallel manipulator

topology, was chosen as a basis of the proposed actuation strategy that we shall reveal

later.

4.2 State of the Art

4.2.1 Force redundancy applications

Currently, several fields of application of redundant actuation in parallel manipulators can

be enumerated:

• Internal stiffness modulation

In general, the principal goal of this group of applications is to take profit from force redun-

dancy in order to actively manage the manipulator internal stiffness and have it reacting

conveniently to external loads applied. For example, Yi and Freeman [41] investigated

and applied the antagonistic internal load properties, inherent to redundantly actuated

closed-loop mechanisms, demonstrating how the mechanism motion, its effective stiffness

and internal load state can be controlled independently, using the actuator redundancy.

They proposed three different applications of this type of control, stressing on the optimal
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placement of the required actuation inputs with respect to joint/torque limits. Kock and

Schumacher in [42] examined a 2-d.o.f. parallel manipulator with actuation redundancy

for high-speed and stiffness-controlled operation. They outlined the force redundancy ad-

vantages, performing a force transmission analysis and developing a novel control scheme

that guarantees a lower bound of the end-effector stiffness. Chakarov [43] investigated

parallel manipulators, consisting of a basic anthropomorphic kinematic chain and parallel

chains with redundant linear actuators. He proposed approaches for specification of a

desired compliance along a given direction and of a biggest compliance in the operational

space, and developed a scheme for stiffness control on their basis.

• Fault tolerant manipulators

In this group of applications, the redundancy is simply used to compensate for the possi-

ble failure of some of the principal manipulator actuators. In connection with this aspect,

Notash and Huang proposed in [44] an extensive parallel manipulator failure analysis at

a component level (link and joint failures), subsystem level (branch failure), and system

level (parallel device failure). In addition to that, they discussed the failure of parallel ma-

nipulators as a result of the loss of degree of freedom, loss of actuation, loss of constraint,

special configurations (singularities), as well as branch interference, and defined two crite-

ria for identification of optimum fault-tolerant configurations of parallel manipulators with

simple redundant actuation. Chen et al. [45] looked at the dynamic fault-tolerance ability

of redundantly actuated robots, proposing a Weighted Null-space Algorithm with Torque

Adjustment (WATA) in order to increase it, and a joint torque redistribution scheme to

carry out fault-tolerant control.

• Robot cooperative work and multi-finger grasping

Two serial manipulators, handling a common payload, can be thought of as one redun-

dantly actuated parallel manipulator. The cooperative manipulator operation was com-

mented by Zheng and Luh in [46], for example. They proposed algorithms for solving this

specific case of redundant actuation.

The multi-fingered grasping [47] can be considered as an example of redundant actua-

tion, as long as the manipulated object remains grasped. The grasping can be viewed as

a particular, reduced-scale cooperative object manipulation, every finger of the grasping

device being a mini-manipulator, usually of serial topology. This situation is of even more

complex nature than the classical robot cooperative work, because the object handling

is generally ensured by friction forces between the fingertips and the manipulated object.

These friction components are created by forces of pressure (exerted by the fingertips)

that are normal to the contact plane and must be precisely controlled. Hence, additional

unilateral contact constraints have to be taken into account when solving the actuator

redundancy problem. Of course, independently of the grasping, the fingers themselves

could be redundant manipulators – take [48] for example.

• Reconfigurable manipulators
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This is a relatively new issue, as most of the researchers were till now interested basically in

kinematically redundant serial and non-redundant parallel reconfigurable robots [49, 50],

concentrating on the design of modular robots that could reach reconfigurability only if

physically relocating the actuators and/or changing the manipulator topology [51]. Just

recently – in 2004 – Fisher et al. [52] presented the design of a reconfigurable planar parallel

manipulator (RPPM) (see Figure 1.10, right), designed to act as a testbed manipulator

for theories on redundant actuation in parallel robotics. The manipulator can reconfigure

into three different revolute-joint mechanism types: a 2-branch 2-d.o.f. 5-bar mechanism,

a 2-branch 3-d.o.f. 6-bar mechanism and a 3-branch 3-d.o.f. 8-bar mechanism (Figure

4.8). The authors included some criteria and constraints of the design and commented on

how their designed prototype relates to the latter.

Figure 4.8: The three desired mechanisms, obtained by reconfiguration of the RPPM

of Firmani and Podhorodeski of Figure 1.10 (image taken from [52]). The base and the

moving platform are counted as ”bars”.

• Singularity elimination

Possible elimination of singular configurations is one of the main advantages of having re-

dundant actuation on parallel manipulators. During the last decade some researches, the

author of this work included, concentrated on this problematics. The redundant actuation

allows for elimination of singularities present in the parallel manipulator workspace. As

already mentioned in Chapter 3, the singularities locally degrade the robot external load

handling capabilities (output effort performances) and could lead to mechanism locking,

actuator saturation and even physical damage. A thorough analysis of the redundancy

in parallel manipulators was given by Dasgupta and Mruthyundjaya in [38], where they

studied it as a series-parallel dual concept of kinematic redundancy in serial manipulators,

describing its implications in the kinematics and dynamics of parallel robots. They demon-

strated the actuation redundancy effective utilization in reduction and elimination of what

they called static singularities1, showing on numerical studies of two parallel manipula-

tors that an addition of a single degree of redundancy (one parallel branch with additional

actuator) can reduce singularities drastically and improve the quality of the workspace to

1which correspond to the force singularities, defined in Section 3.3
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a great extent, the cost being only its slight reduction due to the additional kinematic

constraints added via the new leg in the parallel structure. In the previous chapter we

discussed the fact that the singularities in parallel manipulators are actuator-dependent.

Firmani and Podhorodeski used in [53] the concept of reciprocal screw quantities and

kinematic geometry to determine the feasibility of the existence of force singularities of

planar parallel manipulators. They showed that one order of infinity of force singularities

is eliminated for each added actuator and considered different actuator location redundant

schemes, investigating the singularity modifications depending on them. Krut et al. [54]

performed an analysis of the velocity isotropy of parallel mechanisms with actuation re-

dundancy, emphasizing the convenience of the latter for an improvement of their velocity

performance indexes, i.e. its positive effect on the reduction of the degeneracies caused

by velocity singularities in parallel mechanisms. They mentioned the duality between

the velocities and forces in parallel manipulators, and discussed on the relevancy of using

the Jacobian matrix condition number as a quality index for velocity and force isotropy,

respectively.

The strategy of force singularity elimination by suitably choosing the actuator locations

is used by the author of the present research work, the first stages of which were presented

in in [55]. By eliminating the force singularities, one could achieve better workspace exploit

and augment the robot force performances, when external loads have to be managed in the

presence of joint friction. As mentioned earlier in Section 4.1.2, redundancy is achieved by

means of actuating accessible passive joints of the existing structure, and not changing the

manipulator architecture by incorporating extra legs (parallel branches). This approach

cancels the problem of possible reduction of the manipulator workspace due to the addi-

tional kinematic loops that would be introduced. In [36], we developed a methodology

for application of trajectory-dependent sequences of non-redundant actuations that locally

eliminate actuator singularities and eventually lead to redundancy2. We commented as

well on the control of redundantly actuated parallel mechanisms, testing different con-

trol algorithms that effectively use the chosen force redundancy solutions schemes. These

developments will be presented in detail in this work as well, because they constitute a

significant part of its theoretical and practical achievement.

• Joint clearance (backlash) elimination

This aspect represents one of the latest redundant actuation research directions. The joint

clearances provoke instable mechanism operation and a lack of control precision. The main

idea behind the effective usage of the redundant actuators in this case is to counterbalance

the additional parasite degrees of freedom that appear (in a sudden manner) in the joints,

causing impulse disturbances and instant losses of assembly rigidity of the manipulator.

Many researchers have worked on the aspects of clearance modeling and mechanical

analysis. For example, Dubowsky and Freudenstein [56] performed in 1971 a dynamic

analysis of mechanical systems with clearances. Sarkar, Ellis and Moore commented in

2due to the physical impossibility of changing actuator places during motion.
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[57] on backlash detection in geared mechanisms. They showed that, by modeling back-

lash as microscopic impact, its presence can be detected and possibly measured using only

simple sensors. Bauchau and Rodriguez presented in [58] a generalized, versatile approach

for analysis and modeling of unilateral contact conditions involving backlash, freeplay and

friction. Garcia Orden gave in [59] a methodology for the study of typical smooth joint

clearances in multibody systems, proving with numerical applications that it is very sta-

ble in long-term simulations with relatively large time step sizes and, hence, promising in

terms of efficiency and robustness for the numerical analysis of real joints with clearances.

Schwab, Meijaard and Meijers [60] studied the dynamic response of mechanisms and ma-

chines affected by revolute joint clearance, developing an impact model with a procedure

to estimate the maximum contact force during impact and showing how the compliance of

the links or lubrication of the joint smooths the peak values of the contact forces. Zhu and

Ting [61] worked on the uncertainty analysis of planar and spatial robots with joint clear-

ances. They established, based on the probability theory, a general probability density

function of the endpoint of planar robots, calculating distribution functions of the robot

endpoint that provide a convenient way to obtain probability values of the joint clearance

and position repeatability for a desired type of tolerance zone. Parenti-Castelli and Ve-

nanzi commented the effects of joint clearance on the end effector pose accuracy of serial

and parallel manipulators [62], reporting simulation results of several serial and parallel

manipulators with clearance in the joints and comparing their positioning accuracy.

Only recently, some researchers concentrated on the application of redundant actua-

tion in order to cope with backlash problems. Chen and Yao [63] worked on systematic

methodology for the drive train design of redundant-drive backlash-free robotic mecha-

nisms (RBR mechanisms). An interesting research work is that of Muller [64]. Giving a

general formulation for the dynamics of redundantly actuated parallel manipulators, he

derived an explicit solution in terms of a single pre-stress parameter for the special case

of simple redundancy (one redundant actuator) and proposed a computational efficient

open-loop pre-stress control that eliminates the mechanism backlash. The author proved

the control algorithm simplicity and demonstrated its applicability in real-time on a planar

4RRR manipulator.

Finally, without pretending to cover all the possible cases that could exist, let us cite

two more fields of application of redundant actuation analysis, modeling and resolution,

concerning the domain of biomechanics:

• Muscle force determination

The animal and human bodies are highly redundantly actuated, as already mentioned in

the example of the human arm, given in the previous section. The efforts of the researchers

are concentrated mostly on the dynamic analysis and quantification of muscle efforts [65,

66, 67] using experimentally measured kinematic data and optimization techniques to

determine them, in spite of the fact that some have worked on methods for solution of the

redundancy problem in biomechanics mainly, even targeting computational efficiency [68].
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• Legged locomotion

The aspects of legged locomotion (Figure 4.9) have gained significant interest and con-

centration of research effort, because of their importance with respect to applications in

medicine, biomechanics and robotics. During certain phases of the gate – the double stand

phases (both feet are in contact with the ground), namely, the structure, formed by the

legs can be considered as a redundantly actuated closed-loop mechanism. The research

Figure 4.9: Legged locomotion robotic examples. Right: the famous ASIMO robot of

Honda Motor Corporation (image courtesy of Honda Motor Co., Ltd.)

results concerning the previous item find direct application in this latter research direction

as well. The synergy of different sciences: biology, medicine, physics, mechanics and elec-

tronics, contributes a great extend to the analysis and modeling of the legged locomotion

phenomena, thus opening a multitude of perspectives in terms of future walking robot and

vehicle design, human prosthetics design, etc.

4.2.2 Redundancy resolution schemes

The researchers that deal with finding a solution for the redundant actuation, often resort

to optimization techniques. For example, when treating the problem of two serial manip-

ulators, handling a common payload in [46], Zheng and Luh proposed two methods for

resolving the force redundancy. The first one is based on the well-known pseudoinverse

(2-norm minimization), the second - on non-linear programming algorithm, considering

the maximum torque limits of the actuators (infinite-norm minimization)3. In [69], Naka-

mura and Ghoudossi used active/passive coordinate partitioning in order to reduce the

manipulator plant dynamics and eliminate the Lagrange multipliers, corresponding to the

generalized constraint forces. Using this plant dynamic model, they proposed a method for

3The same resolution scheme comparison is used in the present research work
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finding the joint torques of closed-loop manipulators based on torques of equivalent open-

loop structures. Moreover, they parametrized the torque solution for cases of actuation

redundancy. As we shall see later, their achievements were recently successfully exploited

by other research teams for the purposes of redundantly actuated parallel manipulator

control. Tao and Luh [70] considered the similar problem of two redundant serial manip-

ulators that manipulate a payload in cooperation, and minimized the squares of the joint

torques to find a redundancy solution. Gonzalez et Sreenivasan [34] treated the example

of two 6-d.o.f. coupled serial manipulators, deriving a minimum norm solution for this

redundant actuation problem. Nahon and Angeles [71] used quadratic programming (QP)

with inequality constraints in order to solve for the torques of hand fingers, grasping an

object, thus minimizing the internal forces. Buttolo and Hannaford [72] looked at a lin-

ear programming problem (LP) and applied a Simplex algorithm to solve the redundant

actuation of a parallel-structure based haptic device. They compared the results with

that of a pseudoinverse solution. Kerr et al. [47] used the internal stiffness properties of

redundant parallel manipulators to obtain a solution that minimizes the potential energy

of the system, demonstrating that this approach is equivalent to a weighted pseudoinverse

solution. Merlet [73] proposed two cost functions for the redundancy solution via optimiza-

tion: one minimizing the joint rates and one minimizing the actuator efforts. The proposed

methodology was again based on the pseudoinverse solution. Kim and Choi [74] developed

analytical methods for the description of manipulator kineto-static capabilities, based on

eigenvalue treatment. Using [47] they demonstrated the possible extension of their solu-

tions to redundantly actuated parallel manipulators. Lee et al. proposed a method for

managing impact disturbances on parallel manipulators by means of redundant actuation

[75]. They compared three redundancy solutions: a minimum torque norm solution, a

minimum torque rate solution and a solution that respects the torque limits, drawing the

conclusion that the third one gives best results. Cheng et al. defined in [76] a transmis-

sion ratio between the torque input and output of parallel manipulators, demonstrating

that the force redundancy lead to more uniform and symmetric force output. Nokleby

et al. in [40] derived an analytical methodology using scaling factors to determine the

force capabilities of parallel manipulators, presenting in addition an optimization-based

method for generation of these capabilities. They showed that the redundant actuation al-

lows for significant improvement of the latter and that using optimization-based solutions

for the redundancy makes better use of the maximum force/torque performances of the

actuators. Dasgupta [77] drew the reader’s attention to the need of effective redundancy

solution schemes, discussing and comparing some simple solution examples of different

norm on the basis of their performance with respect to actuator limits and other con-

straints. Ding et al. [78] considered a comprehensive dynamic performance index (CDPI),

representing the maximum value of relative joint driving torques, as a measure of the

dynamic merit of redundant manipulators. They solved the force redundancy through

CDPI optimization by linear programming, incorporating the stability condition into the

dynamic optimization algorithm to eliminate the instability problem for long trajectories

of the end-effector. Further, they commented the computational burden that CDPI bares
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and show that it can be handled easily using recurrent neural networks. Zhang presented

in [79] an interesting approach for inverse-free QP formulation of the infinity-norm torque

minimization problem (minimum-effort redundancy solution) for redundant manipulators,

testing it on an industrial PUMA-560 robot.

As we shall see, the reformulation of the QP inverse-free minimum-effort redundancy

solution for the case of redundantly actuated parallel manipulators is not problematic.

This reformulation was performed by the author of this work and applied to two benchmark

parallel multibody systems, in order to compare the solution with a minimum two-norm

one (using the pseudoinverse solution approach). The results showed the advantages of the

infinite-norm QP problem, when optimal distribution of the actuator loads that respects

their performance limits is needed. All this will be commented in detail later in the work.
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Multibody Formalism
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Motivation

Starting from the simplest mechanical devices like slider-cranks, four-bar mechanisms,

going through more complex mechanical systems, e.g. weaving machines, bicycles, road

and railway vehicles, robots and spacecrafts – we can find that they are all constituted of

a number of rigid or flexible components, connected in such a way that relative motions

between them can exist. These mechanical systems are known as multibody systems. We

find numerous examples of them in our everyday life (see Figure 4.10).

Mechanisms Road vehicles Railway vehicles

Robot manipulatorsSpace applications

Figure 4.10: Examples of multibody systems

Nowadays, the latest developments in multibody dynamics have made possible the in-

depth analysis and advanced modeling of systems of high complexity that include not only

mechanical, but also electrical, hydraulic and pneumatic, and even control systems. In

our work, however, we concentrate our vision on mechanical systems, constituted of rigid

bodies, and basically deal with modeling, analysis and control of multibody systems in

robotics – parallel manipulators, in particular.

In Chapter 1 we already mentioned our choice of following the multibody formalism

principles, briefly revealing its advantages when dealing with multibody mechanical sys-

tems, namely, its convenience for a description of systems of varying complexity, using com-

prehensive terminology and hypotheses of acceptable simplification level, different types

of generalized coordinates and conventions of readable notation. In this part, a thorough

presentation of the MBS formalism definitions, conventions and hypotheses, as well as the

modeling techniques that it provides for description of multibody system kinematics and

dynamics, shall be given. All these theoretical aspects are of primordial importance for

the developments of the present work. The principles of Newton-Euler recursive compu-

tation scheme (Chapter 7) – a precious tool, for example, to compute the robot inverse

dynamics for a given trajectory, or the direct dynamics so as to validate the solution via
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time simulation (Chapter 9), will be described. The coordinate partitioning technique [4],

which lies also at the root of our approach, will be detailed and generalized in this part

to parallel robots. Finally, the MBS formalisms and the techniques mentioned above will

be used to develop robust closed-loop multibody dynamic models and time integration

procedures that shall be subsequently used in the control of redundantly actuated parallel

manipulators.



Chapter 5

Multibody formalism terminology

5.1 Basic concepts

A system composed of a set of N rigid1 bodies interconnected by mechanical devices, called

joints, can be defined as a multibody system (MBS) [3] (see Figure 4.10).

Multibody formalisms consider the joints as massless components of the system, con-

necting two constitutive bodies at reference attachment points (Figure 5.1), in a way that

permits relative motion between them. At least one body is connected to an inertial (fixed)

body, called base2.

bodies

joints

base: inertial body

reference attachment points

Figure 5.1: Multibody system representation

In order to develop the theoretical basis of multibody kinematics and dynamics, it is

necessary to introduce fundamental concepts, such as kinematic chain, body filiation in a

chain, tree-like and closed-loop structure, kinematic constraint, etc. We shall start with

considering tree-like structures. i.e. structures without kinematic loops in them. Figure

5.2 gives a representation of a tree-like and a closed-loop structure in terms of comparison.

1or even flexible
2the fixed platform of a manipulator, for example.
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Loop

Loop

b: Closed-Loopa: Tree-like

Figure 5.2: Tree-like structure and closed-loop structure

Tree-like MBS characteristics

Tree-like multibody mechanical systems possess the following specific characteristics:

• the number of rigid bodies (without the inertial) is equal to the number of joints in

the system

• the path from one rigid body of the system to any other body is unique

The following elements (taken from [3]) characterize any tree-like topology:

• Base body : the body of the MBS that is inertially fixed.

• Leaf : any terminal body of the tree-like structure (ex: l, p and o in Figure 5.3).

• Kinematic chain: an ordered set of consecutive bodies, starting from the base and

going to the leaves. For instance, {i, j, k} in Figure 5.3 is a kinematic chain, while

{i, k, j} and {m, j, k} are not.

• Ancestor : body i is an ancestor of body k if it belongs to the kinematic chain

starting from the base and going to k (k excluded).

• Descendant : if body i is an ancestor of body k, then body k is said to be a descendant

of body i.

• Parent : body i is the parent of body j if it is the direct ancestor of j. In a tree-like

structure each body has only one parent, contrary to closed-loop structures (see Fig.

5.2).

• Child : body j is called child of body i, if body i is the parent of body j. Analogically,

the joints connecting body i to its child bodies will be called child joints of body i.

In a tree-like structure, one parent may have more than one child.
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Figure 5.3: Left: Tree-like body filiation. Right: Numbering of bodies and joints in a

tree-like structure.

5.2 Tree-like MBS topology

Certain MBS topology conventions and definitions are adopted, mostly for convenience

when dealing with computer implementations, such as the one underlying the ROBO-

TRAN symbolic generation software [3]:

Conventions

1. Bodies are numbered in ascending order, starting from the base (index 0) and going

to the leaf bodies (as illustrated in Figure 5.3).

2. A joint, preceding a given body, receives its index.

Definitions

• A topological vector inbody is defined (giving the information on the structure fili-

ation) as the vector whose ith element contains the index of the parent body i.

Any tree-like structure can be described by means of the topology conventions and ele-

ments given. For example, a linear tree-like structure can be defined, as being a multibody

structure, in which the number of bodies equals the number of joints and every parent

body has only one child (Figure 5.4). This type of structure is very common when the legs

(branches) of a parallel manipulator are considered, for instance to describe the kinematics

of their attachment points with the moving platform. The closed-loop structures, on their

hand, are structures in which the number of bodies is greater that the number of joints.

5.3 Kinematics: basic notations and definitions

Notations

We shall first introduce the notations of vectors and tensors that will be used in this work.
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Figure 5.4: Linear tree-like multibody structure. Left: principal topology. Right: an

example – the legs of a planar parallel manipulator considered as linear tree-like (serial)

chains.

Let {X̂i} be an orthonormal frame. Writing the frame {X̂i} under the form of a (3 × 1)

column matrix of unit vectors X̂i gives:

[X̂i]
∆
=






X̂i
x

X̂i
y

X̂i
z




 (5.1)

A vector a is described in the given frame {X̂i} by its three components ax, ay, az:

a = ax X̂i
x + ay X̂i

y + az X̂i
z (5.2)

Applying classical matrix multiplication rules, we can write the vector a in the following

concise form:

a = [X̂i]T a (5.3)

where a
∆
= (ax ay az)

t.

The same notation holds for a tensor T of order 2 (ex: the inertia tensor of a body):

T = [X̂i]T T [X̂i] with T =






Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz






Definitions

Now the following quantities, related to body i, its parent h and children j and k, can be

defined on the basis of Figure 5.3:

• Oi and O
′i – the reference attachment points of joint i on the parent body h and

its child i, respectively,

• zi – the relative position vector
−−−→
OiO′i, representing the relative displacement in

joint i,
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• dik – the position vector (with respect to O′i) of the reference attachment point Ok

of joint k that connects body i with its child body k. This vector is fixed on body i

and represents its contribution to the kinematic chain, linking body k to the inertial

frame {Î} of body 0 (the base).

Î
1

2
Î

3
Î

O0j

O0i

Oj

Oi

Ok

dij

pi

zi

h

m

k

j

l

body i

O0k

d
ik

Figure 5.5: Basic kinematic notations: attachment points and vectors

The following augmented vectors are defined as well for convenience in case of recursive

formalism computations (see Section 7.3):

• d
ij
z

∆
= zi + dij , dik

z
∆
= zi + dik – the extended position vectors of joints j and k,

respectively (Figure 5.6).

Oj

Oi Ok

di
z
j

h k

l

j

body i

dik
z

Figure 5.6: Basic kinematic notations: frames, bodies and joints

The orientation of the different bodies in given kinematic chain and their angular

velocities can be described using the following quantities of Figure 5.7:

• {O, {Î}} – the orthonormal inertial frame, rigidly fixed to the base (body 0),

• {X̂i} – an orthonormal moving frame, rigidly attached to body i. Expressed in this

frame, the components of the vectors dij = [X̂i]T dij and dik = [X̂i]T dik have

constant components,
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• Ri,h – the (3×3) rotation matrix, defining the relative orientation of the frame {X̂i}
(body i) with respect to frame {X̂h} (parent body h), i.e. [X̂i] = Ri,h [X̂h],

• Ri – the rotation matrix, defining the absolute orientation of the frame {X̂i} (body

i) with respect to the inertial frame {Î} (fixed body 0), i.e. [X̂i] = Ri [̂I],

• Ωi – the relative angular velocity vector of body i with respect to its parent h,

• ωi = [X̂i]T ωi =
∑

h≤ i

Ωh – the absolute angular velocity vector of the fixed to body

i frame {X̂i}
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Figure 5.7: Basic kinematic notations: frames, bodies and joints

The components ωi are related to the rotation matrix according to the following ex-

pression [3], which involves the skew-symmetric matrix associated with ωi:

ω̃i =






0 −ωi
3 ωi

2

ωi
3 0 −ωi

1

−ωi
2 ωi

1 0






∆
= RiṘiT (5.4)

related to the rule of performing a vector cross product: v × w = [X̂i]T ṽw for any two

vectors v and w, the components of which are expressed in a given frame {X̂i}.
As only rigid bodies are considered in the present work, knowing the position of one

reference point Qi per body i and its orientation suffice to completely determine the

configuration of the multibody system.

Joint modeling hypotheses

Joints represent simple mechanical connection devices such as telescopic arms, hinges,

universal joints, bearings, etc. The relative motions between bodies are in fact allowed
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by the joints and correspond to the mechanical nature of the latter, i.e. to their internal

relative degrees of freedom.

In fact, every existing joint can be modeled as an appropriate succession of two most

basic, one-d.o.f. joints: prismatic and revolute (Figure 5.8). Therefore, instead using an

exhaustive library of real joints, we shall use this fact (as in [3]) to simplify the modeling

procedure by formulating the following modeling hypothesis:

In a mutlibody system (MBS) the connections between its constitutive bodies are realized

by 1-d.o.f. prismatic or revolute joints.

ii

hh

O
i

O
i

= OO
0

0
i

i

Revolute joint iPrismatic joint i

i
#

ee ii
^^

Figure 5.8: Elementary joints

Each joint i connects body i to its parent h at anchor reference points O′i and Oi,

respectively. The joint attachment points are distinct for a prismatic joint and identical

for a revolute one (as depicted in Figure 5.8). The variables that represent the relative

motion in the joints (translational or angular displacement) are used as joint generalized

coordinates q.

Joint kinematics

Let us introduce the joint unit vector êi, aligned with the joint axis according to Figure

5.8 and having constant components in both {X̂i} and {X̂h}. For a joint i of an MBS,

the generalized coordinate qi represents:

• if joint i is prismatic, the amplitude of the relative displacement
−−−→
OiO′i along the

unit vector êi. The relative position of the attachment point O′i with respect to the

the attachment point Oi is given by a vector zi, such that:

zi =
−−−→
OiO′i = qiêi (and Ri,h = E) (5.5)

which means that O′i coincides with Oi when qi = 0.

• if joint i is revolute, the amplitude of the relative rotation angle ϑi of body i with

respect to its parent body, around the unit vector êi. The relative orientation of

the frame {X̂i}, fixed on body i, with respect to the frame {X̂h}, fixed on body h,

is given by a rotation matrix Ri,h, depending on qi ≡ ϑi:

[X̂i] = Ri,h(qi)[X̂h] (and zi = 0) (5.6)

where the joint relative angle ϑi is the only time-dependent quantity in Ri,h(qi).
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Now, the relative translational and angular velocities of body i with respect to its

parent h can be defined:

◦
z

i
= q̇iêi , Ωi = 0 if joint i is prismatic

Ωi = q̇iêi ,
◦
z

i
= 0 if joint i is revolute

For computer recursive implementation, it is convenient to define two vectors ϕi and

ψi for each joint i (i = 1, ..., N body) such as:

ϕi △
= 0 and ψi △

= êi if joint i is prismatic

ϕi △
= êi and ψi △

= 0 if joint i is revolute
(5.7)

which allows us to rewrite the velocities in a more compact form:

◦
z

i
= q̇iψi and Ωi = q̇iϕi (5.8)

and the corresponding relative accelerations are:

◦◦
z

i
= q̈iψi and

◦

Ω
i

= q̈iϕi (5.9)

5.4 Dynamics: basic notations and definitions

According to Figure 5.9 here follow the main notations and definitions that will be used

in this study to model the dynamics of multibody systems:
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Figure 5.9: Dynamic notations

• mi and Ii = [X̂i]T Ii[X̂i] – the mass of body i and its inertia tensor with respect to

its center of mass Gi.
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• dii = [X̂i]Tdii – the position vector of the center of mass Gi with respect to O′i.

The components dii and Ii are constant in the body i fixed frame {X̂i},

• xi = [̂I]Txi – the absolute position vector of the center of mass Gi,

• g = [̂I]T g – the gravity vector,

• Fi = [X̂i]TF i, Li = [X̂i]TLi – the resultant force and torque, respectively, applied

to body i by its parent h through joint i and evaluated at point Oi. According to

the Newton’s third law, reactions −Fi and −Li are applied on body h. Similarly

(Figure 5.9), body i receives reaction forces and torques −Fj , −Fk, −Lj and −Lk

through its child body joints,

• Fi
ext = [X̂i]TF i

ext, Li
ext = [X̂i]TLi

ext – the external loads acting on body i (excluding

the gravity as well as the internal forces and torques transmitted by the joints) in

the form of an equivalent resultant force applied at the body center of mass Gi and

resultant torque.

For the sake of convenience the following extended mass center position vector is defined

as well:

• dii
z = zi + dii, representing the position vector of the mass center Gi with respect

to Oi.

The total resulting force and torque applied on body i can now be calculated as:

Fi
tot = Fi −

∑

j∈ī

Fj + Fi
ext +mig (5.10)

Li
tot = Li −

∑

j∈ī

(Lj + (d̃ij + d̃ii)Fj) + Li
ext + d̃ii

z Fi (5.11)

where
∑

j∈ī

represents the summation over all the child bodies of body i.
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Chapter 6

Multibody Kinematics

In this chapter, tree-like direct and closed-loop inverse MBS kinematics will be reviewed.

In order to solve the inverse kinematic problem, the coordinate partitioning method, men-

tioned in Section 3.3, will be detailed and generalized for systems that reconfigure during

motion.

6.1 Forward sub-chain kinematics

It can be of interest for various reasons to obtain the symbolic expression of the forward

kinematics of any MBS sub-chain, i.e. the position, the orientation, the linear/angular

velocities and the linear/angular accelerations of a given body with respect to another one

(the inertial base, in particular). For instance, sub-chain forward kinematics can be useful

for:

• the expression of a new constraint on the system,

• the introduction of a specific force, whose constitutive equation requires the com-

putation of the kinematics of a given point,

• the computation of a specific result, such as the absolute position or acceleration of

a point (e.g. the absolute deviation of a robot tool with respect to a prescribed tool

trajectory).

In our formalism, sub-chain kinematics can be generated for tree-like structures only.

However, as we shall see in the next section, closed-loop structures are cut in different

manners in order to restore a tree-like topology, hence the direct kinematic computation

formalism can be used for any topology, be it tree-like or not.

Let us have a sub-chain (Figure 6.1) from body i to body j of a given tree-like structure,

i.e. a parallel robot leg structure from the base to the moving platform. For any point P

of body j, the following direct kinematic elements can be generated1:

1All of them are supposed to be scleronomic, i.e. not depending explicitly on the time t.
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Figure 6.1: Sub-chain kinematics

• the (relative) position vector
−−−→
O′i P of point P with respect to point O′i, expressed

in the frame {X̂i}: xi,P = [X̂i]Txi,P (q),

• the (relative) orientation (rotation) matrix Rj,i of body frame {X̂j} with respect to

body frame {X̂i}, defined by: [X̂j ] = Rj,i(q)[X̂i],

• the relative velocity vector
◦
x

i,P
, defined by:

◦
x

i,P
= [X̂i]T ẋi,P (q̇, q)

• the relative angular velocity vector ωj,i associated with the rotation matrix Rj,i:

ωj,i = [X̂i]Tωj,i(q̇, q),

• the corresponding acceleration vectors:
◦◦
x

i,P
= [X̂i]T ẍi,P (q̈, q̇, q),

◦
ω

j,i
= [X̂i]T ω̇j,i(q̈, q̇, q).

A recursive computation formalism is used to obtain the expressions given above. As

in [3], it holds two particularities:

• the pair {O′i, {X̂i}} plays the role of local inertial frame (instead of {O, {Î}}) for

computing the time derivatives,

• in order to save computational effort and time in the evaluation of the Jacobian,

resorting from the generation of relative velocities, the translational part of the

kinematic equations (Step 4 of the algorithm hereunder) is performed backwards.

Considering the kinematic chain of Figure 6.1 that links the point P to body i and

having all the notations in correspondence with the definitions given in Sections 5.2 and

5.3, the sequential steps of the recursive algorithm are as follows2:

1. Determine the set of joint indices, belonging to the kinematic chain, by backward

recursion of the vectorial inbody. Denote this set by: {i+ 1 : j}.
2For conciseness, the algorithm is presented in its vector form.
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2. Compute the rotation matrix Ri,k from the elementary joint rotation matrices Rh,k:

Initialization:

Ri,i = E (unitary matrix)

Forward recursion:

For k = i+ 1 : j

h = inbody(k)

Ri,k = Ri,hRh,k

end

3. Compute by a forward recursion the angular velocity and acceleration vectors:

Initialization:

ωi,i =
◦
ω

i,i
= 0

Forward recursion:

For k = i+ 1 : j

h = inbody(k)

ωk,i = ωh,i +ϕkq̇k

◦
ω

k,i
=

◦
ω

h,i
+ ω̃k,iϕkq̇k +ϕkq̈k

end

4. Compute by a backward recursion the position, velocity and acceleration vectors:

Initialization:

k = j , xk,P = xj,P

◦
x

k,P
= ω̃j,ixj,P

◦◦
x

k,P
=

◦

ω̃
j,i

xj,P + ω̃j,iω̃j,ixj,P

Backward recursion3:

while k 6= i

h = inbody(k)

xh,P = xk,P + dhk + zk

◦
x

h,P
=

◦
x

k,P
+ ω̃h,i(dhk + zk) +ψkq̇k

◦◦
x

h,P
=

◦◦
x

k,P
+

◦

ω̃
h,i

(dhk + zk) + ω̃h,iω̃h,i(dhk + zk) + 2ω̃h,iψkq̇k +ψkq̈k

k = h

end

5. Compute the Jacobian matrices

3Computing the derivatives, we rely on the fact that if joint k is prismatic: ωh,i = ωk,i, zk 6= 0

and if it is revolute: ωh,i 6= ωk,i, zk = 0.
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It will be shown in the next section that the coefficients of the generalized joint velocities

q̇ in the above expressions of velocity vectors play the role of pseudo-gradients for the

rotation constraints, associated with a type of loop closure. A vector form, called vector

Jacobian [80] containing the contributions of the sub-chain kinematics to the (pseudo)

Jacobian is obtained as follows:

(
◦
x

i,P

ωj,i

)

=

(

J
i,P
t

J
i,P
r

)

q̇ = Ji,P q̇ (6.1)

After few manipulations the kth column J
i,P

(k) of this vector matrix, i.e. the coefficients of

q̇k, is found to be:

J
i,P

(k) =

(

ψk − x̃k,Pϕk

ϕk

)

(6.2)

if k belongs to the kinematic chain {i+1 : j}, and equal to a zero column-vector otherwise.

The latter expression shows that Ji,P can be computed within the backward recursive

algorithm of point 4.

6.2 Closed-loop multibody systems

Figure 6.2: Example of closed-loop multibody systems

The previous section introduced the necessary theoretical tools to deal with tree-like

multibody systems. In numerous real case, however, the systems that have to be treated

do not possess a tree-like structure, but a closed-loop one (see ex. in Figure 6.2: vehi-

cle suspensions, railway boogies, parallel robots, etc.), for which a particular procedure

involving loop cuts must be performed, as depicted in Figure 6.3.

The latter shows a MBS topology that is not a tree-like one. This topology contains

several loops, formed of bodies and joints. As these loops correspond to physical, really
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Figure 6.3: a) Closed-loop system b) Corresponding open-loop (tree-like) system

existing connections between bodies, during any motion of the mechanical system they

must remain closed, and this has to be achieved accurately in both the kinematic and

dynamic model, independently from the numerical process that will be used.

In contrast to tree-like structures, the kinematic chain connecting a body of a given

loop to the base is not unique, hence the filiation concept [3] used for tree-like topologies

is not directly applicable. On the other hand, this concept is useful when using relative

joint coordinates to compute the direct kinematics of any body.

To deal with closed-loop MBS, as in [3] we shall define an equivalent spanning tree,

covering all the bodies of the closed-loop system. Such a tree can be obtained by virtually

cutting the closed loops of the real MBS in two ways: either by cutting bodies, or by

disregarding some joints. This procedure, illustrated in Figure 6.3b, leads to restoring

a tree-like structure, derived from the initial closed-loop one. Once the spanning tree

is obtained, the bodies and joints can be numbered according to the tree-like filiation

concepts.

Two principal issues concerning the spanning tree definition arise:

• Number of necessary cuts. For closed-loop systems, the number of joints N joint is

greater than the number of bodies N body. The difference N cut △
= N joint − N body

is called cyclomatic number of the topology. Knowing that for a tree-like topology

N joint is equal to N body and the spanning tree must cover all bodies, it is obvious

that the number of cuts necessary for obtaining the tree equals N cut and corresponds

to the number of independent loops of the MBS. For the case of Figure 6.3, N cut =

10 − 8 = 2.

• Number of loop conditions. The closure of loop No. 1 in Figure 6.3a does not provide

the closure of loop No. 2 and vice versa, hence the two loops are independent.

Contrarily, loop No.3 in the same figure is not independent of the other two and

will be automatically satisfied if loops 1 and 2 are closed. Therefore, its closure is

not accounted for and the full set of loop closure conditions to be considered for the

system of Figure 6.3 equals N cut.
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The loop closure conditions that have to be imposed in order to have a spanning

tree, equivalent to the initial closed-loop structure, lead to ; independent scleronomic and

holonomic algebraic constraints on the generalized coordinates q of the form:

h(q) = 0 (6.3)

with h ∈ ℜm, that are generally nonlinear and cannot be solved analytically for a general

case. They must be satisfied at any time and at velocity and acceleration level as well,

that is:
h(q) = 0

ḣ(q̇, q) = Jc(q)q̇ = 0

ḧ(q̈, q̇, q) = Jc(q)q̈ + J̇c(q̇, q)q̇ = 0

(6.4)

We shall see in Chapter 7 how the system 6.4 can be solved using the coordinate

partitioning method and how the dynamic model can be produced in reduced form by

means of the Lagrange multiplier technique.

For each independent loop, the kinematic equations characterizing the relative posi-

tion and/or orientation of the two sides of the cut will serve to provide the corresponding

constraint equations. As in [3] we will concentrate on three principal cutting procedures,

because of their simplicity and generality when covering different possible cases of kine-

matic loops, intrinsic to all parallel manipulators that we deal with in our work.

6.2.1 Closed loop cutting procedures

P Q
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Figure 6.4: Loop cut procedures. a) Cut of a body; b) Cut of a ball joint; c) Cutting by

disregarding a connecting rod.

Cut of a body

This is the most general cutting procedure, suitable for any kind of kinematic loop. It

consists in cutting a body that belongs to the loop into two parts (see Figure 6.4a). The
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two parts are denoted as original body and its shadow body, respectively, the latter being

massless and added to the original structure.

Closing a loop cut in such a way implies the satisfaction of six constraint equations:

• Three translational constraints, which state that the positions of the two bodies

must coincide in some reference point PO ≡ PS . Defining the position vectors of

PO and PS by xO = [̂I]TxO and xS = [̂I]TxS , respectively, these constraints read:

ht(q)
△
= xS(q) − xO(q) = 0 (6.5)

• Three rotational constraints, resorting from the fact that the two body-fixed frames

{X̂O} and {X̂S} must remain aligned and thus:

hr
△
= R(q) − E = 0 (6.6)

where R is such that [X̂S ] = R(q)[X̂O] and E is the identity matrix.

Formally, this matrix equation corresponds to nine scalar constraint equations, but

since R(q) is a rotation matrix that can be expressed in terms of three independent

rotation variables (for instance, the angles of Tait-Bryan, mentioned in Section 3.2),

only three of these scalar equations have to be considered in the total number of

independent loop closure constraints (see [3] for more details).

Performing the first and second time derivative of the translational constraints (6.5)

equals computing the velocities and accelerations of the two points PO and PS :

ḣ(q̇, q)
△
= ẋS(q̇, q) − ẋO(q̇, q) = Jt(q)q̇ = 0

ḧ(q̈, q̇, q)
△
= ẍS(q̈, q̇, q) − ẍO(q̈, q̇, q) = Jt(q)q̈ + J̇t(q)q̇ = 0

(6.7)

where Jt(q) is the translational constraint Jacobian.

As regards the rotational constraints, it is demonstrated [3] how to express their velocity

level via the relative angular velocity between frames {X̂O} and {X̂S}:

ωS − ωO = [X̂S ]TJr(q)q̇ = 0 (6.8)

The angular accelerations will give equivalent second derivatives of the original rotation

constraint (6.6).

Cut in a ball joint

The second cutting procedure, consists in cutting a ball (spherical for 3-D or revolute for

2-D systems) joint and is applicable if, in the loop to be cut, a ball joint exists that can

be considered ideal, i.e. with no backlash and unable to transmit any torque. Such cases

occur often in mechanisms, e.g. vehicle suspensions, planar parallel manipulators, etc. as

long as the friction in the ball joints can be reasonably neglected.

The procedure of cutting a ball joint is illustrated in Figure 6.4b: the loop is cut by

disregarding the joint, then a translational loop-closure constraint is introduced in order
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to ensure that the two points P and Q, located at the center of the ball joint and attached

to bodies i and j, respectively, coincide. The three closure constraint equations read:

h(q)
△
= xQ(q) − xP (q) = 0 (6.9)

They and their first and second time derivatives are strictly identical to the translational

loop-closure conditions (6.5) and (6.7).

Compared to the first, more general, body cutting procedure, the loop opening by

cutting a ball joint has two advantages:

• The three variables, representing the relative rotations occurring in the joint, are not

included in the set of generalized coordinates q, characterizing the MBS, because

the ball joint does not belong to the open structure, hence the dimension of system

of equations, describing the MBS motion, decreases.

• The loop closure conditions involve only three constraint equations, thus allowing

to avoid unnecessary computations. What is more, the numerical convergence –

an important factor when seeking computational effectiveness – is generally better

when no rotational constraints are needed.

Cut of a connecting rod

When a loop in a given MBS contains a connecting rod (Figure 6.4c), attached to two

bodies by means of ideal ball joints4 (see above), and the mass and inertia of which can

be neglected without loss of precision, the procedure of disregarding the connecting rod is

particularly efficient.

In such cases, the rods purpose is to provide a kinematic effect on the structure, main-

taining the distance between the anchor points P and Q, equal to its length l, constant.

This results in a single loop closing condition, giving the following closure constraint:

h(q)
△
=
∥
∥xQ(q) − xP (q)

∥
∥ = l or ‖x(q)‖ − l = 0 (6.10)

where x(q)
△
= xQ(q)−xP (q). From a computational efficiency point of view it is better to

use the constraint in the following form:

h(q)
△
=

1

2
‖x(q)‖2 − l

2

2

=
1

2
x(q). x(q) − l

2

2

= 0 (6.11)

which avoids root square evaluations.

The advantages of this type of cutting procedure are:

• Reduced number of dynamic equations, since the relative rotations between the rod

and the connected neighbor bodies are not considered, thus decreasing the number

of generalized coordinates used.

4or a universal joint on one side and a ball joint on the other.
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• The loop closure involves a single constraint equation.

Beside the loop constraints described above, other algebraic constraints, denoted user

constraints hu(q) = 0, could be considered for different reasons: for example (see [3]), in

order to impose parallelism between two bodies (qi = qj) of the MBS or to model the

motion in a screw joint, involving a translation qi and a rotation qj : qi = α qj , where

α[ m
rad

] is the thread pitch.

Let us conclude this section with the example of loop treatment for the 6-R planar

parallel manipulator of Figure 6.5, used in this work.

i

j

k

l

m i

j

k

l

m

Body cut

Ri

Rj

Rk
Rl

Rm

R0 Ri

Rj

Rk
Rl

Rm

R0

n

o
p

Rp

Tn

To

shadow body

a) b)

Body cut

Figure 6.5: MBS topology of the 6-R planar parallel manipulator. a) – real struc-

ture loop cut (cutting the inertial body); b) – virtual loop cut (cutting the mobile

platform)

In the figure R stands for revolute joint and T - for translational (prismatic) joint. A

model particularity is the existence of virtual serial manipulator that induces a virtual

second loop, formed by three fictitious massless bodies (n, o and p) and three virtual

joints (Tn, To and Rp) corresponding to the manipulator task (operational) coordinates

X = [x y θ]T .

The virtual serial manipulator5 is used to solve the inverse kinematic task by imposing

an operational motion {X, Ẋ, Ẍ} to the manipulator platform k.

In order to restore the manipulator topology to a spanning tree, two body cuts are

performed, shown in Figure 6.5a and 6.5b, each of which induces three constraints (two

translational and one rotational), since the manipulator is planar.

6.2.2 Coordinate partitioning method

In Section 3.3 we already referred to the coordinate partitioning method [4], when defining

singularities in parallel manipulators via constrained ellipsoids. It is a useful tool for

5This specific approach is chosen by the author for computational efficiency and stability pur-

poses as well (see Section 6.2.3).
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situations, in which the generalized coordinates of a MBS are dependent on each other,

due to some existing constraints on the system. The method provides means of finding a

minimal subset of the MBS generalized coordinates that delivers a complete description

of the MBS configuration.

The existence of functional dependencies between the coordinates is due to the presence

of loop closure and user constraints, the equations of which can be written gathered in the

generic form (6.4) at position, velocity and acceleration level.

Independent/Dependent coordinate partitioning

Let a given multibody system be constituted of n rigid bodies and subject to m inde-

pendent constraints h(q) = 0. If we apply the partitioning into independent/dependent

generalized coordinates that we already used in Section 3.2 to the vectors q, q̇, q̈ and the

constraint Jacobian Jc, we can partition the system (6.4) accordingly:

qv = fq(qu) a)

q̇v = Bvuq̇u b)

q̈v = Bvuq̈u + d c)

(6.12)

with Bvu = −J−1
cv
Jcu and d = −J−1

cv
J̇cq̇. For m independent constraints, qu denotes the

subset of (n−m) independent coordinates, the number of which corresponds to the num-

ber of MBS degrees of freedom, and qv – the subset of m dependent coordinates, expressed

as functions of qu.

In view of (6.12b) and (6.12c), the partitioning {u, v} must be chosen in such a way that

the resulting square [m×m] constraint Jacobian sub-matrix Jcv be well conditioned. This

is a key point in our work, since large motion of parallel manipulators will be considered.

Thus, finding better numerical conditioning of Jcv is of crucial importance for the

kinematic and dynamic solution techniques for closed-loop MBS, developed in the present

study. It ensures not only good convergence of the non-linear numerical solver6, explained

hereunder, that we use for the solution of (6.12), but – as we shall see later – a robust

numerical integration of the MBS direct dynamics and subsequent robust real-time control

simulation as well.

In this work, LU-factorization of the full constraint Jacobian matrix Jc(q) with column

permutation on the basis of the largest pivot is used in order to obtain well-conditioned

sub-Jacobian Jcv . At every time step of the solution for (6.12a), the Jacobian conditioning

is compared to a given limit, satisfactory in terms of matrix inversion and Newton-Raphson

convergence, and a new LU-factorization is performed if necessary, the resulting left [m×m]

square block of the factorized Jc(q) is then chosen as the best ”candidate” for Jcv , whose

column permutation indexes will correspond to a subset v that is locally the best from a

numerical point of view.

6Newton-Raphson algorithm is used in this work.
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The solution of the system (6.12) can be performed robustly, as soon as the partition

{u, v} makes Jcv well conditioned. In particular, the Newton-Raphson iterative step:

qk+1
v = qk

v − J−1
cv

(qk
v , qu)h(qk

v , qu) (6.13)

in which the right-hand side is evaluated for qv = qk
v and the given (known beforehand,

e.g. by trajectory generation) values of qu, is used to solve (6.12a). Since Jcv has been

chosen with the largest pivots in its LU-factorization, the convergence of (6.13) is optimal.

We have successfully experimented this on numerous 3-D multibody systems, like those

depicted in Figure 6.2.

Active/Passive (Actuated/Non-actuated) coordinate partitioning

It is important to point out the fact that a mismatch can often be found in the robotic

literature between the coordinate partitioning into ”independent/dependent” and ”ac-

tive/passive” coordinates. Let us clarify the difference, as it is crucial for understand-

ing the numerical solution algorithms and redundant actuation strategy, proposed in the

present work:

• The partitioning of the vector of generalized coordinates q into independent qu and

dependent qv ones is required for model computation purposes, and preferred for nu-

merical stability reasons. The solution for the parallel manipulator kinematics (3.2),

as well as the reduction of the system of differential-algebraic equations, describing

the constrained dynamics of parallel manipulators, into a pure ODE system (see

Section 7.4.1) require an ”optimal” partitioning of the variables. The latter allows

to compute properly qv, q̇v, q̈v, and eliminate the dependent accelerations q̈v and

the Lagrange multipliers λ in the equations of closed-loop MBS dynamics. Thus,

among the possible combinations {qu1
, qv1

}, {qu2
, qv2

}, ..., the one that leads to the

best numerical conditioning of the sub-Jacobian matrix Jcv will be preferred. As

mentioned above, this is done by using LU-factorization with column pivoting of

the constraint Jacobian Jc(q). In particular, a repartitioning during robot motion

will be envisaged on the basis of the Jcv conditioning and Newton-Raphson algo-

rithm convergence, in order to ensure robust model for direct or inverse dynamics

computation purposes (see Section 7.7.1 for details).

• The partitioning into ”active” and ”passive” (or {a, p} with a standing for active

and p – for passive) coordinates strictly corresponds to the choice of actuated and

non-actuated manipulator joints. This is an important difference, because an active

coordinate could without any restriction be dependent and a passive one - indepen-

dent. Moreover, if we replace the {u, v} partitioning of the generalized coordinates

by an active/passive one, we obtain singularities that are actuator-dependent. In

other words, the singularities arise because of the specific actuator locations, i.e.

the partition {a, p} makes Jm or Jcp (Jcv of (3.9) with {a, p} applied), or both

of them, become singular. If, on the contrary, appropriate actuator locations are
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chosen so as to have the two Jacobian matrices well-conditioned, the manipula-

tor motions will remain controllable and its structure will, for instance, be able to

bear important external loads. It will be explained in the next part of this work

(Chapter 8) how a special actuation strategy, developed by the author and used for

elimination of local force singularity problems, can curiously lead to a sequence of

{a, p} partitions, without actually meaning that the re-partitioning induces physical

changes in the actuator locations during motion.

6.2.3 Closed-loop inverse kinematics

The inverse kinematic problem for parallel manipulators was already discussed in Section

2.1, the discussion concentrated on its position level, given by the system of equations

(2.2). In this section we will complete it with its development on velocity and acceleration

level.

Let s be the column vector that assembles the vectors X and qu of absolute (end-

effector) and independent joint generalized coordinates, i.e. s = [X qu]T . Referring to

(2.1) and deriving it twice with respect to time gives:

F (s) = 0 a)

JF ṡ = 0 b)

JF s̈+ J̇F ṡ = 0 c)

(6.14)

We will call JF the augmented parallel manipulator Jacobian, spanning the null space of

ṡ.

Recalling (3.12), we compare it with (6.14b) and obtain:

JF ṡ = 0 ⇔ JxẊ + Jqu q̇u = 0 (6.15)

with the Jacobian partitioning JF = [Jx Jqu ] and ṡ = [Ẋ q̇u]T . Following the same

reasoning, the system (6.14c) can be reformulated as:

JF s̈+ J̇F ṡ = 0 ⇔ JxẌ + Jqu q̈u + J̇xẊ + J̇qu q̇u = 0 (6.16)

Hence, using (2.2) and expressing. similarly to (6.12) the generalized joint velocities and

accelerations from (6.15) and (6.16) gives the complete set of equations, describing the

parallel manipulator inverse kinematics:

qu = g(X)

q̇u = −J−1
qu
JxẊ = BqxẊ

q̈u = −J−1
qu

(JxẌ + J̇F ṡ) = BqxẌ + dqx

(6.17)

where dqx = −J−1
qu
J̇F ṡ and assuming that Jqu is of full rank for the considered configura-

tions.

The loop constraint solution becomes problematic, when Jqu is ill-conditioned, i.e. the

parallel manipulator is in a vicinity of a force (parallel-type) singularity (see Section 3.2
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for details). In such cases the augmented vector s can be repartitioned in order to give

better-conditioned Jacobian.

In fact, following the considerations of Section 6.2.2, F (s) = 0 can be viewed as a new set

of constraint equations, describing the dependencies between the generalized coordinatesX

and qu, or we can consider the set s = {X qu} as assembling the generalized independent

joint coordinates qu of the parallel manipulator and the absolute coordinates X of an

additional, ”virtual” serial manipulator, the end-effector of which coincides with that of

the parallel one. This treatment of the inverse kinematics of parallel manipulators comes

to adding a new, virtual loop (depicted in Figure 6.5 b) to the manipulator topology

and thus, the coordinate partitioning technique can be applied in order to solve the loop

constraints for a new independent/dependent partition.

Indeed, partitioning s into s = [su sv]
T in such a way that the corresponding sub-

Jacobian Jsv be well-conditioned, we obtain:

sv = fs(su)

ṡv = Bsvu ṡu

s̈v = Bsvu s̈u + ds

(6.18)

with Bsvu = −J−1
sv
Jsu and ds = −J−1

sv
J̇sṡ, provided that Jsv is well-conditioned.

But, as by definition for the inverse kinematics (6.17) must hold, in cases that X can

not be kept as independent coordinates, the formulation (6.18) is generally not interesting,

because some of the joint generalized coordinates have to be taken as independent ones,

but their values are not assumed to be known beforehand, but calculated via (6.17).
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Chapter 7

Multibody Dynamics

The dynamic modeling of parallel manipulators, as well as constructing algorithms for

robust1 solution of their dynamics, occupies an important place in the present research

work. The direct and inverse dynamics solutions for reconfigurable parallel MBS using

the coordinate partitioning technique is a solid basis for real-time simulation, actuation

solutions with actuator redundancy and subsequent real-time control applications.

In this chapter, formalisms describing the dynamics of tree-like multibody systems are

recalled and then their extensions to closed-loop systems are presented. In order to solve

the latter, corresponding application of the coordinate partitioning method and treatment

of the Lagrange multipliers representing the components of constraint (internal) forces are

applied. Finally, algorithms for computation of the direct and inverse dynamics of closed-

loop MBS are proposed and corresponding computer implementations are commented.

7.1 Direct dynamics of tree-like multibody sys-

tems

The direct dynamic problem of a multibody system concerns the computation of the

generalized joint accelerations q̈ for a given configuration {q, q̇} in the presence of ex-

ternal/internal forces/torques acting on the system. The direct dynamic equations are

extensively used for simulation purposes, i.e. to predict the motion of the system, starting

from an initial configuration (at t = 0) {q0, q̇0}, by time-integrating the accelerations q̈(t).

Various approaches are used to compute the joint accelerations q̈, e.g. based on the

virtual power principle, the Lagrange equations or the standard Newton/Euler laws for-

mulated recursively [3]. In the following section a detailed description of the latter – used

in this study – will be given.

Depending on the formalism, the equations describing the system dynamics can be

1for any trajectory, being it singularity-free or not



generated in two forms:

• Explicit form:

q̈ = f(q, q̇, Fext, Lext, g,Q) (7.1)

• Semi-explicit form:

M(q)q̈ + c(q, q̇, Fext, Lext, g) = Q (7.2)

where:

– M is the symmetric positive definite generalized mass matrix of the system,

– c is a vector that contains the Coriolis, centrifugal and gravity terms as well

as the contribution of external resultant forces Fext and torques Lext acting on

the system,

– g is the gravity vector,

– Q represents the vector of generalized joint forces/torques.

Qi, the ith element of Q, denotes the component of the force/torque vector Qi = Qiêi,

produced in the prismatic/revolute joint i by its parent body h along the unit joint vector

êi. It can be a passive element (spring, friction, damping) or a force/torque due to an

actuator.

In this work the generalized joint forces Qi will be assimilated to the actuator efforts

(torques) only. All other types of generalized forces/torques (friction, damping, ...) will be

transfered from the vectorQ to the c vector (mainly because of formulation considerations),

when searching for actuator torque solutions.

From (7.2), the accelerations q̈ can be determined by linear algebra techniques, the

mass matrix being factorized on the basis of the Cholesky decomposition technique.

7.2 Inverse dynamics of tree-like multibody sys-

tems

The inverse dynamics concerns the computation of the generalized forces/torques Q that

have to be applied to the joints of a MBS for a given motion {q, q̇, q̈}, in the presence of

external forces and torques acting on the system:

Q = Φ(q, q̇, q̈, Fext, Lext, g) (7.3)

This system is implicit with respect to the generalized joint accelerations q̈ (order-N

or O(N) formulation) and is therefore preferred to the semi-explicit form (7.2), which

requires O(N2) operations and is thus not optimal for real-time process applications (e.g.

computed-torque control algorithm).
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7.3 Newton-Euler recursive formalism

7.3.1 Introduction

The Newton-Euler recursive formalism (NER) [81] is among the most efficient techniques

for generating the equations of motion of multibody systems in relative coordinates.

The NER formalism was initially developed for control purposes in the field of robotics

[81], allowing to compute with a minimum number of arithmetic operations the inverse

dynamic model (7.3) of serial manipulators. As we already mentioned, this form is im-

plicit with respect to the generalized joint accelerations q̈, and therefore not suitable for

computer time integration purposes. Hence, a modified NER scheme is used (see [3])

in order to obtain recursively the semi-explicit form (7.2) of the dynamic equations of

tree-like MBS.

Being implicit or semi-explicit, the two main steps of NER formalism consist in:

• a forward kinematics computation of the velocity and acceleration vectors, con-

ducted from the root (base inertial body 0) of the tree-like MBS to the leaf bodies;

• a backward dynamics computation of the joint forces and torques of the MBS,

conducted from the leaf bodies to the root.

7.3.2 Forward recursive kinematics

Consider a rigid body i, carried by a parent body h via joint i (Figure 7.1).
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Figure 7.1: NER forward kinematics for body i
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For body i, we can define the absolute position vector pi = ph + dhi
z , the absolute

angular velocity vector ωi = ωh + Ωi = ωh + ϕiq̇i and the absolute angular and linear

acceleration vectors:

ω̇i = ω̇h + ω̃iϕiq̇i +ϕiq̈i (7.4)

p̈i = p̈h + (˜̇ωh + ω̃hω̃h)dhi
z + 2ω̃hψhq̇h +ψhq̈h (7.5)

Then, the following quantity can be recursively formulated:

αi = αh + βhdhi
z + 2ω̃iψiq̇i +ψiq̈i (7.6)

where αi △
= p̈i + 2ω̃iψiq̇i +ψiq̈i − g and βi △

= ˜̇ωi + ω̃iω̃i.

The generalized mass matrix of the semi-explicit form (7.2) can be expressed by isolating

the generalized accelerations in the recursive equations (7.4) and (7.6), knowing that the

accelerations appear linearly in these equations:

ω̇i =
∑

k:k≤i

Oik
M q̈

k + ω̇i
c , αi =

∑

k:k≤i

Aik
M q̈

k +αi
c , βi =

∑

k:k≤i

Bik
M q̈

k + βi
c (7.7)

where the subscripts M and c stand for the generalized mass matrix and the vector c of

the semi-explicit form (7.2) of dynamic MBS equations, respectively.

The recursive computation of the last three equations can then be performed as in the

original Newton-Euler recursive scheme for the inverse dynamics of the system. In vector

form the algorithm reads:

Initialization:

α0
c = −g ; ω0 = 0 ; ω̇0

c = 0 ; Oik
M = 0 ; Aik

M = 0

(∀i = 0 : N body,∀k = 0 : i)

Recursion:

For i = 0 : N body

h = inbody(i) (index of the parent body)

ωi = ωh + q̇iϕi

ω̇i
c = ω̇h

c + ω̃iϕiq̇i

αi
c = αh

c + βh
c d

hi
z + 2ω̃iψiq̇i

βi
c = ˜̇ωi

c + ω̃iω̃i

(7.8)

For k = 1 : i
Oik

M = Ohk
M + δkiϕi

(Bik
M = Õik

M )

Aik
M = Ahk

M + Õhk
M dhi

z + δkiψi

with δki = 1 if k = i and 0 otherwise

(7.9)

end

end.
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For practical (computer) implementations, all the vector computations of this algorithm

have to be transformed into matrix forms by expressing all vectors and tensors in their

appropriate frames, e.g. ψi = [X̂i]Tψi, zh = [X̂i]T zh, etc. The matrix form of the recursive

scheme can be found in [3].

7.3.3 Backward recursive dynamics
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Figure 7.2: NER backward dynamics for body i

In order to develop the recursive formalism for the MBS dynamics, the vector equa-

tions of motion of body i can be obtained easily on the basis of Newton-Euler equations.

According to the first of them, the translational vector equation of motion of body i reads:

Fi −
∑

j∈ī

Fj + Fi
ext +mig = miẍi (7.10)

where Fi, defined in Section 5.4, represents the resultant force acting on body i through

the joint i, evaluated at the connection point Oi (see Figure 7.2), Fi
ext is the external

resultant force (except the gravity force component), applied to the mass center Gi of

body i, and
∑

j∈ī

denotes the summation over all the child bodies of body i (j and k in

Figure 7.2).

Using equation (7.5) and the definitions from (7.6), we can rewrite equation (7.10) as:

Fi =
∑

j∈ī

Fj + Wi (7.11)

with Wi = mi(αi + βidii
z ) − Fi

ext.
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Similarly, the Euler rotational equation of motion of body i with respect to its center

of mass Gi can be written as:

Li =
∑

j∈ī

(Lj + d̃ij
z Fj) + d̃ii

z Wi − Li
ext + Iiω̇i + ω̃iIiωi (7.12)

where Ii is the inertia tensor of body i with respect to its center of mass Gi, Li represents

the resultant joint torque acting on body i via joint i and Li
ext is the external resultant

torque (including the moments of all the external loads with respect to Gi) applied on

body i.

Equations (7.11) and (7.12) can be recursively computed starting from the leaf bodies

and going back to the base body 0 of the multibody system. This leads to the ”classical”

backward recursion procedure of the Newton-Euler scheme that provides (after projection

onto the joint axes) the inverse dynamic model of the system in its implicit form (7.3).

In order to get the generalized mass matrix M and the vector c, the quantities Fi and Li

need to be split up and the contribution of each generalized acceleration q̈i isolated:

Fi =
∑

k

Fik
M q̈

k + Fi
c , Wi =

∑

k

Wik
M q̈

k + Wi
c , Li =

∑

k

Lik
M q̈

k + Li
c (7.13)

These new quantities can also be computed in a recursive manner, introducing the re-

lations (7.7) into the dynamic equations (7.11) and (7.12), finally obtaining the following

computational recursive scheme:

For i = N body : 1

Wi
c = mi(αi

c + βi
cd

ii
z ) − Fi

ext

Fi
c =

∑

j∈ī

F
j
c + Wi

c

Li
c =

∑

j∈ī

(Lj
c + d̃

ij
z F

j
c) + d̃ii

z Wi
c − Li

ext + Iiω̇i
c + ω̃iIiωi

(7.14)

For k = 1 : i

Wik
M = mi(Aik

M + Õik
Mdii

z )

Fik
M =

∑

j∈ī

F
jk
M + Wik

M

Lik
M =

∑

j∈ī

(Ljk
M + d̃

ij
z F

jk
M ) + d̃ii

z Wik
M + IiOik

M

(7.15)

end

end.

We must emphasize at this point that the forward kinematic and backward dynamic

algorithms allow for computing by means of (7.13a) and (7.13c) the vector force Fi and

torque Li applied to body i through joint i.

Just as it was mentioned for the forward recursive kinematics, the backward dynamic

algorithm has to be transformed into matrix form, in order to be appropriate for computer

implementation. This form can be found in [3] as well.
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The ith joint equation can be obtained by projecting the first and the last of the vector

equations of motion (7.13), according to the vector equation:

Qi = Fi.ψi + Li.ϕi (7.16)

giving the contributions Qi of each joint force Fi and torque Li to the generalized force,

associated with the generalized coordinate qi.

The NER formalism was implemented in the ROBOTRAN symbolic generation soft-

ware [5], systematically used in the computer implementations of the kinematic and dy-

namic solution algorithms for parallel manipulators, developed in the present work. We

will give explanations on this matter in the following chapters.

7.4 Direct dynamics of closed-loop multibody sys-

tems

When the joint coordinates of a multibody system are not independent, it is usually called

constrained MBS, because of the existing dependencies between the coordinates, known

as constraints and expressed by (constraint) mathematical equations.

For m independent loop-closure, user or joint constraints, applied on the system, the

unknown generalized constraint forces can be computed from the m unknown Lagrange

multipliers λ and the motion of the constrained multibody system can then be rewritten

in its semi-explicit form:

M(q)q̈ + c(q, q̇, Fext, Lext, g) = Q+ Jc(q)
Tλ (7.17)

in which the matrix Jc(q) is the constraint Jacobian we already defined in Section 6.2, and

the coefficients λ ∈ ℜm represent the Lagrange multipliers, associated with the explicit

constraints.

The system 7.17, together with the system of constraint equations gives a set of n+m

differential/algebraic equations (DAE) in n+m unknowns q ∈ ℜn and λ ∈ ℜm:

M(q)q̈ + c(q, q̇, Fext, Lext, g) = Q+ Jc(q)
Tλ

h(q) = 0

ḣ(q̇, q) = Jc(q)q̇ = 0

ḧ(q̈, q̇, q) = Jc(q)q̈ + J̇c(q̇, q)q̇ = 0

(7.18)

When the constraint equations on the generalized coordinates are nonlinear, usually it

is difficult to express analytically some of the coordinates in terms of the others. However,

if the m constraints are independent, the reduction of system (7.18) to a purely differential

one can be obtained applying to it the coordinate partitioning method described in Section

6.2.2.

Indeed, assuming that since the constraints are independent, the constraint Jacobian is

of full rank m and, according to the implicit function theorem, m generalized coordinates

contained in the vector q can be expressed locally as functions of the (n−m) others.
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7.4.1 Plant dynamics reduction using the coordinate parti-

tioning method

Let us first partition the generalized mass matrix M , the vectors c and Q, and the con-

straint Jacobian Jc(q) in the first set of equations of the system (7.18) according to the

coordinate partitioning (3.2):
(

Muu Muv

Mvu Mvv

)(

q̈u

q̈v

)

+

(

cu

cv

)

=

(

Qu

Qv

)

+

(

JT
cu

JT
cv

)

λ (7.19)

Since Jcv(q) is of full rank, eliminating the unknown multipliers λ using the lower part

of system (7.19) produces:

(

Muu Muv

)
(

q̈u

q̈v

)

+BT
vu

(

Mvu Mvv

)
(

q̈u

q̈v

)

+cu+BT
vucv = Qu+BT

vuQv

(7.20)

The generalized positions qv from (6.12a) are solved using the Newton-Raphson method

(see eq.(6.13)), the generalized velocities q̇v and accelerations q̈v are given by (6.12b) and

(6.12c), respectively, and can also be eliminated from the differential equations (7.20). This

leads to the final reduced system of equations for the closed-loop MBS direct dynamics:

(
Muu +MuvBvu +BT

vuMvu +BT
vuMvvBvu

)
q̈u

+
(
Muv +BT

vuMvv

)
d+ (cu +BT

vucv) = Qu +BT
vuQv

which can be concisely written as:

Mr(qu)q̈u + cr(q̇u, qu) = Qr (7.21)

with:

• Mr(qu) = Muu +MuvBvu +BT
vuMvu +BT

vuMvvBvu,

• cr(q̇u, qu) =
(
Muv +BT

vuMvv

)
d+ (cu +BT

vucv),

• Qr = Qu +BT
vuQv,

Thanks to this final elimination, the set of purely differential equations (7.21) is referred

to as the reduced equations of motion of the constrained system described in terms of the

n−m independent generalized coordinates qu. The sequence of computations, producing

system (7.21), when dealing with constrained multibody system in the presence of internal

(joint) friction forces, will be illustrated later on the flowchart in Figure 7.3. This sequence

will be commented in Section 7.7.1.

Once the MBS motion computed, it can be interesting to find the values of some (or all)

of the constraint forces during the motion. In order to do this, the Lagrange multipliers λ

have to be computed. This can be done by isolating them in the second raw of the system

(7.19):

λ = (JT
cv

)−1

{

(Mvu Mvv)

(

q̈u

q̈v

)

+ cv −Qv

}

(7.22)
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and using the relations (6.12c) gives:

λ = (JT
cv

)−1 {(Mvu +MvvBvu)q̈u + cv −Qv +Mvvd} (7.23)

which allows us to compute afterward the generalized constraint forces by means of the

obtained Lagrange multipliers.

The Lagrange multipliers have to be computed, for example, when joint friction forces,

depending on them, are accounted for in the dynamic models, as it will be shown in Section

7.6.

7.5 Inverse dynamics of closed-loop multibody sys-

tems

If we refer to the form of eq. (7.3) for closed-loop MBS and apply again the coordinate

partitioning method with independent/dependent ({u, v}) partitioning, we obtain the fol-

lowing implicit partitioned form of the closed-loop system dynamics:
(

Φu

Φv

)

=

(

Qu

Qv

)

+

(

JT
cu

JT
cv

)

λ (7.24)

from the dependent-coordinate sub-system of which we express once again and substitute

the Lagrange multipliers in the sub-system of equations for the independent coordinates

in order to eliminate them, obtaining:

Φu = Qu +BT
vu (Qv − Φv) (7.25)

or, expressed with respect to the generalized (joint) forces/torques:

A

[

Qu

Qv

]

=
(
Φu +BT

vuΦv

)
(7.26)

where A =
[
E BT

vu

]
.

From the actuation point of view, the coordinate partitioning into active and passive

generalized coordinates, explained in Section 6.2.2, will be preferred, because the consis-

tent part of the vector Q correspond to loads applied on the actuated (active) joints. The

independent/dependent partitioning, however, will be preserved to provide numerically

stable computation of qv, q̇v, q̈v and Bvu, defined by 6.12 and giving the complete set of

generalized coordinates, velocities and accelerations for every time step of a given trajec-

tory, from which the corresponding generalized joint (actuator) torques can be computed.

Applying a {a, p} partitioning to the system of equations (7.3) for closed-loop MBS

and eliminating the unknown Lagrange multipliers gives:

Ap

[

Qa

Qp

]

=
(
Φa +BT

paΦp

)
(7.27)

with Bpa = −J−1
cp
Jca and Ap =

[
E BT

pa

]
.
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Recalling that Qp = 0, this leads to:

Qa = Φa +BT
paΦp (7.28)

for the case of non-redundant actuation. i.e. number of actuators equal to dmbs. This

system can be combined with (6.12) to give the complete set of equations, used to compute

the inverse dynamics of a parallel manipulator for a given trajectory, prescribed in terms

of independent joint generalized coordinates:

qv = fq(qu)

q̇v = Bvuq̇u

q̈v = Bvuq̈u + d

Qa = Φa +BT
paΦp

(7.29)

7.6 Dynamic model extension: joint friction forces

In practical situations, the manipulator joins are not dynamically ideal, i.e. non negligible

internal friction forces appear in them during motion, giving birth to resistive efforts that

dissipate energy and cause wear. The friction forces depend, in general, on the material

and the state (roughness) of the surfaces in contact, on the presence of lubricant (dry or

viscous friction forces), on their relative speed, etc.

Targeting better accuracy of our dynamic models that will allow, for instance, more

precise motion simulations and control of the parallel manipulators considered, and better

experimental prototype results, we shall introduce components of two principal types of

internal friction in the manipulator MBS models:

• Friction forces, depending linearly on the normal components of the internal reaction

(constraint) forces (Lagrange multipliers):

Γc = Γc(µ0, µ, λ) (7.30)

with µ0 being the joint static friction coefficient and µ – the joint dry sliding friction

coefficient, required by the constitutive equations of Γc (Coulomb friction laws),

• Friction forces, depending linearly on the generalized joint velocities q̇ (viscous fric-

tion forces):

Γv = Γv(µv, q̇) (7.31)

with µv being the kinematic viscosity coefficient of the lubricating fluid.

Hence, the systems (7.17) and (7.3) can be rewritten as:

M(q)q̈ + c∗(q, q̇, Fext, Lext,Γc,Γv, g) = Q+ JT
c λ (7.32)

and

Φ∗(q̈, q̇, q, Fext, Lext,Γc,Γv, g) = Q+ JT
c (q)λ (7.33)

where:
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• c∗(q̇, q, Fext, Lext,Γc,Γv, g)
△
= c(q, q̇, Fext, Lext, g) − Γc(µ, λ) − Γv(q̇),

• Φ∗(q̈, q̇, q, Fext, Lext,Γc,Γv, g)
△
= M(q)q̈ + c∗(q̇, q, Fext, Lext,Γc,Γv, g),

• Q are the generalized torques due to the actuators only.

The two systems (7.32) and (7.33) can then be partitioned according to (3.2) and (7.19),

leading to the following forms of constrained direct and inverse dynamics of the multibody

system including joint friction:

Mr(qu)q̈u + c∗r = Qr (7.34)

and

A Q = Φ∗
u +BT

vuΦ∗
v (7.35)

The form (7.34), for instance, can be used to perform plant dynamics time-integration

and control simulations on the basis of actuator loads computed via (7.35). A computer

implementation of this procedure is described in Section 7.7.1.

7.7 Closed-loop multibody system dynamics com-

putation

The equations of motion (7.18) of closed-loop multibody systems are not only differential,

but differential-algebraic, abbreviated as DAE [82]. Their time integration in the field of

multibody dynamics can be treated using three principal types of methods: constraint

stabilization [83], coordinate partitioning [4] and direct methods [84].

• The constraint stabilization [83], probably one of the first approaches used to solve

DAE systems, consists in transforming the DAE into a system of ordinary differen-

tial equations(ODE), by differentiating the constraints and introducing stabilization

terms. The constraints are thus not satisfied exactly but oscillate with a given

stabilization period and damping constants around their exact solutions.

• The generalized coordinate partitioning method [4] also transforms the original DAE

system into an ODE, but, as already shown in Section 7.4.1, does it in a quite

different way, by a system reduction that includes an accurate algebraic solution of

the constraints at position, velocity and acceleration level.

• The direct methods [84] demonstrate an impressive efficiency in terms of compu-

tational speed [85]. The basic idea behind them is to solve the complete DAE set

directly by applying, for instance, a backward differentiation formula to the vari-

ables and by solving the resulting system at each step using Newton-Raphson type

methods (e.g. [86]). The major drawback of this type of methods is the presence

of certain lack of versatile and robust DAE integration schemes, despite of the de-

velopment of high level mathematical theories targeting increase in their stability
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and accuracy. It is also worth mentioning that DAE integrators can not be found

implemented in many of the most widespread computational software packages, as

MATLAB, for example.

All these considerations justify the choice of the second type of time integration meth-

ods for the models of parallel manipulators, developed in the present work, the constraint

solution precision being among the main characteristics they have to hold. Other reasons,

important to us, lie behind this choice. Firstly, in the framework of the present study

the coordinate partitioning method is extensively used, both for reduction of the system

kinematics and dynamics, and for finding suitable manipulator actuation schemes in the

presence of force singularities. Secondly, the models developed for the purposes of real-

time plant dynamics simulation and control in the SIMULINK environment must hold an

ODE-form, as the time integration methods that SIMULINK employs are not dedicated

to treatment of DAE systems. And, finally, the developments of the present research ”stay

in the good tradition” of the robust computational methods, elaborated at the Université

catholique de Louvain, that rely on the coordinate partitioning method [4].

However, the time integration of the systems (7.21) or (7.34) will become problematic

when Jcv approaches singularity. In order to eliminate this problem, i.e. to make the

integration procedure robust with respect to numeric constraint closure problems, a special

time-integration process is developed, based as well on the coordinate partitioning method

and consisting in a piecewise2 time integration of the parallel manipulator direct dynamic

model.

7.7.1 Direct dynamics numerically robust time integration

The need of numerically robust and computationally efficient time integration procedure

for parallel manipulator direct dynamic models is of essential importance in this study,

because real-time plant dynamics control simulations are targeted as an approach valida-

tion and controller-tunning tool. In the lines hereunder, we reveal the development of an

algorithm for such a procedure, based on system reduction via coordinate partitioning,

and its subsequent computer implementation.

Let us first explain the sequence of computations, necessary to obtain the independent

generalized accelerations q̈u from the reduced direct dynamics (7.34) at a given integration

time t. This sequence is illustrated by the flowchart of Figure 7.3.

For a given independent/dependent coordinate partition ensuring well-conditioned Jcv ,

an initial configuration qu0
, q̇u0

is entered as input data. At every integration time step,

after computing qv, Bvu, q̇v, the components of M and c are evaluated using the Newton-

Euler recursive scheme and the reduced direct dynamics (7.34) is constructed. Then, the

independent accelerations are calculated from it by means of linear algebra techniques,

and time-integration is performed.

2independent from the piecewise actuation process that will be explained in the next part!
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Figure 7.3: Direct dynamics coordinate partitioning and time-integration scheme with

joint friction.

It is important to mention that the presence of internal friction forces of the form

(7.30), which can even depend nonlinearly on the Lagrange multipliers, makes impossible

the multiplier elimination within a unique system reduction. Therefore, the algorithm

includes an iterative computation procedure, based on the convergence in terms of q̈u:

at a time t of the integration, an implicit iterative procedure (see Figure 7.3) performs

iterations i over λ (starting with λ0 equal to the last iteration values for λ at time t−∆t,

except for t = 0, for which λ0 = 0), until good convergence of q̈i
u to q̈i−1

u is achieved3.

Let us now describe the piecewise nature of the complete direct dynamics computation

algorithm (Figure 7.4). As numeric loop closure problems have to be avoided in order to

integrate the plant dynamics for the whole trajectory time [t0 tfinal], at every complete

time integration step, the conditioning of Jcv is compared to a given ill-conditioning indi-

cation value and the Newton-Raphson method convergence – to a convergence indicator4.

In case of bad Newton-Raphson convergence or Jacobian conditioning, the integration is

interrupted in order to perform a local LU-refactorization with column pivoting of the

constraint Jacobian Jc, from which a new, locally best-conditioned Jcv is extracted. The

computational procedure of Figure 7.3 is then relaunched for the new {qj
u, q

j
v} partition

and a set of new initial conditions (qj
u0
, q̇j

u0
) equal to the corresponding values of q, stored

at the interruption of the integrator.

3This convergence is generally not problematic, but is not guaranteed either: more sophisticated

numerical methods like Newton-Raphson could be envisaged if needed.
4Maximal admissible number of iteration steps is used by the author for this purpose.
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Figure 7.4: Direct dynamics piecewise time-integration scheme.

This re-partitioning process is repeated as many times (j) during the whole time in-

tegration, as there are ill-conditionings of Jcv detected. The integration time interval

segmentation that is due to the deliberate integrator interruptions (and corresponds in

fact to a trajectory segmentation) justifies the utilization of the term ”piecewise” for the

direct dynamics solution.

We would like to emphasize the fact that the piecewise time integration procedure relies

on time integration methods, e.g. the Runge-Kutta or Dormand-Price method5. These

methods were found stable for all our simulations with respect to the deliberate restarting

of the integration process, provided the initial conditions are correct for every start.

Independently of the proposed approach, other means of circumventing the constraint

Jacobian ill-conditioning problems exist, like for instance, the use of DAE integration

methods. As we mentioned above, they solve numerically the whole set of equations

5Found in the MATLAB routines ode45.m and ode113.m, used in this work.
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(including the algebraic constraints), but cannot provide the reduced state-space form of

the plant dynamics. Thus they are neither suitable, nor versatile with respect to control

simulation and real-time robot control applications, targeted in the present work.

Algorithmic implementation example

Let us give an example validating the proposed algorithm for time integration. The val-

idation is based on the direct dynamic model of a 3-d.o.f. planar parallel manipulator,

extensively used by the author of this work as a test closed-loop MBS6, as well as a con-

ceptual model for the development of a prototype. The generation of the kinematics and

the plant dynamics of the manipulator, as well as the algorithmic implementation of the

piecewise time-integration procedure, have been performed using MATLAB/SIMULINK

language and the multibody symbolic generation software ROBOTRAN [5].

The manipulator topology is schematically represented in Figure 7.5 (left): it consists

in five bars interconnected by revolute joints (denoted q1 ... q6). The same figure shows

the trajectory to be followed. It is characterized by a sinusoidal motion along the X-axis

and a constant velocity motion along Y, and can be compared (because of the manipulator

reconfiguration) to a ”turning out of a sock”, for instance. The same type of trajectory is

used for the actuation strategy, detailed in the next part.
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Figure 7.5: Topology representation of the planar parallel manipulator (left) and the

example trajectory it follows (right).

In order to validate the piecewise time integration procedure, for the given trajectory

6along with a four-bar mechanism
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two time integrations on the basis of an explicit Runge-Kutta (4,5) method7 (Dormand-

Prince pair) were performed applying a non-redundant actuation (R1, R2 and R3 actuated)

on the plant dynamics model, in the first of which the piecewise partitioning algorithm

was deliberately deactivated. As shown in Figure 7.6 (left), the integration stopped at

time t = 1.17 sec due to Newton-Raphson convergence problems, because for the chosen

constant partition {u, v} the corresponding sub-Jacobian Jcv becomes highly singular (ill-

conditioned), indicated by the rise in its conditioning number and corresponding to the

configuration shown on the right in the figure. When the piecewise coordinate partition-

ing, incorporated in the time integration algorithm, is not deactivated (normal algorithm

operation), the integration is performed completely (6 second-long trajectory) and without

convergence problems.
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Figure 7.6: Validation results of the piecewise integration algorithm. Left – condition

number of Jcv (dotted line for deactivated piecewise partitioning), right - the singularity

corresponding to the integration interruption due to Jcv ill-conditioning.

On the basis of the time integration algorithm of Figure 7.4, a special MATLAB pro-

gram was developed for the purposes of real-time control simulation performed in the

SIMULINK environment. The process comprises the following steps (see Figure 7.7):

• For the given robot trajectory, a sequence of partitions {u, v} was stored according

to the procedure of Figure 7.4. For each of these partitions, a symbolic reduced plant

dynamic model is generated by ROBOTRAN in the form of SIMULINK S-function

(C-compiled routines).

• The main MATLAB program successively calls the S-functions until the complete

integration performed. The initial conditions of every activated model (S-function)

correspond to the manipulator configurations, for which a new {u, v} re-partitioning

has been performed.

This procedure is illustrated in Figure 7.7. Its main advantages are the following:

7The dedicated MATLAB routine ODE45.m was used



7.7. CLOSED-LOOP MULTIBODY SYSTEM DYNAMICS COMPUTATION 93

{ , }=u v { , }u vj j
q qu0j uoj

, ; [ ]t t0j fj
_

j j= +1

Sequence
of

{ }u,v -partitions

DirDyn 1.dll_

{ , }u v1 1

DirDyn .dll_2

{ , }u v2 2

DirDyn .dll_3

{ , }u vn n
Piecewise generation of symbolic models

DirDyn j.dll_

{ , }u vj j

yes

no

END

Piecewise simulation of plant dynamics numerical models

j=0

SIMULINK

MATLAB

SIMULINK symbolic models

embedded in S-functions (C-code)

(MATLAB+ROBOTRAN)

Piecewise time-integration

MATLAB-code routine

(Figure 7.4)

Simulation sequence

MATLAB-code

Main program

Last sw?j

Figure 7.7: Plant dynamics piecewise generation and piecewise simulation scheme.

• Thanks to the fully symbolic generation of the reduced plant dynamics and the C-

compiled form, far more than a real-time simulation is achieved. This allows us to

make use of optimization procedures and design of experiments within reasonable

computation time in order, for instance, to tune some relevant control parameters.

This will be detailed in the next part.

• The availability of the successive plant dynamic models in SIMULINK is very benefi-

cial. Indeed, being self-contained, they do not depend on specific multibody software

and can easily be exploited, so as to tune any control algorithm for non-redundantly

or redundantly actuated closed-loop MBS.
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Chapter 8

Piecewise and redundant actuation

8.1 Methodology

In Chapter 4 we already gave definitions and a classification of the force redundancy, and

commented on the principal fields of its application and methods for solution, found in

the literature. In this part of our work we shall concentrate on the main scientific con-

tributions it offers, namely, the development of parallel manipulator actuation strategy

for elimination of force singularities and subsequent control applications of the solutions

obtained.

As previously stated, a key point of the proposed strategy (already introduced in [36]) is

that – in contrast to many approaches – it does not try to avoid singular configurations. On

the contrary, taking profit from the fact that parallel singularities are actuator-dependent,

the proposed actuation solutions are valid for trajectories that can include any possible

configuration of the manipulator, be it singular or not. What is more, singularity avoidance

strategies generally lead to a reduced robot workspace or additional task constraints, for

instance.

Further, in Chapter 4 we specified that for the parallel manipulator applications pre-

sented, the force redundancy is achieved by redundantly actuating only the accessible

(passive) joints (ex. Figure 4.6), and not changing the manipulator architecture by adding

extra legs (parallel branches) with actuators (ex. Figure 4.7, left). Indeed, this situation

has the disadvantage of reducing the manipulator workspace, due to additional kinematic

loops introduced. This problem has already been commented in [38] by Dasgupta and

Mruthyundjaya, who demonstrated as well the actuation redundancy effectiveness in terms

of eliminating force singularities of parallel manipulators. In Chapter 4, we cited the re-

cent contribution of Firmani and Podhorodeski [53], who showed how the force singularity

manifold is reduced with each added actuator in different redundant actuator configura-

tions, and the one of Krut, Company and Pierrot [54], in which they analyzed the velocity

isotropy of parallel mechanisms with actuation redundancy, emphasizing the convenience

of the latter for an improvement of the manipulator velocity performances.
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Encompassing kinematic and dynamic considerations1, the actuation approach we pro-

pose in this work delivers redundant actuation solutions, effective with respect to force

singularity problems. Furthermore, these solutions will be advantageously exploited (see

Chapter 9) by implementing them in control algorithms for redundantly actuated closed-

loop MBS, tested via simulations and prototype experiments.

The proposed actuation approach is tested on a type of trajectory, corresponding to

the one already depicted in Figure 7.5 (right). The trajectory is chosen such that force

(parallel) singularities exist within it for certain actuator configurations. The interesting

part of the trajectory is characterized by a motion, for which good performances in terms of

overcoming resistance from internal and external loads at a given velocity are targeted. In

this trajectory region, the manipulator must displace specific tools or objects in a smooth,

continuous manner, eliminating the effects of force singularities that would appear for

certain actuator configurations. Moreover, the prescribed end-effector trajectory must be

followed with acceptable path tracking error and satisfying some optimality criteria (e.g.

actuator torque limit or energy considerations).

Depending on the manipulator topology, the trajectory and the actuated joint choice

criteria, the proposed actuation strategy produces as a result a non-redundant or redun-

dant actuator configuration. For the second case of actuation, a convenient solution must

be found to be compatible with the chosen optimality criteria.

Two of the solution criteria that we reviewed in Section 4.2.2 are used in the present

study - a solution, mathematically equivalent to a two-norm torque minimization (using

pseudoinverse matrix) and an infinity-norm torque minimization. We are aware that other

criteria could be chosen, for which our methodology could be used straightforwardly, but

to our opinion these two are appropriate for the considered actuation approach and its

goals.

The two solutions will be detailed in Section 8.3, where the mathematical equivalence

between the first of them and a pseudoinverse matrix solution will be proved as well.

8.2 Piecewise actuation approach

The force singularities are revealed by a sudden increase of some of the actuated joint

generalized forces. This is principally caused by a local ill-conditioning of Jcp : indeed, if

we recall equation (7.28), the term to the right will go to infinity (because of Bpa) when

Jcp becomes singular. In order to eliminate this problem when the parallel manipulator

follows the desired trajectory, a coordinate partitioning into active and passive coordinates

is performed, regardless of the independent/dependent coordinate partitioning scheme (see

Section 6.2.2). The active and the passive coordinates correspond to the actuated and non-

actuated joints, respectively, and are used in the process of reducing the inverse dynamics

to the form (7.28) in order to find a solution for the actuator torques.

1that can easily be simplified to quasi-static cases
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The active/passive partitioning is performed at a certain stage of the actuation strategy

algorithm that still does not require redundant actuators. It is activated for configura-

tions (time instants) of the followed trajectory, where changes in the actuator locations are

necessary, so as to obtain an inverse dynamics solution, which is (locally) free of force sin-

gularity problems. The re-partitioning can be done on the basis of LU-factorization with

column pivoting of the constraint Jacobian Jc again, in order to obtain better conditioned

Jcp . In our approach, we add use a criterion for partitioning into active and passive coor-

dinates that satisfies actuator torque performance limits and is oriented toward a minimal

degree of redundant actuation, which seems reasonable since full degree is generally not

required by the design specifications. The explanations follow.

Qa

1 2 3

4 5 6

Qa

QaQa

Qa

Figure 8.1: Example of piecewise actuation of a four-bar mechanism.

The proposed actuation approach is illustrated by means of the two test parallel manip-

ulators, used throughout this work - a simple, four-bar mechanism (the example motion

of which is schemed in Figure 8.1) and a 3-d.o.f. planar parallel manipulator (Figure 8.2).

In the actuation strategy, the {a, p} re-partitioning that may lead to new actuator

locations, is done on the basis of a particular procedure, represented in Figure 8.2. The

inverse dynamics computation starts with a feasible actuation scheme (the filled in red

actuated joints of Situation 1, to the left in the figure). The actuator locations are chosen

to be compatible with the manipulator particularities in terms joints physically available

for actuation (circled in blue) and the actuator performance limits. At every computation

step that follows, a check on the actuator torque values is performed. If, due to a local

ill-conditioning of Jcp , at least one of the components of Qa reaches a predefined maximum

(corresponding to the nominal torque limit of the actuators used), the inverse dynamics

computation is temporarily hold (Situation 2 in the figure). An exhaustive sequence

of subsets of joints is constructed from the set of generalized coordinates available for

actuation, every subset representing a possible vector qa. Among all the {a, p} partitions

resulting from the obtained subsets (all the possible vectors qa), the one that satisfies the

actuator torque limits and matches in the same time most closely the former {a, p} used,

is picked up (Situation 3 in the figure). As a result, a local robustness with respect to
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Figure 8.2: Illustration of the piecewise actuation strategy of minimal redundancy degree.

At the detection of a torque limit trespassing, the new actuator locations (joints in green)

are chosen among the available for actuation (circled in blue).

force singularity problems along with ”maximal” preservation of the motor locations, are

achieved.

The example of the four-bar mechanism motion in Figure 8.1 illustrates a similar ac-

tuation strategy result - the required trajectory is followed by activating four times the

re-partitioning process for two of the four revolute joints: q1 and q4, taken as the available

for actuation. Thus, the piecewise actuation scheme produces five consequtive vectors qa,

each of which corresponds in size to the single degree of freedom of the mechanism.

It is worth mentioning that in the examples above, cases of mass/inertia characteris-

tics of the two multibody systems and internal joint friction torques were considered, for

which the two parallel manipulators could eventually not follow the required trajectories

without changes in the actuated joints, provoked by force singularity problems. In other

words, for such cases the actuation strategy will inevitably add new actuators to the initial

non-redundant actuator configuration. This will practically lead to redundant actuation,

as explained hereunder. We shall see later, that depending on the trajectory and the ma-

nipulator specificities, non-redundant actuation schemes can be a possible strategy result

as well. But if the trajectories to be followed reveal parallel (force) singularities, such

schemes do not eliminate their negative effects.

We explained in Chapter 6 that the partitioning into active/passive joints is completely

independent from the {u, v} one applied for numeric stability purposes: some of the locally

independent variables could be passive, for example. What is more, in case of redundant
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actuation the dimensions of the vectors qu and qa will be different, as the former always

corresponds to the number of MBS degrees of freedom.

The above sequences of {a, p} partitions, obtained from the detection of force singu-

larities ”along the way”, corresponds to virtual changes of the actuator locations: the

actuators can obviously not be ”detached” from and ”reattached” to the manipulator

joints during motion! At this stage the solution for the inverse dynamics (7.28) is non-

redundant, i.e. the actuators virtually pass from one joint to another, their number being

equal to the number of manipulator degrees of freedom. Taking into account all the above

considerations, as in [36] we shall refer to the successive {a, p}-reformulations of (7.28)

during the motion as piecewise inverse dynamics of the parallel manipulator.

The actuator location virtual ”switching” can be performed with respect to different

criteria, according to the chosen model (static, quasi-static, dynamic). If different parti-

tions {ai, pi} occur during the piecewise motion over the prescribed trajectory, it is clear

that actuators have to be permanently placed and operative on all of the joints that have

participated in the successive vectors qai
ensuring the force singularity elimination. This

is a necessary condition not only because it is impossible to change actuator places during

motion, but also because smoothness and continuity are desired for a normal manipulator

operation and successful control: the actuators can not be instantly switched on and off.

These conditions eventually lead to applying a redundant actuation to the manipulator.

8.3 Redundant actuation of parallel manipulators

The actuation strategy result depends on numerous factors: the manipulator topology, its

mass and inertia characteristics, the presence of internal friction. It is based as well on the

possible actuator locations and authorized number, entered as an input data in the form

of joint index vector, when defining the manipulator and the task specifications. With

respect to all this, the piecewise actuation strategy that we propose will produce different

output:

• if the desired actuated joint index vector is of size, corresponding to the number

of manipulator degrees of freedom, either a solution respecting the actuator torque

limits will be computed, or the impossibility to compute such will be signaled, the

latter meaning that other locations or/and higher torque performance motors have

to be supplied to the algorithm;

• if the size of the actuated joint index vector is greater than the size of qa, the

strategy will deliver (depending on the user’s option) a non-redundant solution (if

such exists) or produce a minimal number of sequential partitions {ai, pi}, trying

to keep as long as possible the actuators on their places. When actuator torque

minimization is required, the piecewise actuation process can produce a redundant

actuation scheme, because most probably different {ai, pi} partitions will occur,

meaning a resulting number of actuators, greater than the number of multibody
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degrees of freedom dmbs. In other words, the lower the actuator torque limit values,

the higher the chances to end up with a redundant actuation for the given trajectory;

If the piecewise actuation process produces a resulting number of actuators s, greater

than dmbs, i. e. a redundant actuation, then the system (7.28) becomes under-determined,

as more unknowns (generalized joint torques) exist than equations of motion. This

amounts to an {s− dmbs}-infinity of solutions for the actuator torques, therefore a conve-

nient technique to find a single solution to the problem must be applied.

Different approaches exist that can be referred to for this purpose, most of them based

on optimization techniques. In this work we shall concentrate2 on two optimal solutions

for the under-determined inverse dynamics, depending on the optimization criterion:

1. When an overall minimization of the actuator torques is desired, a solution method,

equivalent to the pseudoinverse solution technique, will be applied to complete the

under-determined system and then solve it ordinarily. As we shall see in Chapter

9, this method will be successfully exploited in the control of the two benchmark

manipulators – a four-bar mechanism and a planar parallel manipulator, when pro-

jections of the vector of non-redundant torque control outputs onto the redundant

joint torque input space is necessary;

2. When compliance with the actuator performance limits is sought, a minimal infinity-

norm torque solution will be computed, using a linear-programming technique.

8.3.1 Pseudoinverse-equivalent force redundancy solution

Let us consider a system of linear algebraic equations of the following form:

Px = y (8.1)

in which the coefficient matrix P , the members of which are real numbers, is of dimension

(m× n), the vector of unknowns x and the right-hand side vector y - of dimension n.

When P is rectangular, i.e. m 6= n, we resort to under-determined (m < n) or over-

determined3 (m > n) systems of equations that are not solvable using classical linear

algebra techniques. A commonly used solution in such cases is written as:

x = P+y (8.2)

where P+ = P T (PP T )−1 is called pseudoinverse matrix of P , provided that rank(P ) = m.

The pseudoinverse matrix, defined by Penrose [87], minimizes the Euclidian norm of x

(‖x‖2, also known as ”two-norm”), providing a solution of minimal error in a least squares

2Other solution methods can be envisaged, of course, but the two cited here are suitable and

sufficient for the purposes of the present methodology.
3having less or more equations than unknowns, respectively.
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sense. The pseudoinverse of any matrix is a unique matrix that must satisfy the following

Moore-Penrose conditions:

PP+P = P, P+PP+ = P+, (PP+)T = PP+, (P+P )T = P+P

The pseudoinverse method was logically the first to use for the cases of redundant ac-

tuation of this work, in which the under-determined actuator torque problem had to be

solved. However, a solution that is strictly equivalent to the pseudoinverse one (as it was

already demonstrated in [55]) was preferred afterward, because of its physical interpreta-

tion and its advantages in terms of computational efficiency and real-time implementation.

This solution consists in adding to the under-determined system of equations (7.28) a

specific set of additional equations that will be extracted from the following system:

JcaQa = 0 (8.3)

This system is derived from the partitioned form of JcQ = 0:

[Jca Jcp ][Q
T
a QT

p ]T = 0 ⇒ JcaQa = −JcpQp (8.4)

recalling that Qp = 0 for cases of non-redundant (”normal”) actuation.

The set (8.4) represents a mathematical ”translation” of applying more torque to those

joints that are locally better in terms of canceling force singularity problems. In other

words, the joints that can locally be driven ”easier” with respect to torques applied, are

preferred as candidates for actuation, the ”preference” being numerically evaluated via

the ratio Bpa.

From the system (8.4), as many equations will be extracted and used to complete (7.28),

as there are redundant actuators. Because of the fact that some (or all) of the formerly

passive generalized coordinates will become active (actuated), this time the vector of active

joint coordinates qa will consist of two new sub-vectors:

• qad
, the size of which equals that of the former qa, used for non-redundant actuation

cases, and corresponds to the number of degrees of freedom dmbs of the parallel

manipulator;

• qar , containing the redundant active coordinates (redundantly actuated joints). The

size r of this vector can be lesser than or equal (giving partial or full actuation

redundancy, respectively) to the size of the former vector of passive generalized

coordinates qp. In case of partial actuation redundancy, there will be as well a

new vector qp of size N joint − s, in case of full redundancy a vector of passive joint

coordinates will not exist.

Thus, in case of redundant actuation the dimension s of the new vector qa is superior to

the number of degrees of freedom dmbs: s = dmbs + r, and hence: dAR = r (see (4.1).
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Applying this new partitioning {ad, pd} (that corresponds to ad) to the vector of actu-

ator torques Q and expressing Qar by analogy with (8.4) gives:

Qar = BrdQad
(8.5)

with Bpa = −J−1
cp
Jca and Brd

△
= −

{
J−1

cpd

}

r
Jcad

, where the operation ”{...}r” signifies

the construction of a sub-matrix by selecting the lines that correspond to the r redun-

dantly actuated joints. Apparently, in cases of fully redundant actuation (all passive joints

actuated) we will have Brd ≡ Bpa.

The set (8.5), added to (7.28), gives a complete, determined system of equations de-

scribing a solution of the redundant inverse dynamics of constrained MBS:
[

E(df×df ) BT
rd

Brd −E(r×r)

][

Q
(df×1)
ad

Q
(r×1)
ar

]

=

[

bd

0(r×1)

]

(8.6)

with Bpad
= −J−1

cpd
Jcad

and bd = Φad
+BT

pad
Φpd

, E and 0 denoting an identity matrix and

a zero column vector of appropriate dimensions.

The solution for the actuator torques of the redundantly actuated closed-loop MBS is

then straightforward:

[

Qad

Qar

]

=

[

E(df×df ) BT
rd

Brd −E(r×r)

]−1 [

bd

0

]

(8.7)

offering a compact and computation time efficient (in terms of matrix operations, com-

pared to the pseudoinverse solution) formulation of the redundant actuation problem. Let

us now prove that this solution is mathematically strictly equivalent to a solution via

pseudoinverse matrix.

We recall first that the constrained minimization problem over a vector x obeying the

m independent constraint equations Px = y:

min
Px=y

(
1

2
xTx) (8.8)

where the matrix P is rectangular, admits a solution, if the necessary condition for ex-

trema:

x− P T η = 0 (8.9)

is fulfilled, provided the existence of a vector η, such that:

∂

∂x
(
1

2
xTx+ ηT (y − Px)) = 0 (8.10)

If we left-multiply the equation (8.9) by the matrix P , we can express η:

Px = PP T η = y =⇒ η =
(
PP T

)−1
y (8.11)

and hence, substituting this expression into (8.9), we find that the solution to the mini-

mization problem under constraints is:

x = P+y (8.12)
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where is the pseudoinverse matrix of P , provided that rank(P ) = m.

As a next step, in order to prove the equivalence of the two solutions, we construct

the pseudoinverse matrix for our redundancy problem, using as minimization constraint

equations the upper half of the matrix to the left in system (8.6) and denoting x =
[
QT

ad
QT

ar

]T
, P =

[
E(df×df ) BT

rd

]
and y = bd:

P+ =

[

E(df×df )

Brd

]

︸ ︷︷ ︸

P T

[

E(df×df ) +BT
rdBrd

]−1

︸ ︷︷ ︸

(PP T )−1

=⇒ P+ =

[ [
E(df×df ) +BT

rdBrd

]−1

Brd

[
E(df×df ) +BT

rdBrd

]−1

]

(8.13)

Now, if we use the underdetermined system (8.6) and express Qad
as follows:

Qad
+BT

rdBrdQad
= bd =⇒ Qad

=
[

E(df×df ) +BT
rdBrd

]−1
bd (8.14)

we can substitute this result back in (8.5), which gives:

Qar = Brd

[

E(df×df ) +BT
rdBrd

]−1
bd (8.15)

Finally, regrouping the actuator torques results in:

[

Qad

Qar

]

=

[ [
E(df×df ) +BT

rdBrd

]−1

Brd

[
E(df×df ) +BT

rdBrd

]−1

]

︸ ︷︷ ︸

P ′

bd (8.16)

proving that the two solutions x = P+y and x = P ′y are equivalent.

8.3.2 Minimal infinity-norm force redundancy solution

The infinite-norm torque minimization solution, free of matrix inverse computations and

used when better consistency with the actuator physical limits is targeted, is set up in this

work according to an approach, pursued in [79] and extended here to cases of redundantly

actuated parallel manipulators.

Compared to the two-norm torque minimization (pseudoinverse solution), the infinity-

norm solution minimizes the largest component of a vector. In the field of robotics this

type of minimization is also known as minimum-effort solution [88, 89, 90].

For redundantly actuated parallel manipulators it can be formulated as follows. Let us

introduce a scalar variable w ≥ 0, representing the value of ‖Qa‖∞. Then, according to

[79], the infinity-norm ‖Qa‖∞ minimization problem can be rewritten as:

minimize w, subject to: [

E −e
−E −e

][

Qa

w

]

≤ 0 (8.17)

and

Qa = Φa +BT
paΦp (8.18)
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where E ∈ ℜ(s×s) denotes an identity matrix and e ∈ ℜs denotes an appropriately dimen-

sioned column-vector of ones.

The latter optimization problem can be transformed into classical linear programming

problem of the form [79]:

minimize pTx, subject to:

Aeq x = beq

Aineq x ≤ bineq

xmin ≤ x ≤ xmax

(8.19)

where:

• p = [0(1×s) 1]T , x = [QT
a w]T ;

• Aeq =

[

E(df×df ) BT
rd

0(1×s)

]

, Aineq =

[

E(s×s) −e(s×1)

−E(s×s) −e(s×1)

]

;

• beq = [bTd 0]T , bineq = 0(2s×1); xmin = [QT
amin

0]T and xmax = [QT
amax

∞]T .

Here Qamin
and Qamax represent the lower and the upper boundary of the actuator

torque, usually corresponding to the nominal torque values given in the motor technical

specifications. For instance, for the DC-motors used in the parallel manipulator prototype

discussed in this paper, Qamin
= −4.5 Nm and Qamax = 4.5 Nm.

The above optimization task can be found programmed in a dedicated MATLAB rou-

tine, called linprog and used in the inverse dynamics solution algorithms of this work.
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Figure 8.3: Actuator torques for a simple force redundancy (dFR = 1) of the 3-d.o.f.

planar parallel manipulator of Figure 7.5. Pseudoinverse solution in red, minimal infinite-

norm solution in blue.
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Two redundant actuator torque solutions, computed using the methods described

above, are compared in Figure 8.3. They relate to one of the two closed-loop MBS,

used to test the developments of this work: the 3-d.o.f. planar parallel manipulator of

Figure 7.5. A slight decrease of the torque overall maxima (obtained for Qa1
around 5.75

sec and for Qa6
around 0.26 sec) and a consequent torque redistribution over the four actu-

ators throughout the trajectory can be noticed for the infinite-norm torque minimization

solution. As we shall see in Chapter 9, even for the case of simple redundant actuation

(dFR = 1) a significant decrease of the maximal torque values is observed when using one

of these optimal torque solutions4, compared to a non-redundant actuation.

8.4 Algorithmic computer implementation
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Figure 8.4: Algorithmic implementation of the proposed actuation strategy and actuator

torque solution.

The different steps in the algorithmic implementation of the actuation strategy with

subsequent actuator effort solution are illustrated in Figure 8.4:

• Step 1: User data acquisition – concerns the data (topology, characteristics, possible

actuation configurations) on the parallel manipulator to be treated, and on the task

(trajectory);

4the pseudoinverse one in our examples, giving a decrease by a factor of about 2 !
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• Step 2: Inverse kinematics solution, based on the coordinate re-partitioning {u, v}
into independent/dependent generalized coordinates (see Section 6.2.2); Output: q,

q̇, q̈;

• Step 3: Piecewise actuation; Output: one or a series of sequential partitions into

active/passive coordinates (actuated/non-actuated joints), defining the actuator lo-

cations for every successive piece (segment) of the trajectory (see Sections 6.2.2 and

7.5–7.6 for details);

• Step 4: Solution for the MBS inverse dynamics (pseudoinverse or infinity-norm

torque minimization in cases of force redundancy as described in Sections 8.3.1–

8.3.2); Output: actuator (joint) torques (Qa);

• Step 5: Simulation of the controlled plant dynamics. A master MATLAB routine

sequentially activates as many ”slave” SIMULINK C-code plant dynamic models

(generated beforehand using ROBOTRAN/MATLAB) as there are {u, v} partitions

(Section 7.7.1, Figure 7.7). The results (Qa) from the previous step are used as a

reference input in case of a feed-forward term in the tested virtual controllers.

Chapter 9 presents some basic control theory notions in order to explain the control

algorithms used in our work, as well as results from simulations of the controlled plant

dynamics. In Chapter 10 results from experimental validation of the tested control algo-

rithms on a prototype will be given.



Chapter 9

Control of redundant parallel

robots

9.1 Introduction: robot control

The control of redundantly actuated parallel manipulators is a vast domain of research

and development in robotics. In the framework of this study, we shall not dedicate a

numerous pages to this matter not only because it is not possible to encompass all the

existing control algorithms and approaches in a single research thesis, but due as well to

the fact that our principal goal is the development of strategies for redundant actuation,

and not of new control algorithms. In other words, the matter of the present work is

treated – in general terms – using control engineering tools, and not the control theory

apparatus exclusively.

In robotics, the control tasks generally concern the computation of control input to

apply to the robot actuators in order to have specific system behavior, e.g. a reaction to a

variable external load applied to the end-effector, or certain tasks accomplished (trajectory

plus end-effector output forces). The principal difficulty of the parallel manipulator control

arises from the fact that it concerns multibody closed-loop, non-linear systems, in which

all or many of the principal physical phenomena (dynamic terms, friction, joint and gear

backlash) usually have to be considered. Moreover, nowadays the task specificities and

their huge variety require very high end-effector velocities and precision along with system

parameter robustness, very good dynamic performances and reliability.

According to the classics of the control theory that developed during the sixties and

the 70ies, a control algorithm has to rely by default on position and velocity feedback,

used to produce control outputs by comparing it to the actual system state, in order

the corresponding real controller to be robust with respect to external perturbations and

modeling errors. On the basis of this feedback, proportional (P), proportional-derivative

(PD) and proportional-integral-derivative (PID) control schemes, commented in Section

9.1.2, are usually developed and can be found nowadays in the core of many modern

control algorithms. Along with them, novel control approaches in terms of adaptive,
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model predictive and fuzzy logic control appeared in the last two decades, but we shall

not comment on, nor make use of some of them, as this would go beyond the limits of

this research. Detailed description and analysis of different control algorithms and classes,

supported by numerous application examples can be found in [91, 92] and other literary

issues.

As the final part of our work concentrates on the control of redundantly actuated

parallel manipulators, let us briefly recall some of the developments in this domain of the

robotic control, still relatively new.

9.1.1 Control of redundantly actuated parallel manipula-

tors: research achievements

Increased appearance of control solutions for redundant parallel manipulators is observed

over the past decade, as the principal interest in redundant parallel robots augmented

during that period and more application fields are viewed nowadays.

One of the earliest works, treating the problems of robot control in the presence of

singularities, was that of Nakamura and Hanafusa [93]. They proposed for the purposes

of control stability a substitute to the pseudoinverse to solve the inverse kinematics in a

singularity neighborhood, naming this substitute SR-inverse (from ”singularity-robust”),

which amounts to a least square solution. However, this solution inevitably leads to modi-

fications of the end-effector trajectory in terms of velocity, because of the preference given

to its feasibility over its exactness. In [94], Hanon compared methods for control of redun-

dantly actuated parallel manipulators, drawing an important conclusion on their control

depending on the number of actuators used – the more the actuators, the better the con-

trol. Moreover, he demonstrated the effectiveness of using optimization techniques to solve

for the force redundancy. Another interesting control application we already mentioned

in Chapter 4 is that of Lee et al. [75], in which they successfully reduce, by applying re-

dundant actuation, the effects of shocks during parallel robot motion, comparing through

simulation and experiments three torque distribution solutions: a minimum torque norm,

a minimum torque rate and torque limit solution. In Chapter 4, we also discussed the

works of Kock and Schumacher [42], and Yi and Freeman [41] and their contributions to

the control of RAPM. In two other interesting and more recent research works [95, 96], Liu

et al. and Cheng et al. make use of redundant actuation in order to eliminate undesired

singularity effects in parallel manipulators, based on the developments of [69]. They ex-

perimented as well on kinematic and dynamic control methods for redundantly actuated

parallel manipulators, thus verifying the efficiency of the proposed algorithms and prov-

ing the effectiveness of the Nakamura-based equivalent torque solution method, used for

the purposes of control. Important and probably very perspective research results were

achieved by Muller in [64, 97]. In these recent works, he took profit from a general solu-

tion for the inverse dynamics of redundantly actuated parallel manipulators to develop a

computationally-efficient open-loop preload control scheme (depending on a single preload

parameter) the simplicity of which makes it applicable in real-time control applications
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with backlash avoidance, especially for the cases of simply-redundant (i.e. one redundant

actuator) parallel robots.

We end here this short state-of-the-art that does not cover by far all the developments

in the domain of redundantly actuated parallel robot control, but many of them – like for

instance the hybrid adaptive control scheme proposed in [98] – go beyond the scope of the

present research.

9.1.2 Description of widespread robot controllers

Classic PID-controller

The PID-controllers, named according to the Proportional, Integral and Derivative control

actions they perform - are used in the vast majority of automatic process control applica-

tions in industry today. PID controllers are responsible for regulating flow, temperature,

pressure, level, and other industrial process variables. The classical PID-control scheme

of Figure 9.1 that can be found programmed in the controllers of many industrial robots,

considers the manipulator dynamics to be linear and applies independent control inputs

with constant gains to the joints that have to be controlled by the actuators. This type

of control is simple to implement and computationally time-efficient, but usually suffers

from bad precision at high velocity rates.
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Figure 9.1: Classical PID-control scheme

At a time instant t, the control law C(t) produces an output control signal Uad
(t)

(in [N.m]) that acts on the actuated joints qad
, the number of which corresponds to the

degrees of freedom of the multibody system1. The control signal is a sum of three terms

that can be instantaneously considered as acting independently:

C(t) = Uad
(t) = Kp e(t) +Kv ė(t) +Ki

t2∫

t1

e(τ)dτ (9.1)

where:

1As we shall see later in this Chapter, redundant control schemes can be considered successfully

as well.



112 CHAPTER 9. CONTROL OF REDUNDANT PARALLEL ROBOTS

• qad
and q̇ad

are the current active generalized positions and velocities of the manip-

ulator, the feedback on which is obtained by means of appropriate sensors;

• qd
ad

and q̇d
ad

are the desired (reference) values for qad
and q̇ad

, obtained by trajectory

generation;

• e(t) is the column-vector of tracking errors for qad
: e(t) = qd

ad
− qad

;

• ė(t) is the column-vector of time derivatives of the tracking errors: ė(t) = q̇d
ad

− q̇ad
;

• Kp is the diagonal matrix of error-proportional gains kp of units [N.m];

• Kv is the diagonal matrix of derivative-proportional gains kv of units [N.m.s]. As

generalized joint velocities q̇ will be considered in this work in order to construct

ė(t) without time-deriving q, Kv instead of the usual Kd for ”derivative” will be

used;

• Ki is the diagonal matrix of integral-proportional gains ki of units [N.m/s].

Some of the three terms can be left out if they are not needed in the specific control

design. Thus, it is possible to have a PI-, PD- or just a P-control (an ID-control scheme

is generally not used).

If we consider proportional control alone (Kv = Ki = 0), the controller will react

proportionally to present tracking errors – the larger their values, the larger the controller

output. But the P-control will not be able to completely eliminate them, because for

small e(t) there will be small or insignificant control signal U(t) generated. This major

drawback of the P-controllers is often called static error, set-point (desired value) drift or

offset (offset error). Very often in robotics the drift is caused by the forces of gravity.

In order to eliminate the offset, a term, proportional to the integral of the error must

be considered. The integral control mode of a controller produces a long-term corrective

change in controller output, driving the offset to zero. Very often, the following relation

between the proportional and the integral gains is used:

Ki =
Kp

Ti
(9.2)

where the constant Ti is called integral time. The I-control term can be viewed as a reaction

of the controller to past error values, accumulated through the time interval [t1 t2]. The

integral term tends to slow down the system responses to changes in its states. In order

to speed up the system response, a derivative term must be used.

The D-control mode acts based on the rate of change of the error, hence its output

is sometimes called rate. This control mode is very sensitive to measurement noises and

makes tuning difficult if trial-and-error methods are applied. What is more, the bigger

the derivative gains, the more important the risks of system high-frequency structural

mode oscillations. Nevertheless, it can make a control loop respond faster and with less

overshoot. In some sense, since the error ”tendency” is monitored through its rate of

change, the derivative control action can be viewed as an action to future error values.
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Even if these predictive or anticipative capabilities are technically not true, the PID-

control appears to provide more control action, and sooner than possible with P or PI-

control, reducing the time it takes to return to the system set points.

Computed-torque controller

When the applications demand rapidity and precision in the controlled behavior of the

system (most often the case in robotics), more sophisticated control algorithms that take

into account the system dynamics have to be addressed. The use of the so called non-linear

decoupling control algorithms is very common and generally suits well this purpose [90].

This type of control is also known as dynamic control, due to the fact that it considers

the system dynamics.

The dynamic control algorithms transform by means of state feedback the problem of

non-linear system control into linear system control. In general, this is a complex problem,

not always solvable. However, in robotics, finding control laws that decouple and linearize

the system is simplified by the fact that the robot inverse dynamics model is usually

available.

According to [90], if at time t estimates of the reduced generalized mass matrix M̂r(qad
)

and the reduced vector ĉr(qad
, q̇ad

) can be computed and the joint generalized positions

and velocities measured, then a control law of the following form can be chosen:

C(t) = M̂r(qad
)Uad

(t) + ĉr (9.3)

In case of a quasi-perfect dynamic model (M̂r(qad
) ≈ Mr(qad

), ĉr(qad
, q̇ad

) ≈ cr(qad
, q̇ad

)),

using (7.21) we obtain the following set of equations for the closed-loop MBS direct dy-

namics:

Mr(qad
)q̈ad

+ cr(q̇ad
, qad

) = C(t) = M̂r(qad
)Uad

(t) + ĉr(q̇ad
, qad

) =⇒ q̈ad
= Uad

(t) (9.4)

which is in fact a set of n (for an MBS constituted of n rigid bodies) linear, independent

second order differential equations.

Thus, the control signal vector Uad
(t) allows for obtaining by means of (9.3) the torques

governing the MBS dynamics. Different forms can be envisaged for Uad
(t), but in this

research work we shall limit them to a PD-controller scheme that we estimate as sufficient

for our research purposes:

Uad
(t) = Kp(q

d
ad

− qad
) +Kv(q̇

d
ad

− q̇ad
) (9.5)

in which the corresponding error-proportional gains kp and error derivative-proportional

gains kv are of units [s−2] and [s−1], respectively.

Moreover, when the trajectory to be followed by the manipulator is entirely known in

advance (e.g. as a result of a trajectory generation algorithm), the following control law

can be considered:

Uad
(t) = q̈d

ad
+Kp(q

d
ad

− qad
) +Kv(q̇

d
ad

− q̇ad
) (9.6)
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and, using the result (9.4) will give:

q̈ad
= Uad

(t) = q̈d
ad

+Kp(q
d
ad

− qad
) +Kv(q̇

d
ad

− q̇ad
) (9.7)

Hence, the system of equations governing the controlled closed-loop MBS dynamics will

become:

ë+Kv ė(t) +Kp e(t) = 0 (9.8)

representing a set of n second-order decoupled differential equations for the tracking errors,

compensating the system dynamics in the control law. This control scheme, depicted in

Figure 9.2, is also known in the literature as computed-torque control.

Mr( )qad
Kp

Kv

_

qad

q
d

ad

_
_

+

+
+

+

-

-

+
+

__

+
+

c (r qad
,qad

)_

^

^

Plant
Dynamics

q
d

ad

qad

qad

qad

q
d

ad

Figure 9.2: Computed-torque control scheme.

Compared to the PID control law (9.1), the computed-torque controller is characterized

by position-independent gain values kpi
and kvi

(Mr(qad
) and cr(q̇ad

, qad
) are simplified

in the equations 9.4). They can be specified separately for each controlled joint (due to

the decoupling) in such a way that the damping of the system response is optimal and the

error e asymptotically tends to zero. In fact, the system transient response is described

by the equations:

q̈ad
+Kv q̇ad

+Kp qad
= 0 (9.9)

obtained from 9.7, which can be viewed as a system of classical second-order damped

oscillator equations of the form:

ẍi + 2ζiωi ẋi + ω2
i xi = 0 (9.10)

Comparing (9.9) and (9.10), it is straightforward to write: ωi =
√
kpi

, ζi = kvi
/(2
√
kpi

).

As it is well known from the mechanics theory, an optimal damping ζi is characterized by

a value of 1/
√

2. This value can be obtained when applying a computed-torque control,

for instance choosing appropriately the gains kpi
(in order not to have resonances of ωi

with the natural frequencies of the manipulator) and computing kvi
from the equation

kvi
/(2
√
kpi

) = 1/
√

2, i.e. kvi
=
√

2kpi
.

If the estimates M̂r and ĉr are computed on the basis of the trajectory known be-

forehand, and not the measured values for qad
and q̇ad

, the scheme transforms into a

feed-forward (predictive) computed-torque control (Figure 9.3).

Since for a correct tracking M̂r(q
d
ad

) ≡ Mr(qad
) and ĉr(q

d
ad
, q̇d

ad
) ≡ cr(qad

, q̇ad
), this

new control algorithm will linearize and decouple the non-linear system dynamics as in
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Figure 9.3: Feed-forward computed-torque control scheme.

the previous case, provided that the modeling errors are negligible.

The computation of the two presented computed-torque algorithms can be performed

in real-time as a part of the system control process, on the basis of the Newton-Euler

recursive (NER) algorithm, explained in Chapter 7 (Section 7.3). This procedure amounts

in fact to computing the manipulator inverse dynamics, because the torques C(t) that are

applied as control inputs are calculated using the trajectory {qd
ad
, q̇d

ad
, q̈d

ad
}. Of course, if

the dynamics is evaluated on-line, the numerical algorithm has to be efficient with respect

to computational time (number of flops): this justifies the use of the NER formalism in

relative coordinates.

A way of adding computational efficiency to the feed-forward control algorithm for

prescribed trajectories is to compute the estimates in advance, store them in a database

and directly inject their values during the control process – an approach that we actually

use in the correspondent controller scheme for the applications of this study.

When the modeling errors can not be neglected, e.g. because the inertia parameters

of the MBS are not completely known or joint friction forces are present, or a unknown

external load is applied to the end-effector, the estimates for Mr(qad
) and cr(qad

, q̇ad
) do

not match closely enough the real values. In such cases, according to (9.4) and (9.6),

the closed-loop computed torque control schemes of Figures 9.2 and 9.3 are governed by

tracking error equations of the following form [90]:

Mr q̈ad
+ cr = M̂r(q̈

d
ad

+Kv ė+Kp e) + ĉr (9.11)

then

M̂−1
r Mr q̈ad

+ M̂−1
r cr = M̂−1

r M̂r q̈
d
ad

+ M̂−1
r M̂r(Kv ė+Kp e) + M̂−1

r ĉr (9.12)

and

− M̂−1
r M̂rq̈

d
ad

+ M̂−1
r M̂r q̈ad

= M̂−1
r M̂r q̈ad

− M̂−1
r Mrq̈ad

+

+ M̂−1
r M̂r(Kv ė+Kp e) + M̂−1

r (ĉr − cr) (9.13)

from which after simple transformations we obtain:

ë+Kv ė+Kp e = M̂−1
r

[

(Mr − M̂r)q̈ad
+ (cr − ĉr)

]

(9.14)
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The latter indicates that the modeling errors constitute an excitation for the equations of

the tracking errors. Therefore, the gain values must be increased with the increase of the

model imprecision. As cited in [90], the robustness of the computed-torque controllers is

sufficient and sometimes compensates for up to 80-90% of modeling errors.

If the manipulator motion is defined in the space of its end-effector coordinates X (task

space), control algorithms equivalent to the mentioned are applied following two principal

approaches [90]:

• the task space trajectory is transformed into a joint space one, using the inverse

kinematic relations of Section 6.2.3, and the control is performed in the joint space

as described above, or

• the task space trajectory is directly used for a task space control of the manipulator

on the basis of its task space dynamics.

Hybrid position/force controller

The hybrid control algorithm is addressed in numerous literary issues, e.g. Raibert and

Craig [99], Dombre and Khalil [90], Lipkin and Duffy [100]. It is extensively used for robot

control applications, e.g. such in which force controlled compliant task frame motion must

be performed [101, 102]. In our work, we test experimentally an analogue of such type of

control algorithm, applying it to a redundantly actuated planar parallel manipulator, for

which torque control is considered for the redundant actuator torques (treated as internal

reaction torques), whereas joint position/velocity control is performed over subspace of

joints, on which are applied the non-redundant torques.

The hybrid control can be viewed in some sense as an analogy to the dynamic control

we already described, in which some part of the position and velocity tracking errors

are replaced by force/torque errors. The actuators receive control inputs based on the

simultaneous contributions of the two error types, contained in two reciprocal sub-spaces.

For clarity purposes, we shall call the latter motion sub-space and force sub-space. The

choice on which independent generalized coordinates should be considered for motion sub-

space control, and which ones – for force sub-space control, generally depends on the

manipulator specificities, the task requirements and the available sensor data.

A general hybrid control algorithm, in which force control is performed in the manipula-

tor joint space2, is shown in Figure 9.4. A translation can be performed if end-effector force

control is targeted, using the manipulator relation W = (JT
m)−1Qad

, in which W denotes

an external wrench (resultant force plus resultant torque), supported by the manipula-

tor end-effector, and the joint actuator torques Qad
are computed using the manipulator

inverse dynamics model.

The generalized coordinate distribution over the two sub-spaces is handled by means

of a diagonal matrix Sd of size (dmbs × dmbs). Its elements sdi
are equal to 1 if the i-th

2This type of force sub-space control was initially assumed to be relevant to the applications

considered in the present work.



9.1. INTRODUCTION: ROBOT CONTROL 117

Sd

+
+

Qad

Q
d

ad
+

-

+
+ I Sd d-

Qad

Mr( )q
d

adKp

Kv

_qad

qad

q
d

ad

q
d

ad
_

qad

qad
_

+

+
+

+

-

-

+
+

q
d

ad
__

+
+

c (r ,q q
d d

ad ad
)_

^

^

KF

Plant
Dynamics

Figure 9.4: Hybrid control scheme (inspired from [90]).

actuated joint coordinate belongs to the motion sub-space, and to 0, if the corresponding

to it joint force/torque is controlled.

In Figure 9.4, Id represents an identity matrix of size, equal to the size of Sd, KF -

the matrix of force-proportional gains and Qd
ad

– the desired (reference) values of Qad
,

computed using the manipulator inverse dynamics. The vector of control inputs for this

control algorithm can be written as follows [90]:

C(t) = Sd [M̂r(q̈
d
ad

+Kv ė+Kp e) + ĉr] + (Id − Sd)
[

Qd
ad

+KF (Qd
ad

−Qad
)
]

(9.15)

The motion sub-space control and the force sub-space control terms in the equations

above are decoupled. This fact can easily be verified, as it is straightforward to write:

Sd = ST
d = ST

d Sd = SdS
T
d , (Id−Sd) = (Id−Sd)

T = (Id−Sd)
T (Id−Sd) = (Id−Sd)(Id−Sd)

T

and ST
d (Id − Sd) = (Id − Sd)

TSd = 0(dmbs×dmbs), where 0(dmbs×dmbs) is a square matrix of

zeros of dimension 0(dmbs×dmbs). Thus, if for instance we multiply (9.15) to the left by the

matrix ST
d , we obtain the computed-torque control law (9.7) for the joints to be controlled

in the motion sub-space, and if the left multiplication is performed using (Id −Sd), a force

control3 is ”selected” to compensate the dynamics of the closed-loop MBS for the joints

to be controlled in the force sub-space.

Hybrid control in cases of redundant actuation of parallel manipulators

In this work, the hybrid control was initially supposed to be a possible alternative to the PD

and PDFF-control schemes, when redundant actuation is applied to parallel manipulators.

We were inspired from some research publications (e.g. [102, 104]) to use hybrid control

in order to treat the additional, redundant control torques as ”reaction forces” belonging

to a joint force sub-space.

Following the reasoning of [104], for cases of hybrid control of redundantly actuated

parallel manipulators a new control law, depicted in Figure 9.5, that acts on all the

3often called active-stiffness control in the literature [103] when performed in the end-effector

coordinate space.
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Figure 9.5: Hybrid control scheme for cases of redundant actuation.

actuated joints, can be written in the following form:

Ca(t) = Srm [M̂r(q̈
d
ad

+Kv ė+Kp e) + ĉr] + Srf

[

Qd
ar

+KF (Qd
ar

−Qar)
]

(9.16)

where the rectangular matrices Srm and Srf
are of size (s × dmbs) and (s × dFR), with s

being the total number of actuators (actuated joints), superior to the degrees of freedom

dmbs (see Setion 8.3.1), and dFR) the degree of force redundancy. Hence, the matrix Srm

selects the actuated joint coordinates to be controlled in the motion sub-space, and Srf
–

the (redundant) forces/torques to be controlled in the joint force sub-space. The number

of non-zero elements of Srm (equal to 1), is strictly equivalent to dmbs, whereas the number

of those, equal to 1, in Srf
– to (s − dmbs). In terms of example, let us consider a case

of simple redundant actuation (dFR = 1) of the 3-d.o.f. planar parallel manipulator of

Figure 7.5, for which joints q1 to q4 are actuated. If for a given piece of the trajectory to

be followed an active coordinate partition qad
= [q1 q2 q3]

T is picked up by the piecewise

actuation strategy as the best locally (see the previous Chapter), then Qar = Qa4
and the

selection matrices for this piece of trajectory will be [104]:

Srm =









1 0 0

0 1 0

0 0 1

0 0 0









, Srf
=









0

0

0

1









(9.17)

These matrices are such that ST
rm

= S+
rm

, ST
rf

= S+
rf

and the two control terms (motion

and force sub-space control) are decoupled again, i.e.: ST
rm
Srf

= 0(dmbs×s) and ST
rf
Srm =

0(s×dmbs). Indeed, if we recall that

Mr(qad
)q̈ad

+cr(q̇ad
, qad

) = Qr = C(t) = M̂r(q
d
ad

)(q̈d
ad

+Kv ė+Kp e)+ ĉr(q̇ad
, qad

) (9.18)

and multiply for instance the control law (9.16) to the left by the matrix ST
rm

, we obtain

(as in the case of non-redundant hybrid control) the computed-torque control (9.7) to

compensate for the closed-loop MBS dynamics in the motion sub-space:

ST
rm
Ca(t) = C(t) = M̂r(q

d
ad

)(q̈d
ad

+Kv ė+Kp e) + ĉr(q̇ad
, qad

) (9.19)
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and if the left multiplication is done using ST
rf

, then the closed-loop dynamics for the

redundant actuator efforts that are considered as reaction forces and belong to the force

sub-space, is obtained from:

ST
rf
Srf

Qar−ST
rf
Srm [M̂r(q̈

d
ad

+Kv ė+Kp e)+ĉr] = ST
rf
Ca(t) = Qd

ar
+KF (Qd

ar
−Qar) (9.20)

and hence:

Qar = Qd
ar

+KF (Qd
ar

−Qar) (9.21)

9.1.3 Controller tuning

For any practical control application, stability and non-oscillatory form of the plant re-

sponse are sought, no matter what is the combination of functional conditions and desired

set-points. These requirements are met by applying appropriate tuning techniques:

1. For controlling linear systems:

• techniques based on classic control theory design methods, such as state-

feedback, root-locus, Bode plot, Nyquist criterion, pole-placement;

• techniques based on real or virtual (computer simulation) experiment-based

methods, e.g. the well known Ziegler-Nichols method, Chein-Hrones-Reswick

(modified Ziegler-Nichols) method, etc;

• manual trial-and-error techniques.

2. For control of non-linear systems:

• techniques of linear system control – when the non-linear system loop control

is linearized by algorithms such as the system decoupling dynamic control

described in the previous section,

• techniques attempting to introduce auxiliary non-linear feedback in such a

way that the system can be treated as linear: these are often called feedback

linearization;

• techniques treating the system as a linear one in a limited range of opera-

tion and using linear design techniques for each operational region, e.g. gain

scheduling technique, adaptive control.

Let us give some examples of tuning of a PID-controller, applied on a linear system

with one state variable4.

4Also known as single-input single-output (SISO) system
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Manual tuning method

A wide-spread manual tuning method consists in the following. Firstly, the values of Ki

and Kv are set to zero. Then, Kp is increased until the output of the control loop starts

oscillating – at that point the value of Kp is considered as critical (often denoted Kpc or

Kc). Then the ”optimal” Kp is set to be approximately half of Kpc in order to obtain the

so-called ”quarter amplitude decay” type response5. Ki is increased afterward until the

offset error enters (in sufficient time) in the desired range for the process, paying attention

to the fact that too high value of Ki will cause system response instability. Finally, Kv

is increased until the response reaches its reference with an acceptable rapidity, after

applying a load disturbance. However, too high Kv will cause overshoot in the response.

Nevertheless, a fast PID-controller usually overshoots slightly to reach the set-point more

quickly. Some systems cannot accept overshoot, in which case a ”critically damped”

controller tune-up is required, with a Kp significantly less than half of Kpc, so as to have

a non-oscillatory system response.

As major drawbacks of the manual tuning methods could be cited the lack of precision

and the presence of a great deal of subjective intuition. These methods rarely give satis-

factory results in cases of complex controller structures and/or systems. Better tuning is

obtained using methods like the ones described hereunder.

Ziegler-Nichols method

The Ziegler-Nichols and Chein-Hrones-Reswick are tunning methods, largely used in prac-

tical situations, mostly when off-line (i.e. not acting in a control process) experiments can

be performed on the controller. These methods use the information obtained from a

system response to an external step input or frequency response tests.

The Ziegler-Nichols method is the earliest design (tuning) method for PID-controllers,

developed in 1942 by John Ziegler and Nathaniel Nichols, and received some light modi-

fications (Chein-Hrones-Reswick method) later. As in the method above, the Ki and Kv

gains are first set to zero. The Kp gain is increased until it reaches its critical value Kc.

The latter and its corresponding oscillation period Pc of the system response are used to

set the gains as shown in the following table:

Controller type Kp Ki Kv

P 0.5Kc – –

PI 0.45Kc 1.2Kp/Pc –

PID 0.6Kc 2Kp/Pc KpPc/8

Table 9.1: Values for the PID-controller gains using Ziegler-Nichols tuning method

The gain values in Table 9.1 are obtained by experimental analysis of many different

5A system response, the amplitude of oscillation of which decreases by 1/4 over every half

oscillation period, starting from the initial amplitude peak value.
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systems, using models constructed by means of heuristic rules that are based upon step

and frequency responses of the controlled plants. The design criteria ensure that the

amplitude of the closed-loop oscillation decays at a rate of 1/4, which for many practical

cases results in a insufficient oscillation damping.

Other types of tuning techniques, e.g. based on optimization methods (see [105] for

instance), genetic algorithms [106], etc. exist. In this research work, we do not consider

them, but a particular technique of tuning, based on an exhaustive control simulation

procedure (see Section 9.3 for details). Therefore, we shall limit our discussion to the

techniques commented above.

9.2 Envisaged control schemes

Three control algorithms were tested via computer simulations of the motion of a four-bar

mechanism and the planar 3-d.o.f. parallel manipulator (Figure 7.5): a classic PD-control

(eq. (9.1), Ki = 0), a feed-forward (predictive) computed-torque control (Figure 9.3),

and a PD-control containing a torque feed-forward term. A schematic representation of

the third control law is given in Figure 9.6. The torque feed-forward term consists in

injecting the vector of desired (pre-computed) values for the actuator torques, multiplied

by a selection matrix St. The latter is either a unitary matrix, or a zero square matrix of

size, equal to the number of actuated joints. Its role is to transform the PD-control law

into a PD-control containing feed-forward terms, and vice versa, thus making easier the

computer implementation of the control algorithms.
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Figure 9.6: PD-controller containing direct torque feed-forward terms. Qd
a - precomputed

reference (desired) values for the actuator forces/torques.

Let us precise that from now on and for the sake of simplicity, we shall use the follow-

ing abbreviations: ”PD-control”, ”PDFF-control” for PD-control including torque feed-

forward term, and ”FFCT-control” – to denote feed-forward computed-torque control

algorithm.

For the simulations, as well as for the experimental validation that will be presented

in Chapter 10, example trajectories containing singularities were generated for the two

systems.

Simulations of the two controlled plant dynamics were performed both for non-redundant
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and redundant actuation cases, in order to not only test the control algorithm validity on

trajectories containing force singularities, but to draw as well general conclusion on the

redundant actuation advantages in terms of manipulator control.

To clarify the particularities in the structure of the tested control algorithms, important

points have to be highlighted for each one of them, as follows.

9.2.1 PD-control

Classic PD-control algorithm of the form (9.5) was used to serve mostly as a means of

comparison with the other control algorithm tested. For the cases of redundant actuation

of the two manipulators, the control was performed over the space of all s actuated joints

qa (s > dmbs), following the control design considerations of Ghorbel [107], Liu et al. [95]

and Cheng et al. [96].

In [107], Ghorbel draws some important conclusions on the direct applicability of classic

control algorithms, such as PD control and PD/gravity-compensation control – valid for

serial manipulators, to closed-loop manipulator topologies, proving that they work as well

for the latter and lead to asymptotic stability, if properly tuned.

The control design procedure of [95, 96], based on the Nakamura equivalent torque

method (proposed in [93]), develops a controller for a given redundantly actuated parallel

manipulator, considering equivalent control for the open-loop structure of its serial leg

chains, when ”opening” the closed-loop manipulator topology by cutting out the moving

platform through the anchor joints. The equivalent controllers must act in parallel, in

such a way that the anchor points follow the same prescribed trajectory as when they are

part of the closed kinematic loops.

By analogy with the Nakamura’s equivalent torque method, transcribing the PD-control

law (9.5) for cases of redundant actuation of parallel manipulators will give:

Ua(t) = Kv ėr +Kper (9.22)

where er = qd
a − qa, with qa = [qT

ad
qT
ar

]T and Ua = [UT
ad

UT
ar

]T – corresponding to the

whole set of active (non-redundant and redundant) generalized coordinates.

9.2.2 PDFF-control

The equivalent control law in case of PD/Feed-forward algorithm, acting on a redundant

number of active coordinates, is written analogically as:

Ua(t) = Kv ėr +Kper +Qd
a (9.23)

with direct feed-forward term Qd
a computed in advance by (8.7) and corresponding to

Qa = [QT
ad
QT

ar
]T .
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9.2.3 FFCT-control

In order to test via simulation the predictive computed-torque control algorithm in cases of

redundant actuation, a projection of the non-redundant control inputs onto the redundant-

actuation space is performed in the following manner (similar to the indirect method of

Nakamura used in [95, 96]):

Ua(t) = A+
{

Mr(q̈ad
)(qd

ad
+Kv ė+Kpe) + c∗r

}

(9.24)

where the left-hand side corresponds to the left-hand side of eq. (7.34), e = qd
ad

− qad

the superscript ”d” standing for desired (reference) values, and A+ = AT
p (ApA

T
p )−1 is the

pseudoinverse of Ap of (7.27).

9.2.4 Tuning of the considered controllers

The Ziegler-Nichols method was firstly used for the cases of PD and PDFF-control. The

critical gain Kc and period Pc, obtained by following the rules of this tuning method, were

evaluated via simulations of the controlled plant response. Then the corresponding values

for Kp and Kv were calculated using the formulae presented in Table 9.1.

The ”tuning”, tried for the feed-forward computed torque control, was performed with

respect to finding the gains of the matrix Kp, using the manual tuning procedure already

explained in Section 9.1.3. The values of the diagonal of the matrix Kv were computed

afterward, using the formula kvi
=
√

2kpi
that we already mentioned in Section 9.1.2, in

order to have optimal damping of the closed-loop system response.

As a second tuning method, an exhaustive control simulation procedure that performs

multiple repetitive simulations for different combinations of values of the controller gains

over one and the same trajectory, was developed by the author. At the end of each

subsequent simulation run within this procedure, carried out for controller gain values

situated in pre-defined ranges6, an estimate for a specific integral controller performance

criterion Ipc is calculated and stored in a data table along with the gain value combination.

The performance criterion is computed by means of the following formula:

Ipc =

√
√
√
√ 1

N

N∑

i=1

[(Waǫai
)2 + (Wvǫvi

)2 + (Wpǫpi
)2 + (Wtǫti)

2] (9.25)

where:

• ǫai
is the global acceleration error for all the controlled joints at the i-th simulation

time step - a sum of the absolute values of the elements of vector ëi or ëri
(depending

on the actuation case: non-redundant or redundant) in [rad/s2];

• ǫvi
is the global velocity error for all the controlled joints at the i-th simulation time

step - a sum of the absolute values of the elements of vector ėi or ėri
in [rad/s];

6the corresponding limits of which are chosen so as to have stable closed-loop control response.
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• ǫpi
is the global position error for all the controlled joints at the i-th simulation time

step - a sum of the absolute values of the elements of vector ei or eri
in [rad];

• ǫti is the global joint (actuator) torque error for all the controlled joints at the i-

th simulation time step - a sum of the absolute values of the elements of vector

et = Qd
ad

− Uad
or etr = Qd

a − Ua in [Nm];

• Wa is the weight of the global acceleration error in the overall error Ipc, in [s2];

• Wv is the weight of the global velocity error in the overall error Ipc, in [s];

• Wp is the weight of the global position error in the overall error Ipc, dimensionless;

• Wt is the weight of the global joint torque error in the overall error Ipc, in [1/Nm];

• N is the total number of time-steps completed by the simulation process.

As a final result of the exhaustive control simulation procedure, the combination of gains

that corresponds to the best controller performance score (the minimal Ipc), is reported.

This procedure was preferred by the author and extensively used for the control simula-

tions that followed, because it is characterized by higher precision, compared to experimen-

tal tuning methods (manual, Ziegler-Nichols, etc.), and takes profit from the effectively

generated and numerically stable manipulator dynamic models. Even if for the feed-

forward computed-torque controllers no real tuning is necessary, because the closed-loop

control of the MBS is decoupled and the gains – position-independent, this type of control

was ”tuned” via exhaustive simulations as well, in order to have a confirmation of its

advantages, and verify if the ”tuning” results produce gain coefficients that are coherent

with the optimal damping condition kvi
=
√

2kpi
.

A detailed description of the control simulation tuning procedure, including its schematic

representation, follows in the next section.

9.3 Computer implementation

The computer implementation of the discussed control algorithms, tested on for cases

of non-redundant and redundant actuation of the two closed-loop MBS we mentioned

before, is realized in the MATLAB/SIMULINK environment, on the basis of the symbolic

modeling and robust time integration approach detailed in Section 7.7.1.

Thanks to the computation efficiency of the symbolic direct dynamic models, every

simulation of the controlled plant is carried out faster than the trajectory (real) time. This

fact allows for realizing the exhaustive simulation procedure, mentioned in the previous

section and depicted in Figure 9.7, in reasonable amounts of time.

Every simulation within the exhaustive control simulation loop is performed with ranges

of values7 for Kp and Kv, varying with increments ∆Kp, ∆Kv, which induce the embed-

ded algorithmic loops (shown in Figure 9.7). In the core of every loop lies the control

7Gain values, for which the plant dynamics control is unstable, are rejected.
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Controlled plant
dynamics simulation:
STEP 5 of Figure 8.2

DATA STORE 1:
K ,K ,Ipi vi pc

K =vi
K ?vfinal

K =vi
K + Kvi vD

K =vi
Kv0

K =pi
Kp0

K =pi
K ?pfinal

yes

no

no

yes

K =pi
K + kpi pD

DATA STORE 2:
K ,K @ min(I )pi vi pc

END

Initialization

Figure 9.7: Block schematics of the exhaustive controller tuning simulation procedure for

the case of PD controller with direct torque feed-forward (gain Kt).

simulation algorithm of Figure 7.7 that includes the sequential calls of as many pre-

generated SIMULINK models as there are {u, v}-partitions. After each simulation, the

values of the gain and the corresponding value of the integral performance index Ipc are

stored in a MATLAB data structure (DATA STORE 2 in Figure 9.7). All weights in

the expression (9.25) are set to 1, so that neither of the different errors is privileged. Of

course, other combinations of weight factor values could be considered in practice, e.g.

Wp = 1,Wv = 1,Wa = 0,Wt = 0, as for many robotic applications of motion tracking

only the position and the velocity error are of interest. Several hundreds of simulations

were carried out during every run of the global simulation procedure. Two main results

are obtained after each exhaustive simulation run:

• An error surface (corresponding to the data, recorded in the Data store 1 in Figure

9.7), each point of which represents a value of the controller performance index

Ipc for a given set of gain values. An example of such an error surface is given in

Figure 9.8, representing Ipc as a function of the gains Kp and Kv, for the case of

non-redundant PD-control of the four-bar mechanism.

• An ”optimal tuning” set of gain values, for which the minimum for Ipc is obtained.

Figure 9.8 illustrates well another fact: the use of optimization methods, which can be

envisaged for such kind of tasks, is often complicated by the existence of numerous local
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Figure 9.8: Plot of the Ipc surface for the case of four-bar mechanism non-redundant

PD-control.

minima in the explored cost-function surface. In our case this problem has (supposedly) a

numerical nature: in the figure it can be noticed by the increasing ”roughness” of the Ipc

surface for high Kv values. We thus prefer to resort to an ”exhaustive” search, which was

made possible thanks to the size of the system and the limited number of parameters.

In the sections that follow, control simulation results for the two benchmark systems

used in this work will be presented by: firstly, describing their topology models and test

simulation conditions, secondly, demonstrating the advantages of the redundant actuation

with respect to control problems when overcoming force singularities, and, finally, giving

a brief comparison of successful control using the tested control schemes.

9.4 Four-bar mechanism: control simulations

9.4.1 Multibody model and test description

For the both MBS we treated, modeling in relative coordinates was performed based on

the multibody formalisms we reviewed in Chapter 5. The kinematic loops were opened

using the body-cut procedure, described in Section 6.2.1 and depicted in Figures 6.4a and

6.5a. This type of kinematic loop cut was chosen to allow for including in the models all
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constitutive bodies (with their mass/inertia parameters) and all joints of the mechanisms8,

thus making the latter available for partitioning and virtual actuation purposes.

q
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q
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q
2

q
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q
3

q
4

q
2

q
1

Figure 9.9: Topology representation of the four-bar mechanism. Left: case of non-

redundant actuation (joint q1 actuated), right: case of simple redundant actuation (joints

q1 and q4 actuated).

The multibody topology of the four-bar mechanism is schemed in Figure 9.9. It consists

in three bars of identical length and mass, and four revolute joints, interconnecting them.

A loop cut through the base body was performed, in order to restore a tree-like topology.

In case of non-redundant actuation control, only the joint q1 is actuated, whereas in case

of redundant actuation control, a simple force redundancy (the number of actuators sur-

passes the number of d.o.f. by one) is chosen, the actuated joints being q1 and q4.

The trajectory, used for the simulations of the four-bar, is similar to that depicted

in Figure 8.1 and is shown here in Figure 9.10 by a ”snap-shot” sequence of animation

images, taken from the ROBOTRAN animation module.

1 2 3 4

5 6 7 8

q1

q1

q1

q1

q1

q1

q1

q1

q4

q4

q4

q4

q4q4

q4 q4

1.43 sec0 sec 2.32 sec 3.63 sec

4.70 sec 5.95 sec 6.73 sec 7.69 sec

Figure 9.10: Trajectory of the studied four-bar mechanism.

The trajectory reveals four force singularities when actuating only one of the joints q1

and q4 for every subsequent ”piece” of trajectory path: two singularities with respect

to actuating q1 (images 4 and 7 in the figure) and two ”mirror” singular configurations

(images 2 and 6) with respect to q4.

8Considering a massless rod loop cut for the intermediate bar of the four-bar mechanism would

make q2 and q3 disappear from the model, for instance.
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According to the prototype, designed for experimental validation purposes (see Chapter

10), three identical bars of 0.2m length and 0.15kg mass were used in the model and dry

friction with a approximate friction coefficient in the bearings (evaluated experimentally

on the designed prototype) of 0.015 was considered for the four revolute joints. Viscous

friction forces were not taken into account.

In order to compare the tested controllers, the exhaustive simulation tuning procedure

was performed using two different problem cases: a non-perturbed trajectory case and

a double perturbation case. The latter comprises an initial condition deviation of about

15%, plus a sudden (at t = 4sec) impulse perturbation acting on the angular displacements

and velocities.

The actuator torque values for the feed-forward term, employed in the redundant

PDFF-controller, are computed using the pseudoinverse-equivalent solution (see Section

8.3) – one of the two torque minimization solutions we described in Chapter 8.

The controller efficiency is evaluated both in terms of settling time9 Tsp for the position

response, and Ipc value. The numerical results of the exhaustive control simulation tuning

procedure are regrouped in Table 9.2, presented in Section 9.4.3, followed by a discussion.

Let us continue by commenting the results from simulations of the controlled four-bar

mechanism, starting from a case, for which the advantage of applying redundant actuation

is evident.

9.4.2 Four-bar mechanism: overcoming force singularities

Demonstrating the advantages of the redundant actuation of parallel manipulators is a

key point of the present research work. Therefore, examples of a PDFF-control of the

two closed-loop multibody systems, for which the corresponding reference trajectories are

correctly followed only if redundant actuation is applied, are proposed here and in Section

9.5.2. The PDFF-controller, used in both cases, was tuned by means of the exhaustive

procedure, described earlier. The gain values correspond to that of Tables 9.2 and 9.3,

which will be commented in the next section.

Let us consider the simulations of a non-redundant (q1 actuated) and a redundant (q1

and q4 actuated) PDFF-control of the four-bar mechanism for a specific combination of

joint dry friction and damping forces. In our simulations, along with the dry friction

coefficient of 0.015, additional joint damping terms with damping coefficient of 0.0039

Nm.s/rad are applied in order to recreate this practical situation of robots, some charac-

teristics of which (e.g. joint friction components) change in time, and observe its effect on

the non-redundant and redundant control.

Sequences of snapshots, similar to those, taken from the animation of the complete

four-bar motion simulation, are given in Figures 9.11 and 9.12 as a means of visualizing

9Measured as the amount of time in which the system response enters for the last time in the

+/- 5% margin of the reference.
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the virtual system behavior for the two cases – non-redundant and redundant actuation

control.

0 sec

q1 q4

1 2.74 sec

q1 q4q1 q4

1.43 sec 4.42 sec

q1 q4

2 3 4 5

q1 q4

3.63 sec

singularity blockage erratic !motion

Figure 9.11: Snapshot sequence of the four-bar non-redundant PDFF-control in the pres-

ence of joint friction and damping torques: singularity blockage and subsequent bad track-

ing.

0 sec

q1 q4

1 2.74 sec

q1 q4q1 q4

1.43 sec 4.42 sec

q1 q4

2 3 4 5

q1 q4

3.63 sec

singularity q4 motion OK !

Figure 9.12: Snapshot sequence of the four-bar redundant PDFF-control in the presence

of joint friction and damping torques: singularity effect elimination and smooth passage.

When only the joint q1 is controlled by the PDFF algorithm, even with the contribution

of the direct torque feed-forward term, the mechanism (as expected) does not succeed in

following the prescribed trajectory. It is instantly blocked at the singular configuration of

snapshot 4 (at 3.63 sec), then continues moving in a way, completely different from the

desired one. The erroneous motion can be noticed as well by the graphs in Figure 9.13,

representing the same (as in the snapshots) joint coordinate time evolution, and torque

time evolution for joints q1 and q4. As seen in Figure 9.13, left, the force singularities

cause important discontinuities in the non-redundant torque, applied to joint q1.

In contrast to this situation, when both q1 and q4 are actuated via control torque inputs,

the four-bar precisely follows the prescribed trajectory and the problems caused by the

force singularities are completely eliminated. Moreover, with the chosen control scheme,

the both input control torques Q1 and Q4 (see for instance Q1 shown in Figure 9.13, right)

are smooth and of lower amplitudes than the non-redundant one.

9.4.3 Comparison of the simulated control algorithms

The following table regroups the ”optimal” gains of the tested control schemes, obtained by

exhaustive control simulation loops for two trajectory cases (non-perturbed and with two

perturbations – an initial one and a second one at t = 4s), as well as the controlled plant

response settling times and integral errors, obtained by simulating the perturbed trajectory

tracking. The results from two different tunings were tested on the same, perturbed

trajectory in order to emphasize the reaction rapidity (settling time) and robustness of
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Figure 9.13: Four-bar PDFF-control in the presence of joint friction and damping torques:

joint angle and torque responses. Non-redundant control (q1 actuated) in red, redundant

control (q1 and q4 actuated) in green, reference in black circles and lines.

TNPT RPT TPT RPT

Controller Kp[Nm] Kv[Nms] Tsp
[s] Ipc[−] Kp[Nm] Kv[Nms] Tsp

[s] Ipc[−]

NRD PD 7 0.7 0.05 4.46 9 2.5 0.08 2,86

RD PD 6 0.3 0.03 6.55 6 1.5 0.07 2,04

NRD PDFF 5 0.2 0.05 5.36 5 2.7 0.15 1.84

RD PDFF 5 0.2 0.04 5.67 5 1.1 0.07 1.60

Controller Kp[s
−2] Kv[s−1] Tsp

[s] Ipc[−] Kp[s
−2] Kv[s−1] Tsp

[s] Ipc[−]

NRD FFCT 6 3.3 0.8 1.07 6 3.2 0.8 1.07

RD FFCT 20 5 0.38 1.95 5 5 1 1.86

Table 9.2: Gain values, settling time and integral error for the four-bar control simula-

tions. Legend: NRD - ”non-redundant actuation”, RD - ”redundant actuation”, TNPT -

”Tuning for the non-perturbed trajectory”, TPT - ”Tuning for the perturbed trajectory”,

RPT - ”Response for the perturbed trajectory”.

the different controllers with respect to disturbances. It is important to notice with respect

to the important conclusions of the previous section, that non-redundant control schemes

were nevertheless tested for the purposes of this general control comparison. In order

to avoid the singularity blockage problems, commented above, and have control over the
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whole trajectory, the non-redundant control simulations were carried out using dynamic

models that take into account the internal joint friction, whilst damping was not considered

neither in the model, nor in simulation.

The following observations can be made on the basis of the tabular data:

1. For a given tuning method, the results in terms of position settling time of the

perturbation response of the PD-control and the PDFF-control are comparable, and

better than those of the FFCT-control, with a slight advantage of the redundant

over the non-redundant actuation case for all the three control laws;

2. For a given control scheme, better results in terms of settling time are achieved

using a tuning over the non-perturbed trajectory, whereas better results in terms of

integral performance index are obtained using the perturbed trajectory tuning;

3. Better Ipc scores are obtained for the redundant PDFF-controller that uses a direct

torque feed-forward, than for the non-redundant PDFF-control;

4. In terms of overall scoring, the best Ipc results for the non-redundant controllers

are obtained using the FFCT-controller (as expected, due to the decoupling and

the dynamic compensation). The results for the non-redundant case reveal gain

coefficients kvi
that are close to the ones that could be found via the optimal damping

condition kvi
=
√

2kpi
;

5. As regards the redundant controllers, the best score is achieved using PDFF-control;

6. The controllers tuned over the non-perturbed trajectory demonstrate less robustness

with respect to the disturbances in the velocities, giving worse integral performance,

but are more effective in terms of position response oscillation damping, i.e. settling

time Tsp .

The above conclusions on the relative controllers’ performances are illustrated via sim-

ulations of the four-bar non-redundant control over the perturbed trajectory in Figures

9.14 - 9.15.

As it can be seen from the plots, when applying the three control algorithms, tuned over

the non-perturbed trajectory, the PD and PDFF-control give better results in terms of

position settling time for the price of worse damping (bigger overshoot, lesser robustness)

with respect to the disturbances at velocity and acceleration level, compared to the FFCT-

control.

Non-redundant/redundant control comparison for the complete four-bar

trajectory

In this section, the non-redundant and redundant action of some of the controllers is

compared. The simulation results, obtained using the gains from Table 9.2, are given in

the following figures.
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Figure 9.14: Four-bar mechanism non-redundant control simulation (q1 actuated): joint

q1 angle response based on a non-perturbed trajectory tunning. Left: complete trajectory,

right: excerpt (0 - 1.5 sec). PD-control in red, FFCT-control in blue, PDFF-control in

green, reference data in black circles.
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Figure 9.15: Four-bar mechanism non-redundant control simulation (q1 actuated): joint

q1 velocity response based on a non-perturbed trajectory tunning. Left: complete trajec-

tory, right: excerpt (0 - 2 sec). PD-control in red, FFCT-control in blue, PDFF-control

in green, reference data in black circles.

As a first example, a comparison between non-redundant and redundant PDFF-control,

based on a perturbed tuning, is shown in Figures 9.16-9.18.

Just as in the case of problematic non-redundant control when joint viscous friction

(amounting to joint damping torques), not accounted for in the dynamic model, exists, the

two force singularities (at 3.63 sec and 6.73 sec in Figure 9.10) can be detected visually.

In Figure 9.18, left, they are represented by the discontinuities in the values both for

the reference torque (computed in advance by the inverse dynamics robust computation

algorithm) and the control input torque acting on joint q1.

However, unlike the case of erroneous motion tracking (Figure 9.13), here the non-

redundant PDFF-control law allows for tracking the complete trajectory, for the price of



9.4. FOUR-BAR MECHANISM: CONTROL SIMULATIONS 133

0 1 2 3 4 5 6 7
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Time [sec]

q
1
 [rad]

0 0.5 1 1.5
−1.5

−1.4

−1.3

−1.2

−1.1

−1

Time [sec]

q
1
 [rad]

Zoom (0 − 1.5 sec)

Initial perturbation

Figure 9.16: Four-bar mechanism non-redundant and redundant PDFF-control simula-

tion: joint q1 angle response, based on a perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 1.5 sec). Non-redundant control in red, redundant control

in green, reference data in black circles.
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Figure 9.17: Four-bar mechanism non-redundant and redundant PDFF-control simula-

tion: joint q1 velocity response, based on a perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 2 sec). Non-redundant control in red, redundant control in

green, reference data in black circles.

the torque problems of Figure 9.18. This is, from our point of view, a ”virtual reality”

result, not ensuring robust manipulator operation and control in practical situations, in

which, for instance, the joint friction and damping conditions usually vary in time (if

the manipulator is not regularly inspected and looked after). In such situations, the

unsuccessful non-redundant control, observed via simulation, would most probably occur,

blocking and saturating the actuators at the corresponding singular configurations.

Let us note that in some of the figures in Section 9.4 and Section 9.5, peak values of

some of the variables were cut out for the single purpose of having a better visibility for

the graphical representations of the results. For example, in Figure 9.18, left, peak values

both for the reference and the control torque were cut out by limiting the vertical axis to
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Figure 9.18: Four-bar mechanism non-redundant and redundant PDFF-control simula-

tion: joint q1 torque response, based on a perturbed trajectory tunning. Non-redundant

control in red, redundant control in green, reference data in black.

an interval, equal to [−0.2Nm÷ +0.2Nm].

The results from simulations, comparing non-redundant and redundant FFCT-control

of the four-bar mechanism, tuned over the perturbed trajectory, are presented in Figures

9.19 - 9.21. The FFCT-control demonstrates very good robustness with respect to external

disturbances, both for its non-redundant and redundant variant.
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Figure 9.19: Four-bar mechanism non-redundant and redundant FFCT-control simula-

tion: joint q1 angle response, based on a perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 1.5 sec). Non-redundant control in red, redundant control

in green, reference data in black circles.

However, a particular problem of the redundant FFCT-control exists that could make

difficult its application if force singularities render its non-redundant form unusable. The

problem consists in peaks of 0.02s duration, observed during simulation. These peaks

actually constitute additional controller disturbances (see Figure 9.21, right, for a detail).
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Figure 9.20: Four-bar mechanism non-redundant and redundant FFCT-control simula-

tion: joint q1 velocity response, based on a perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 2 sec). Non-redundant control in red, redundant control in

green, reference data in black circles.
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Figure 9.21: Four-bar mechanism non-redundant and redundant FFCT-control simula-

tion: joint q1 torque response, based on a perturbed trajectory tunning. Non-redundant

control in red, redundant control in green, reference data in black.

These new artificial disturbances are due to the fact, that the computed-torque control

schemes act only over the sub-space of actuated variables, the number of which corre-

sponds to the number of MBS d.o.f. As already demonstrated in Chapter 8 (Section 8.2),

the piecewise partitioning algorithm we developed will produce as many different {a, p}-
partitions while computing the inverse dynamics, as it detects force singularities. The

piecewise {a, p}-partition changes during control simulations cause local FFCT-controller

”confusion”, as it passes from one set of control (actuated) variables qad
to another. The

presence of these additional disturbances explains as well the worse results for Ipc (bigger

values) in this particular case of redundant control.

Moreover, the same ”peak” problem would reappear in the case of hybrid control (Sec-

tion 9.1.2, Figure 9.4), for instance, because the part of its control scheme, acting in the



136 CHAPTER 9. CONTROL OF REDUNDANT PARALLEL ROBOTS

motion sub-space, contains the same feed-forward computed-torque controller, for which

the {a, p}-partitions apply.

Some improvement should be undertaken, so as to smooth the successive control pa-

rameter ”switches” due to the {a, p}-partition changes, and we envisage this as one of the

directions of our future work.

9.5 Planar parallel manipulator: control simula-

tions

The principal modeling and control simulation conditions we considered for the 3-d.o.f.

planar parallel manipulator are identical to that for the case of four-bar mechanism. An

important difference is the different number of mechanism degrees of freedom – for the

planar parallel manipulator it is the biggest possible in the plane. Hence, a second major

difference lies in the chosen test trajectories. The trajectory we used for the planar parallel

manipulator is much more complex and reveals more force singularity configurations than

that of the four-bar mechanism.

9.5.1 Multibody model and test description

Just like for the case of four-bar mechanism, modeling in relative coordinates and body-cut

procedure are used for this closed-loop MBS.

The multibody topology of the planar parallel manipulator is shown in Figure 9.22. The
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Figure 9.22: Topology representation of the 3-d.o.f. planar parallel manipulator. Left:

case of non-redundant actuation (joint q1, q2 and q3 actuated), right: case of simple

redundant actuation (joints q1, q2, q5 and q6 actuated).

system model comprises five bars of identical length and mass, and six revolute joints. In

case of non-redundant actuation control, joints q1, q2 and q3 are actuated, whereas in

case of redundant actuation control, a simple force redundancy (the number of actuators

surpasses the number of d.o.f. by one) is chosen, with actuated joints q1, q2, q5 and q6.
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The trajectory, used for the simulations of the four-bar, is of the type depicted in Figure

7.5, right, and is shown here in Figure 9.23 via animation”snapshots”.

1 2 3 4

5 6 7 8

Figure 9.23: Trajectory of the planar parallel manipulator.

Of a 6-sec duration, it is characterized by a sinusoidal motion along the horizontal axis X

and a constant-velocity translation along the vertical axis Y of the end-effector coordinate

system. The third coordinate θ corresponding to the third degree of freedom in the plane,

remains constant and equal to zero. The motion is accomplished in a horizontal (with

respect to the gravity field) plane, therefore the effects of gravity are not accounted for in

the modeling and the experimental procedure. The described combination of coordinate

evolutions gives an end-effector motion (in the middle of the blue bar in Figure 9.23),

which can be assimilated to a painting tool or window cleaning tool manipulation, for

instance, and represents a reconfiguration of the manipulator, symmetric with respect to

an axis, passing through the fixed revolute joints q1 and q6.

The trajectory reveals different force singularities, depending on the actuator configu-

ration chosen. For instance, as se shall see later in this section, the force singularities of

snapshots 2 and 6 are problematic, when actuating joints q1, q2 and q6.

This time, five identical bars of 0.2m length and 0.15kg mass were used in the model

and dry friction of the same friction coefficient of 0.015 was considered for the six revolute

joints, in accordance with the prototype design. Viscous friction forces were again not

taken into account for the principal part of control simulations.

An equivalent exhaustive simulation tuning procedure was performed using the same

two problem cases: a non-perturbed trajectory case and a double perturbation case, using

the same perturbation conditions. The actuator torque reference data is obtained again

using the pseudoinverse-equivalent torque optimization solution.
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9.5.2 Planar parallel manipulator: overcoming force singu-

larities

Here again, the advantages of the redundant actuation in terms of control are demonstrated

on the example of a PDFF-control, tuned by means of the exhaustive control simulation

procedure. The used gain values correspond to the ones, given in Table 9.3, commented

in the next section.

0 sec1 1.38 sec2 2.46 sec3 3.83 sec4

singularity blockage erratic motion erratic motion

Figure 9.24: Snapshot sequence of the planar manipulator non-redundant PDFF-control

in the presence of joint friction and damping torques: singularity blockage and subsequent

bad tracking.

By analogy with the case of four-bar mechanism, the example consist in simulations

of a non-redundant (q1, q2 and q6 actuated) and a redundant (q1, q2, q5 and q6 actuated)

PDFF-control of the four-bar mechanism for the same combination of joint dry friction

and damping coefficients (0.015 and 0.0039 [Nm.s/rad], respectively). The joint damping

is not accounted for in the dynamic model for this case either, recreating the practical

situation, in which the joint friction terms of a given robot change in time (e.g. the

lubrication conditions deteriorate).

0 sec1 1.38 sec2 2.46 sec3 3.83 sec4

singularity smooth motion smooth motion

Figure 9.25: Snapshot sequence of the planar manipulator redundant PDFF-control in the

presence of joint friction and damping torques: singularity effect elimination and smooth

passage.

Sequences of snapshots are given in Figures 9.24 and 9.25 in order to visualize the vir-

tual system behavior for the two cases – non-redundant and redundant actuation PDFF-

control. The non-redundant PDFF algorithm, applied on joints q1, q2 and q6 of the 3-d.o.f.

planar parallel manipulator, does not perform successful tracking of the prescribed trajec-

tory for the given combination of joint friction and damping. The tracking is perturbed by

the singularity configuration of snapshot 2 (at about 1.38 sec), after which the manipula-

tor demonstrates a completely erratic motion. The latter can be noticed as well in Figure
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Figure 9.26: Planar manipulator PDFF-control in the presence of joint friction and damp-

ing torques: joint angle and torque responses. Non-redundant control (q1, q2 and q6 ac-

tuated) in red, redundant control (q1, q2, q5 and q6 actuated) in green, reference data in

black (circles and lines).

9.26 – by the time evolution of joint coordinate q5 and joint torque Q1, applied on q1. For

the case of redundant PDFF-control the prescribed trajectory is followed with very good

precision and is free of force singularity problems. Thus, the conclusion on the advantage10

of applying redundant control to parallel manipulators for trajectories that contain singu-

larities, is reconfirmed and generalized by verifying it on a planar manipulator possessing

all the degrees of freedom in the plane.

9.5.3 Comparison of the simulated control algorithms

Just as in the case of four-bar mechanism, exhaustive simulations over the non-perturbed

trajectory and in the presence of the two perturbations were performed for the PD, PDFF

and FFCT-control laws in order to tune them. The obtained gain values, settling times

and integral errors for the planar parallel manipulator are given in Table 9.3.

Conclusions, similar to the simulation analysis of the four-bar mechanism, can be drawn

here as well. In order to avoid unnecessary repetitions and the overflow of this text with

graphical information, only the comparison between a non-redundant and a redundant

10That becomes a necessity in these examples!
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TNPT RPT TPT RPT

Controller Kp[Nm] Kv[Nms] Tsp
[s] Ipc[−] Kp[Nm] Kv[Nms] Tsp

[s] Ipc[−]

NRD PD 5 1.6 0.08 3.74 5 1 0.08 3.38

RD PD 6 1.2 0.04 3.11 5 2.7 0.09 1.63

NRD PDFF 5 0.3 0.1 4.41 6 2.6 0.08 1.72

RD PDFF 2 0.19 0.04 3.22 5 3.2 0.1 1.59

Controller Kp[s
−2] Kv[s−1] Tsp

[s] Ipc[−] Kp[s
−2] Kv[s−1] Tsp

[s] Ipc[−]

NRD FFCT 1.8 4 1.35 2.66 1.4 4 1.3 2.69

RD FFCT 9 3 0.11 2.10 5 2 0.12 2.65

Table 9.3: Gain values, settling time and integral error for the planar manipulator control

simulations. Legend: NRD - ”non-redundant actuation”, RD - ”redundant actuation”,

TNPT - ”Tuning for the non-perturbed trajectory”, TPT - ”Tuning for the perturbed

trajectory”, RPT - ”Response for the perturbed trajectory”.

PDFF-control for a case of successful tracking of the complete reference trajectory, is given

in Figures 9.27-9.29. In order to have example variety, the non-perturbed controller tuning

(TNPT) was chosen this time for the simulations. The position and velocity responses for

joint q5 are presented in Figures 9.27 and 9.28, whereas the joint torque Q1 is shown in

Figure 9.29. The reason for this choice of joints is that q5 is not controlled (actuated) in the

non-redundant control case, therefore it is interesting to compare the the force redundancy

influence on its motion tracking, but in the same time a torque response graph can not be

given for this joint under the non-redundant PDFF-control, so q1 was chosen (as before)

for that purpose.
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Figure 9.27: Planar manipulator non-redundant and redundant PDFF-control simulation:

joint q5 angle response, based on a non-perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 1.5 sec). Non-redundant control in red, redundant control

in green, reference data in black circles.

The figures reconfirm the conclusion based on the numerical data of Table 9.3, of
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Figure 9.28: Planar manipulator non-redundant and redundant PDFF-control simulation:

joint q5 velocity response, based on a non-perturbed trajectory tunning. Left: complete

trajectory, right: excerpt (0 - 1.5 sec). Non-redundant control in red, redundant control

in green, reference data in black circles.
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Figure 9.29: Planar manipulator non-redundant and redundant PDFF-control simula-

tion: joint q1 torque response, based on a non-perturbed trajectory tunning. Left: non-

redundant control in red, right: redundant control in green. Reference data in black.

a better position settling time and lower integral errors, achieved with the redundant

PDFF-control scheme.

Concluding this chapter, we would like to insist once more on the fact that in practical

situations, one should not rely on simulation results of successful non-redundant control

of parallel manipulators following singular trajectories, and thus has to apply redundant

actuation in cases when this is physically possible for an acceptable cost. As it was demon-

strated in this chapter, even the application of a simple degree of redundant actuation,

i.e. only one motor more than the numbers of manipulator degrees of freedom, helps a

lot in eliminating the force singularity problems for a rather complex parallel manipulator

trajectory (see Figure 9.23).

Finally, the hybrid position/force control scheme of Figure 9.5 was not tested via sim-
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ulation, because of the {a, p}-partition switching problems already mentioned and the

necessity to artificially recreate on-line data from force/torque virtual ”sensors”, which

induced further developments (commented in the prospects section), going beyond the

time limits of this research work.
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Chapter 10

Prototype Design

An important part of the present work consists in the design of a parallel manipulator pro-

totype allowing an experimental validation of the theoretical developments we presented.

The prototype we designed was intended as providing a convenient and reliable means

of validation of the theoretical developments of this research study. Therefore, we shall

describe in the pages to follow those prototyping points that we consider as being of

primary importance for the comprehension of the design concepts and solutions used.

Through the latter, a prototype of a 3-d.o.f., light planar parallel manipulator is obtained,

matching close enough the virtual models we treat.

10.1 Mechanical Design

The mechanical design of the prototype we designed targets the following main character-

istics:

1. Design of a light1 planar parallel manipulator;

2. Robustness of the construction;

3. Low mass and inertia of the manipulator constitutive elements (bodies, connection

and transmission parts), in particular of those in motion;

4. Transmissions that do not engender friction torques, nor add significant masses to

the moving bodies;

5. Possibility for bar length modification, in order to easily adjust the transmission

belt tension;

6. Modularity (possibility to easy assemble a five-bar or six-bar mechanism from a

four-bar mechanism);

1for which the actuators are fixed to the base, and not to the moving manipulator bars (see

Section 1.2.2).
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7. Element accessibility and easy mounting/dismounting manipulation for minor ad-

justments, modifications and repair.

As a prototyping solution, complying with these requirements and corresponding as

well to the planar parallel manipulator topology (see Figure 9.22, right), the prototype

shown in Figure 10.1 was designed.

Figure 10.1: The 3-d.o.f. planar prototype (PRM Division, UCL). Left: excerpt from a

drawing of the prototype assembly (3-D exploded view), right: a photograph of the real

prototype.

Several design particularities have to be emphasized:

• Two pairs of at most three motors each are fixed beneath the base, by means of

holders, specially designed for this purpose (Figure 10.2), in order to obtain a light

parallel manipulator;

Figure 10.2: The prototype actuator block. Left: Catia 3-D view of the motor holder

assembly (3 motors attached), right: the real motor holder (the lower extremities of the

three concentric rotation transmission axes are clearly visible in the center of the photo).
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• In each holder, three concentric axes form a rotation transmission block (Figure

10.2, right; Figure 10.3). The outer axis, fixed to the base via two ball bearings,

ensures the rotation of the moving part of the first joint and the first bar of each

parallel leg. The inner axes serve to transmit the rotation via pulleys and toothed

belts to the rest of the joints;

• For each of the two motor holders, the motor/gear blocks are placed at 120 deg with

respect to each other, and driving spur gears of equal diameter are directly coupled

with the output shafts of the motor/gear blocks. The motor positioning allows for

equal-distance access to the three concentric axes of each of the two joints, fixed to

the base, as shown in Figures 10.2 and 10.3;

Figure 10.3: Transmission of the motor torques to the bar joints. Left: one of the motors

mounted and its 1:1 ratio spur gear transmission, providing the motor torque to the

corresponding axis. Right: excerpt from a drawing of the three concentric transmission

axes.

• The transmissions used (Figure 10.4) are of toothed belt/pulley type, the diameter

of the pulleys being chosen in standard correspondence with the toothed belts. The

distances between the pulley axes correspond to the bar length, equal to 200mm.

10.2 Actuators, Sensors and Associated Hardware

10.2.1 Actuator and sensor choice

In order to have at our disposal a prototype, capable of performing rapid motion of

large amplitudes while manipulating external loads, and be able to realize correct po-

sition/velocity tracking control over it, we chose as actuators four identical DC-motors

with graphite commutation (Series 2657CR, Faulhaber: Annexe 10.3.2), produced by

FAULHABER Group – one of the leading companies in the field of high quality, high

performance drive systems. The motors are coupled with planetary gearheads of 1:66 gear



148 CHAPTER 10. PROTOTYPE DESIGN

Figure 10.4: The prototype bars with their transmission parts. Left: Catia 3-D view

of the bar assembly (2 bars with their common axis and pulleys), right: a view of the

prototype bars with the transmission belts and pulleys.

ratio (Series 26/1, Faulhaber: Annexe 10.3.2) and 2-channel incremental magnetic shaft

encoders (Series IE2-512, Faulhaber: Annexe 10.3.2) possessing 512 lines per revolution.

This combinations provides actuators, delivering an output torque of 4.5 Nm (at the out-

put shaft of the planetary gearhead) and sensors of a precision (0.01 deg), sufficient for

correct position and velocity tracking.

10.2.2 Developed hardware components

Figure 10.5 represents the hardware conceptual solution we developed so as to create a con-

venient interface between the dedicated dSPACE controller PC-board, used for prototype

real-time control, and the actuators.
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Figure 10.5: The developed hardware, interfacing the dSPACE DSP pc-card and the

prototype servo-components.

The following hardware particularities have to be specified:

1. For the present prototype, a dedicated PC-station equipped with a dSPACE DS1102

DSP Controller Board was used. The DS1102 board has the following main charac-

teristics:
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• Texas Instruments TMS320C31 floating-point Digital Signal Processor (DSP)

of 60 MHz clock rate;

• 130KB 32-bit RAM for user applications;

• 4 Analog-to-digital (ADC) input channels (2 parallel 16-bit channels of 4 µs

conversion time plus 2 parallel 12-bit channels of 1.25 µs conversion time) of

10 V input voltage range;

• 4 parallel 12-bit DAC (digital-to-analog) channels (4 µs typical settling time)

of 10 V output voltage range;

• 16 digital I/O (input/output) bit-selectable lines, of which capture/compare

unit with 8 channels (2 in, 4 out, 2 in/out) and PWM generation on up to 6

channels (40 ns resolution); dedicated circuitry provides PWM frequency of

up to 100 MHz;

• 2 incremental encoder interfaces - two parallel input channels for two phase

lines and one index line each;

• Power supply: 5 V, 1.5 A and 12 V, 100 mA.

2. As the DS1102 board possesses only two incremental encoder interfaces, and for

our prototype control applications up to 4 motors are controlled using feed-back

data, in order to preserve the uniformity in the control synthesis 8 identical I/O

channels were used for the encoder data (1 clock channel plus 1 sign channel per

encoder). The encoder signals are transformed in a convenient form for the DS1002

I/O specifications, using LS7084 quad-clock converters (Annexe 10.3.2);

3. The control of the Faulhaber DC-motors is performed using choppers, providing

effective current values according to a Pulse-width Modulation (PWM) over a sup-

plied DC voltage of 12V; The 12V DC supply is delivered to the choppers using a

separate high-quality stabilized transformer/rectifier, whereas the PWM signals are

provided from the dSPACE controller board;

4. The on-line data on the currents through the motor armatures is obtained via current

transducers and entered into the DS1102 board via its four ADC-channels. In our

application, LEM LTS 15-NP transducers of 5V DC supply voltage (see Annexe

10.3.2) were used;

5. A protection PhotoMOS relay switch, controlled by a separate signal from the

DS1102 board, was added to the main hardware interface box. The protection

allows for avoiding extreme motor charging and possible subsequent physical dam-

age of prototype when the choppers are at their passive state (absence of control

signals when not in a real-time control motion), corresponding to 100% duty cycle.

This problem is eliminated by the switch-on signal, sent to the PhotoMOS relay

only for the duration of real-time control, during which appropriate PWM control

signals are sent to the choppers from the DS1102 board.
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6. Supplementary zener-diode protections were installed over the 5V and 12V DC sup-

plies in the principal hardware circuitry, in order to protect the principal functional

components - choppers, current transducers, incremental encoders, binary counters;

7. The design of print circuit boards (PCB) for the main and the intermediate interface

cards (Figure 10.5) was carefully studied in order to have the different signals well

separated and the shortest possible current ways. For the same reasons (avoiding

signal interference and mutual noise generation), high quality screened cables were

used for all the connections.

Design and implementation problems – solutions adopted

Some problems that we encountered during the design of the described hardware required

solutions, based on a compromise between prototype performances on one side, and overall

cost and time on the other:

1. The limited memory for user applications of the DS1102 controller board (130KB)

often caused problems when performing the real-time prototype control. These prob-

lems were indicated by the impossibility to compile the corresponding SIMULINK

model and store it in the board for execution, or by the inability of the board to

perform in real-time over the complete time duration of the trajectories considered,

when the model was successfully compiled and loaded. In order to cope with this

major hardware limitation problem, countermeasures were adopted:

• The sampling frequency was limited to a range of frequencies from 4 to 4.5

KHz (SIMULINK integrator fixed steps from 2.5 × 10−4 to 2.2 × 10−4 sec);

• The reference trajectory data was computed at a fixed step size of 0.01 sec (100

Hz) so as to reduce the size of data files to be stored in the DS1102 board;

• The sampling frequency limitation necessitated a reduction of the large number

of encoder pulses (33000 pulses/round, equal to 500 pulses/round at the motor

shaft times the gearhead ratio of 66), in order to obtain a correspondence

between the sampling frequency fs and the maximum number of encoder pulses

Penc that can be detected without non-negligible error. According to the well-

known sampling theorem (Nyquist [108], Kotelnikov [109]) of the information

theory, the non-equality fs > 2B between a signal of limited bandwidth B

and a sampling frequency fs must be satisfied in order to have the signal

reconstructed exactly via discrete sampling. Therefore, the number of encoder

pulses was divided by a factor of 16, using the dividing binary counters 74LS93,

shown in Figure 10.5. The obtained number of encoder pulses (2062.5) is

correctly sampled for frequencies, greater than 4125 Hz, and still sufficient in

terms of precision (0.003 rad).

2. Parasite noises were detected in the current measures, obtained from the transduc-

ers, during the initial phases of hardware testing. These noises were principally due
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to the motor and chopper commutation, we eliminated them by means of:

• Hardware filtering – using self-inductances of appropriate characteristics, placed

between the motors and the choppers, as well as between the transducer cur-

rent measure signal and the ADC physical entries of the dSPACE board;

• Software filtering – using low-pass first-order filters at the output ports of the

ADC-block in the corresponding SIMULINK/dSPACE models.

• The chopper power supply lines were separated via capacitor filters, so as to

bring to a minimum the parasite noise emissions of their commutation.

10.3 Prototype Real-time Control

In the framework of the present research study, two principal closed-loop multibody me-

chanical systems were modeled: a four-bar mechanism and a planar parallel manipulator.

Modeling and control simulations of the two closed-loop MBS were presented in the

previous chapter. Here, comments are given on experiments, carried out for a variant of

the prototype that corresponds to the four-bar mechanism with two actuators, and for

the complete prototype topology of the 3-d.o.f. light planar parallel manipulator with

four actuators. The actuator number for the both cases corresponds to a single degree of

actuation redundancy (see Chapter 4).

Two control algorithms were tested experimentally: a PD-control and a PDFF-control.

The predictive computed-torque controller was not tested because of the memory limita-

tions of the DS-1102 controller board.

Some additional experiments we did with a simplified (because of the same limitations)

variant of a redundant hybrid controller turned out to be unsatisfactory in obtaining

control results over the complete manipulator trajectory. We will comment more on this

issue in the prospects of this work.

10.3.1 Software implementation

The software implementation of the prototype control algorithms was performed using

SIMULINK and dedicated SIMULINK-compatible blocks of the dSPACE implementa-

tion software package Real-Time Interface (RTI), accompanying the DS1102 board. The

structure of the models (under the form of connected SIMULINK blocks) and their main

modules is briefly described hereunder.

Figure 10.6 shows the structure of the outer layer of all the plant control models that

we developed.

Its main component sub-systems can be cited as follows:

• Controller sub-system

In Figure 10.7 the structure of the designed SIMULINK sub-system representing a

PDFF-controller, is shown. It corresponds to the PDFF-control algorithm, described
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Figure 10.6: Main window with SIMULINK block diagram of the plant hybrid control

model.

Figure 10.7: SIMULINK block-scheme of the PDFF-controller structure model.

in the previous chapter. Similar sub-systems can be found in the SIMULINK models

of PD and FFCT-controller.

• Motor current/torque conversion sub-system

Next important sub-system of the plant control model is the one converting the

data on the motor armature currents (obtained in real-time from the current trans-

ducers) into torque values (Figure 10.8). The conversion is performed on the basis

of corresponding DC-motor, gearhead and current transducer characteristics (see

Annexe for details). The presence of low-pass first order software filters, smoothing

the torque signals that still contain some current noise (already partially filtered by
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appropriate inductors), as well as the existence of ”Emergency stop” block, contain-

ing the software control of the PhotoMOS protection relay (Figure 10.5), are to be

noticed.

Figure 10.8: SIMULINK block diagram of the motor current/torque signal conversion

and filtering. Input: motor armature currents (VLEM) [A], output: joint actuator torques

(T sens) [Nm].

• Position/velocity estimation sub-system

As Input/Output ports of the DS1102 board were used to gather the data from the

incremental encoders, serving as motion sensors attached to the motor shafts, an

appropriate treatment of the data signals (encoder pulses in a rectangular form), re-

ceived from the intermediate binary clock counter-and-divider interface was needed.

The number of pulses entering the controller board is obtained using SIMULINK

data-store blocks and crossing-value triggered switches, and data history is created

using a ”Transport-delay” block over an interval of 10 samples (0.01 sec) in order

to have correct joint velocity estimates.

• Motor electro-mechanical model sub-system

The electro-mechanical model of the four identical DC-motors is shown in Figure

10.10. The control torque inputs and the current joint velocities constitute its input

data, and pulse-width modulation signals, sent to the corresponding PWM-entries

of the dedicated dSPACE SIMULINK block, form the output of this SIMULINK

model sub-system.
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Figure 10.9: Position/Velocity estimate computation.

Figure 10.10: Block-diagram of the motor electro-mechanical model and PWM-signal

construction. Input: joint control torques [Nm] and joint velocities [rad/s], output: PWM-

values [-].
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10.3.2 Experimental results

The trajectories, used for the experiments of the two prototype variants – the four-bar

mechanism and the planar parallel manipulator, correspond exactly to the trajectories

already described in Chapter 9 (Section 9.4, Figure 9.10 and Section 9.5, Figure 9.23).

”Virtual model – prototype” confrontation

The following important points, distinguishing the virtual models from the experimental

ones, have to be emphasized:

• The DC-motor dynamics is not taken into account in the virtual models used for

controlled system simulation analysis;

• Only joint friction torques, depending linearly on an approximated (via experiments

on the prototype) friction coefficient and the normal components of the internal

reaction forces are accounted for in the virtual models. Viscous friction components

in the journal bearings, as well as friction components in the motors and all the

gears are neglected, but exist in the real system;

• Non-negligible joint clearances are present in the real system.

Cases of singularity-perturbed non-redundant control: experimental demon-

stration

Impossibility to overcome force singularities and subsequent erratic motion deviating

from the prescribed trajectories, were observed both for the four-bar mechanism and the

planar parallel manipulator experiments, when applying non-redundant PD and PDFF-

controllers.

In the previous chapter, simulation results were presented showing the real danger of

relying on non-redundant control schemes to pass through force singularities, when the

internal friction is underestimated (Sections 9.4.2, 9.5.2). Here, snapshot sequences taken

from videos of the real mechanism behavior, are shown as a practical confirmation of the

erratic manipulator behavior in such cases.

Figure 10.11 shows snapshots of the four-bar prototype motion for the non-redundant

PDFF-control acting of joint q1 (Figure 10.11, up) and the redundant PDFF-control,

acting on q1 and q4 (Figure 10.11, down). In the case of non-redundant control, the force

singularity at time t = 3.63 sec provoke temporary blockage of the prototype motion, and

the prototype control continued unsuccessfully by an erroneous trajectory tracking. The

redundant PDFF-controller completely eliminated this problem.

Let us recall, that the erroneous motion tracking of the prototype, due to underesti-

mated joint friction and damping terms in the dynamic models, was quite realistically

predicted by the simulation cases, imitating such specific functional conditions. In terms

of visual comparison, the graphical results from the simulation of the four-bar erratic

behavior is given here once more (Figure 10.12).
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Figure 10.11: Comparison of four-bar prototype experiments with non-redundant and re-

dundant PDFF-control (movie snapshots). Up: non-redundant control – force singularity

perturbation, resulting in a bad trajectory tracking. Down: redundant control – precise

tracking and smooth motion.
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Figure 10.12: identical to Figure 9.13 (up), Section 9.4.2
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Figure 10.13: Erroneous tracking of the non-redundant PDFF-controller, applied on the

planar manipulator prototype (snapshots).

The same phenomenon was observed when testing non-redundant and redundant PD

and PDFF-control schemes on the planar parallel manipulator prototype. In Figure 10.13,

identical problematic situation is given in several snapshots. The deviation from the pre-

scribed trajectory, for which the intermediate bar (with the external load of three pulleys

on it) has to remain horizontal, is clearly noticeable. The force singularity, represented by

the alignment of two neighbor bars, blocks them in this configuration and causes deviation

from the reference trajectory.
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This major problem is successfully solved by using redundant control schemes, as it

will be demonstrated by the experimental results in the next section.

Planar parallel manipulator: redundant PD/PDFF-control comparison

The prototype control experiments on the basis of redundant controller schemes empha-

sized once more the advantages of applying redundant actuation to eliminate the effects

of force singularities, present in the manipulator workspace. Moreover, good trajectory

tracking over the complete trajectory was achieved using the redundant PD and PDFF-

control schemes.

The experiment were carried out for gain coefficients Kp = 350,Kv = 8 for the PD-

control and Kp = 350,Kv = 8,Kt = 5 in case of PDFF-control. These values were

obtained manually (through experimental tuning) and are quite different (significantly

higher) from the values, presented in the previous chapter and obtained via simulations.

The difference is principally due to the discrepancies between the virtual models and the

prototype, on which we already gave short comment in Section 10.3.2.

1 2

6

3 4 5

7 8 9 10

Figure 10.14: Successful redundant PDFF-control, applied on the planar manipulator

prototype (snapshots). The complete trajectory is fully and precisely tracked by a smooth

controlled motion.

Snapshots from the video taken during the experiments for the case of successful re-

dundant PDFF-control, are shown in Figure 10.14. The prototype motion was smooth

and free of force singularity disturbances along the prescribed path.

In Figure 10.15, the experimental results from the redundant PD and PDFF-control of

the planar parallel manipulator prototype are presented in graphs. The following impor-

tant observations can be made on the basis on the latter:

• The prototype demonstrates very good tracking precision at position level and ac-

ceptable precision at velocity level. Low integral errors of 0.2166 for the PD-control

and 0.3975 for the PDFF-control were obtained, with Ipc calculated on the basis

of the position and velocity responses only (i.e. Wp = Wv = 1,Wa = Wt = 0, see

Section 9.2);
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Figure 10.15: Prototype real-time redundant control: joint angle and velocity responses

for q2 and q5. PD-redundant control in red, PDFF-control in green, reference data in black

circles.

• For the chosen actuator configuration, the prototype follows the trajectory com-

pletely and without blocking or actuator saturation. The effects of force singulari-

ties (e.g. snapshots 3 and 8 in Figure 10.14) are eliminated, the controller applies

joint torques that give smooth, continuous prototype motion.

Concluding this last chapter of the present research study, we would like to emphasize

once again the fact that even applying a simple degree of actuation redundancy to parallel

manipulators that follow complex trajectories with force singularities, can allow for stable

real-time control of very good quality, for which the possible discontinuities in the multi-

body system motion, caused by the singularities and often accompanied with actuator

blockage, saturation and even damage of motors or other mechanism components (gears,

bearings, etc.), are successfully eliminated.



Conclusions and prospects

General conclusions

This work presents an approach for modeling and actuation of parallel manipulators that

takes advantage from the force redundancy principles in order to eliminate the effects of

parallel singularities existing in the manipulator workspace, and contribute to the effective

manipulator control. The different stages of the approach were developed theoretically,

then implemented in corresponding software applications, and validated by computer sim-

ulations and experiments.

The proposed approach principally targets:

• Elimination of force singularities that exist in the parallel manipulator workspace

by means of redundant actuation and its application to the manipulator control,

thus allowing for smooth motion over a workspace of increased volume;

• Satisfaction of optimal performance criteria (e.g. actuator torque minimization)

when finding solutions for the force redundancy.

Several conclusions can be made on the basis of the accomplished research and devel-

opment phases of the work:

1. The extensive utilization of the multibody formalisms [2, 3], of relative coordinate

model formulation and effective symbolic generation tools [5, 3, 6] allowed to:

• Deal with strict terminology and notations when describing closed-loop multi-

body systems (MBS), namely, parallel manipulators;

• Generate parallel manipulator kinematic and dynamic models, convenient for

the purposes of our work: numerically stable real-time control simulations that

make use of coordinate partitioning techniques, specific actuation and control

strategies, acting on the manipulator joints.

2. The reasoning of ”actuating locally the joints, not subjected to force singularity

problems”, relying on practical ”intuition” and hidden in the virtual actuation

strategy, proved its effectiveness in eliminating the force singularities and produced

feasible, realistic actuation solutions.

159
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The piecewise actuation practically confirmed the need of using redundant actua-

tion when continuous, singularity-free motion of the manipulator is sought. As a

matter of fact, for the real treated manipulators the virtual changes in the actuator

locations during the motion inevitably result in a permanent actuation of all the

locally actuated joints, leading to actuator redundancy.

3. The choice of closed-loop MBS used for testing of the developed approach through

simulations and experiments was adequate to the purposes of our work. The first

”parallel manipulator”– a simple four-bar mechanism, allowed for very good visual-

ization of the piecewise actuation approach and the elimination of force singularities

using redundant actuation. The second system – a 3-d.o.f. planar parallel manipu-

lator, offered more choices in terms of possible trajectories and actuator-dependent

singularities to treat, and served very well to the computer and experimental vali-

dation of the redundant actuation and control strategies.

4. The actuator dynamics and better friction models have to be considered in order to

emphasize the utility of control schemes that use reference torque values. We will

give more comments on this when we give some prospects of our work.

5. As intended, the design of a parallel manipulator prototype constituted a convenient

means of:

• Assessment of the developed modeling and actuation approach. The prototype

allowed for experimental validation of the force redundancy advantages when

complex trajectories containing force singularities are followed;

• Validation of the application of widely used controllers on redundantly actu-

ated parallel manipulators.

Concerning the last point, we would like to mention that it was practically not possi-

ble to experiment with the predictive computed-torque control scheme, successfully

tested via simulation. This was due to the hardware limitations we were confronted

by. Furthermore, some additional experiments with a simplified scheme of hybrid

control that did not bring valuable results revealed some modeling and control prob-

lems that still have to be solved. Therefore, we consider future experiments with

these two controllers among the perspectives we cite hereunder.
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Main contributions

The following contributions of this research work could be pointed out:

1. A unified approach for modeling and actuation of redundantly actuated parallel

manipulators was developed that allows for obtaining a continuous, smooth mo-

tion over the complete manipulator workspace by eliminating the effects of force

(actuator-dependent) singularities, while satisfying actuator optimization criteria.

The validity of this approach was tested via computer simulations and experiments;

2. For the treated parallel manipulators, kinematic and dynamic models that are stable

with respect to numerical, kinematic loop closure problems were created. Together

with the computation efficiency of the models, due to the symbolic generation tools

used [5, 3, 6], this allowed to carry out real-time control simulations over any trajec-

tory in the manipulator workspace and to develop a ”pragmatic” controller tuning

procedure, based on them.

3. The advantages of applying redundant actuation control to parallel manipulators

following complex trajectories that contain parallel (force) singularities were demon-

strated by means of computer simulations and experimentally.

We showed that the problems caused by the force singularities (discontinuities in

the applied joint torques, erroneous control, mechanism locking, actuator saturation

...) can be successfully eliminated by the redundant control inputs and that the

optimized solutions for the actuator torques, used as an additional (feed-forward)

reference by the controllers, have a positive influence on the control quality.

4. The topology and the particular design of our prototype allow for its use as an

educational tool.

The prototype in its feasible variants (four-bar, five-bar or six-bar) offers a very good

practical illustration of parallel manipulators, possessing from one to all the three

possible degrees of freedom of the planar motion. The corresponding workspaces

contain multiple actuator-dependent singular configurations. Thus, this prototype

will undoubtedly become an interesting educational tool, used for instance in the

framework of courses in multibody dynamics and robotics. Moreover, it gives an

excellent visualization of the redundant actuation advantages in terms of force sin-

gularity elimination, and its effectiveness with this regard when applied via known

control schemes.



162 CONCLUSIONS AND PROSPECTS

Prospects

Several perspective research directions, based on the conclusions and the contributions of

the present research, can be outlined:

1. Validation of the developed actuation and control strategies on complex 3-D parallel

topologies, e.g. Stewart platform or Hunt manipulator topology, for families of

trajectories containing force singularities.

As already demonstrated in this work, even applying a single degree of redun-

dant actuation gives promising results in terms of force singularity elimination and

workspace enlargement. Therefore, it will be of great interest to broaden the family

of parallel manipulators concerned, testing the developed approach on 3-D parallel

manipulators that have already found or will find applications in different domains

of the everyday life.

2. Improvement of the redundant control algorithms, tested by simulation and/or ex-

periments.

• In Chapter 9 (Section 9.4.3), we commented the particular additional distur-

bances in the feed-forward computed torque control simulations, due to the

active/passive coordinate re-partitioning, performed during the real-time con-

trol and necessary for effective force singularity elimination. Possible solutions

to this problem would, for instance, include the use of convenient gain schedul-

ing techniques in order to ensure smooth passage from one set of controlled

variables to another, or the application of sliding-mode control algorithms.

Moreover, in Chapter 10 we explained that the experimental testing of this

controller was not possible because of the limited memory of the hardware

controller board. Successful experiments with this control algorithm on a

DSP-board of higher performances would be of great interest to this work,

e.g. as one more confirmation of its conclusions and contributions.

• The redundant hybrid control scheme of Figure 9.5 was not tested via simu-

lation, as it required further developments with respect to creating estimates

for the feed-back data from torque sensors, which do not exist in the origi-

nal direct dynamic models and thus are not present in the simulation loop.

Such estimates are classically built using techniques of designing an additional

dynamic system, called state observer [91, 92], that uses as input the system

inputs and outputs in order to create in its turn outputs for the unmeasur-

able system states. Models of hybrid controller with state observer and their

subsequent simulation validations were not planned in the framework of the

present research thesis, because this required additional software and hardware

developments that go beyond its limits.

Some experimental tests, not interfering with these limits, were carried out

though on the designed prototype. The tests were performed using a simpli-
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fied hybrid control scheme, depicted in Figure 10.16, for which a PD-control

instead of predictive computed-torque control was considered in the motion

sub-space and the active/passive coordinate piecewise partitioning procedure

was not applied. The first modification was imposed by the hardware limita-

tions cited earlier, the second – by the fact that the motion sub-space part

of the redundant hybrid controller of Figure 9.5 would also suffer from distur-

bances caused by the on-line changes of the {a, p} partitions.
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Figure 10.16: A ”reduced” hybrid control scheme, tested through experiments on the

developed prototype.

These last experiments demonstrated correct reference value tracking both in

the motion and the force sub-space, but eventually lead to deviation from the

reference trajectory for the joint coordinate controlled in the force sub-space,

and manipulator leg collisions due to the control error. The experimental

results revealed two important issues:

– The lack of the sequence of active/passive coordinate partitions that en-

sures actuation and motion stability for cases of trajectories with force

singularities leads to low control quality;

– Better estimates for the actuator torques need to be computed on the basis

of better models for the joint friction and the actuator dynamics, in order

to have hybrid control of better quality. Moreover, other correction terms

(e.g. integral term) could be added in the force sub-space, provided that

hardware of better performances (higher amount of available memory)

was employed.

Just as for the predictive computed-torque control, if applying the series of ap-

propriate active/passive partitions, a convenient treatment (e.g. gain schedul-

ing techniques) of the partition changes should be considered so as to avoid

the appearance of controller disturbances for these changes. Moreover, model-

ing and testing of hybrid control schemes including state observer can also be

envisaged in the prospects of this work.

3. Joint backlash cancellation using the redundant actuation.
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We already mentioned in Chapter 4 that the elimination of joint clearances often ex-

isting in the parallel manipulator assembly, is an interesting and perspective domain

of force redundancy applications. The productive work of A. Muller (e.g. [64, 97])

can be cited again with regard to this.

A preliminary research in this direction and a symbolic generation of some parallel

manipulator models containing backlash were performed by the author of this work

as well. The modeling was based on the techniques we used in the present research,

and took advantage of the developed in [110] unilateral contact models.

The backlash modeling and elimination through redundant actuation was eventually

left out of the scope of this study. Nevertheless, a sufficient basis for research in this

direction was created. Therefore, we think that to continue the latter profiting from

the present work contributions would be an excellent perspective. What is more,

non-negligible backlash is present in the gears of the prototype we designed, there-

fore the latter would provide a convenient means of validation of future actuation

and control strategies that eliminate not only force singularity problems, but the

mechanism backlash as well.

4. Other prospects.

Different applications could be figured out that would take advantage of the con-

tributions of our work. For example, redundant parallel micro-manipulators, re-

dundant surgical instrument mechanisms or redundant human prostheses could be

imagined, characterized by high structure rigidity and slow motion properties, that

allow for higher degrees of force redundancy and straightforward application of sin-

gularity elimination strategies. Reconfigurable hybrid or parallel manipulators, per-

forming high motion precision at high speeds, and possessing high payload ratio,

could be designed for use in specific environments that require multiple obstacle

avoidance together with high performance criteria satisfaction, etc.
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commande. Toulouse: Cepadues-Editions, 1984.

[81] Luh J.Y., Walker N.W., and Paul R.P. On-line computational scheme for mechanical

manipulators. Journal of Dynamic Systems, Measurement and Control, 102:69–76,

1980.

[82] Petzold L. Differential/algebraic equations are not ode’s. SIAM J. Sci. Stat.Comput.,

3(3):367–384, 1982.

[83] Baumgarte J. Stabilization of constraints and integrals of motion. Computer Methods

in Applied Mechanics and Engineering, 1:1–16, 1972.

[84] Petzold L. Methods and softwares for differential/algebraic systems. In NATO ASI

Series, Series F: Computer and Systems Sciences, Vol. 69, pages 127–140, Berlin,

1989.

[85] Eichberger A., Fuhrer C., and Schwertassek R. The benefits of parallel multibody

simulation and its application to vehicle dynamics. In Advanced Multibody System

Dynamics : Simulation and Software Tools, pages 107–126, Dordrecht, the Nether-

lands, 1993.

[86] Fuhrer C. and Leimkuhler B. A new class of generalized inverses for the solution of

discretized euler-lagrange equations. In NATO ASI Series, Series F: Computer and

Systems Sciences, Vol. 69, pages 143–154, Berlin, 1989.



172 CONCLUSIONS AND PROSPECTS

[87] Penrose R. A generalized inverse for matrices. In Proceedings of the Cambridge

Philosophical Society, volume 51, pages 406–413, 1955.

[88] Deo A.S. and Walker I.D. Minimum-effort inverse kinematics for redundant manip-

ulators. IEEE Transactions on Robotics and Automation, 3:767–775, 1997.

[89] Shim I.C. and Y.S. Yoon. Stabilized minimum infinity-norm torque for redundant

manipulators. Robotica, 16:193–205, 1998.

[90] Dombre E. and Khalil W. Modélisation et commande des robots. Hermes, Paris,

1988.

[91] Bélanger P.R. Control Engineering: A Modern Approach. Saunders College Pub-

lishing, 1995.

[92] Ogata K. Modern Control Engineering (3rd edition). Prentice Hall, 1996.

[93] Nakamura Y. and Hanafusa H. Inverse kinematic solutions with singularity robust-

ness for robot manipulator control. Journal of Dynamic Systems, Measurement and

Control, 108:163–171, 1986.

[94] Hanon M. A comparison of methods for the control of redundantly-actuated robotic

systems. Journal of Intelligent and Robotic Systems, 14:3–21, 1995.

[95] Liu G.F., Wu Y.L., Wu X.Z., Kuen Y.Y., and Li Z.X. Analysis and control of

redundant parallel manipulators. In IEEE International Conference on Robotics

and Automation, pages 3748–3754, Seoul, South Korea, May 21-26, 2001.

[96] Cheng H., Yiu Y.K., and Li Z.X. Dynamics and control of redundantly actuated

parallel manipulators. IEEE Transactions on Mechatronics, 8(4):483–491, 2003.

[97] Müller A. Internal preload control of redundantly actuated parallel manipulators. In

International Conference on Robotics and Automation, pages 948–953, Barcelona,

Spain, April, 2005.

[98] Hui S., Xu-Zhong W., Guan-Feng L., and Xe-Ziang L. Hybrid position/force adap-

tive control of redundantly actuated parallel manipulators. Acta Automatica Sinica,

29(4):567–572, 2003.

[99] Raibert M.H. and Craig J.J. Hybrid position/force control of manipulators. Trans-

actions of the ASME Journal of Dynamic Systems, Measurement and Control,

103:126–133, 1981.

[100] Lipkin H. and Duffy J. Hybrid twist and wrench control for a robotic manipulator.

Transactions of ASME, 110:138–144, 1988.

[101] Bruyninckx H. and De Schutter J. Specification of force-controlled actions in the

task frame formalism: A survey. IEEE Transactions on Robotics and Automation,

12(5):581–589, 1996.



CONCLUSIONS AND PROSPECTS 173

[102] De Schutter J., Torfs D., Dutre S., and Bruyninckx H. Invariant hybrid posi-

tion/force control of a velocity controlled robot with compliant end effector using

modal decoupling. International Journal of Robotics Research, 16(3):340–356, 1997.

[103] Salisbury J.K. Active stiffness control of a manipulator in cartesian coordinates. In

Proceedings of the 19th IEEE Conference on Decision and Control, pages 95–100,

Albuquerque, Canada, December, 1980.

[104] De Schutter J. Hybrid motion/internal reaction force control of redundantly actu-

ated mechanisms. Technical Report 06RP005, Department of Mechanical Engineer-

ing, K.U.Leuven, April 2006.

[105] Ou L., Zhang W., and Gu D. Nominal and robust stability regions of optimization-

based pid controllers. Transactions of ISA - The Instrumentation, Systems, and

Automation Society, 45(3):361–371, 2006.

[106] Herreros A., Baeyens E., and Perán J.R. Design of pid-type controllers using multi-

objective genetic algorithms. Transactions of ISA - The Instrumentation, Systems,

and Automation Society, 41:457–472, 2002.

[107] Ghorbel F. Modeling and pd control of closed chain mechanical systems. In Pro-

ceedings of the 34th IEEE Conference on Decision and Control, pages 540–542, New

Orleans, Louisiana, USA, December 13-15, 1995.

[108] Nyquist H. Certain topics in telegraph transmission theory. In Proceedings of the

IEEE, Vol. 90(2) (Reprinted from Transactions of the A. I. E. E., pp. 617-644, Feb.

1928), pages 143–154, Berlin, February 2002.

[109] Kotelnikov V. On the transmission capacity of the ether and of cables in electrical

communications. In Proceedings of the first All-Union Conference on the technologi-

cal reconstruction of the communications sector and the development of low-current

engineering., Moscow, 1933.
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Figure 17: Technical specifications of the dSpace DS1102 controller board.
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Figure 18: Technical specifications of the dSpace DS1102 controller board.
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Figure 19: Technical specifications of the 2657 DC-motor series.
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Figure 20: Technical specifications of the 26 gearhead series.
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Figure 21: Technical specifications of the Series IE2-512 incremental encoders.
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Figure 22: Technical specifications of the current transducers used.



182 CONCLUSIONS AND PROSPECTS

Figure 23: Technical specifications of the current transducers used.
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Figure 24: Technical specifications of the 74LS series binary counters.
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Figure 25: Technical specifications of the 74LS series binary counters.
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Figure 26: Technical specifications of the 74LS series binary counters.
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Figure 27: Technical specifications of the LS7083/84 series quadrature clock converters.
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Figure 28: Technical specifications of the LS7083/84 series quadrature clock converters.
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Figure 29: Technical specifications of the LS7083/84 series quadrature clock converters.
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Figure 30: Technical specifications of the PhotoMOS protection relay.
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Figure 31: Technical specifications of the PhotoMOS protection relay.


