User menu

Comment On Functional-integration and the Onsager-machlup Lagrangian in Riemannian Geometries

Bibliographic reference Langouche, F. ; Roekaerts, D. ; Tirapegui, E.. Comment On Functional-integration and the Onsager-machlup Lagrangian in Riemannian Geometries. In: Physical review. A, Atomic, molecular, and optical physics, Vol. 21, no. 4, p. 1344-1346 (1980)
Permanent URL http://hdl.handle.net/2078.1/60519
  1. Dekker H., Functional integration and the Onsager-Machlup Lagrangian for continuous Markov processes in Riemannian geometries, 10.1103/physreva.19.2102
  2. R. Graham, Z. Phys., B26, 397 (1977)
  3. C. E. Weatherburn, Riemannian Geometry and the Tensor Calculus (1966)
  4. A. Lichnerowicz, Eléments de Calcul Tensoriel (1962)
  5. O. Veblen, Invariants of Quadratic Forms (1952)
  6. Langouche F., Roekaerts D., Tirapegui E., On the Perturbation Expansion for the Fokker-Planck Dynamics, 10.1143/ptp.61.1617
  7. Langouche F, Roekaerts D, Tirapegui E, Short derivation of Feynman Lagrangian for general diffusion processes, 10.1088/0305-4470/13/2/013
  8. Langouche F, Roekaerts D, Tirapegui E, On the most probable path for diffusion processes, 10.1088/0305-4470/11/12/001
  9. Langouche F., Roekaerts D., Tirapegui E., Steepest descent approximation for the Fokker-Planck equation, 10.1016/0378-4371(79)90091-8
  10. I. S. Gradsteyn, Tables of Integrals, Series and Products (1965)
  11. Dekker H., Proof of the path integral representation of the nonlinear Fokker-Planck equation by means of fourier series, 10.1016/0375-9601(78)90446-2
  12. Truman Aubrey, The Feynman maps and the Wiener integral, 10.1063/1.523873
  13. A. Truman, Feynman Path Integrals, Lecture Notes in Physics (1979)
  14. Langouche F., Roekaerts D., Tirapegui E., Functional integrals and the Fokker-Planck equation, 10.1007/bf02739307
  15. Langouche F., Roekaerts D., Tirapegui E., Discretization problems of functional integrals in phase space, 10.1103/physrevd.20.419
  16. Langouche F., Roekaerts D., Tirapegui E., Perturbation expansions through functional integrals for nonlinear systems, 10.1103/physrevd.20.433