User menu

The two-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut

Bibliographic reference Huygens, David ; Labbe, Martine ; Mahjoub, A. Ridha ; Pesneau, Pierre. The two-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut.Optimization 2004 Conference (Univ Lisbon, Lisbon (Portugal), Jul 25-28, 2004). In: Networks (New York) : an international journal, Vol. 49, no. 1, p. 116-133 (2007)
Permanent URL http://hdl.handle.net/2078.1/59757
  1. Balakrishnan Anantaram, Altinkemer Kemal, Using a Hop-Constrained Model to Generate Alternative Communication Network Design, 10.1287/ijoc.4.2.192
  2. Ben-Ameur, Networks, 36, 17 (2000)
  3. Ben-Ameur, SIAM J Discrete Math, 17, 18 (2003)
  4. Bondy J. A., Murty U. S. R., Graph Theory with Applications, ISBN:9780333226940, 10.1007/978-1-349-03521-2
  5. Coullard Collette R., Gamble A. Bruce, Liu Jin, The K-Walk Polyhedron, Nonconvex Optimization and Its Applications (1994) ISBN:9781461336310 p.9-29, 10.1007/978-1-4613-3629-7_2
  6. Dahl, Oper Res Lett, 23, 21 (1998)
  7. Dahl, Oper Res Lett, 25, 97 (1999)
  8. Dahl, Oper Res Lett, 32, 345 (2004)
  9. Dahl, Oper Res Lett, 32, 15 (2004)
  10. Dahl, Oper Res Lett, 34, 577 (2006)
  11. Dahl, Networks, 43, 190 (2004)
  12. Fortz, Math Prog, 105, 85 (2006)
  13. , Computers and intractability: A guide to the theory of NP-completeness, Freeman, New York, 1979.
  14. Goemans, Combinatorica, 15, 499 (1995)
  15. Gomory, SIAM J Appl Math, 9, 551 (1961)
  16. Gouveia, Eu J Oper Res, 95, 178 (1996)
  17. Gouveia, INFORMS J Comput, 10, 180 (1998)
  18. Gouveia, Eur J Oper Res, 105, 552 (1998)
  19. Gouveia, Networks, 41, 159 (2003)
  20. Gouveia, Networks, 44, 254 (2004)
  21. , , “ Compact models for hop-constrained node survivable network design, an application to MPLS,” Telecommunications planning: Innovations in pricing, network design and management, (Editors), Vol. 33, Springer, Berlin, 2006, pp. 167–180.
  22. Gouveia, Eur J Oper Res, 132, 539 (2001)
  23. Gusfield, SIAM J Comput, 19, 143 (1990)
  24. , , , The 2-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut, Tech. Rep. RR-06:02, LIMOS, Université Blaise Pascal, Clermont-Ferrand, France, 2006.
  25. , Integer programming formulations for the two 4-hop-constrained paths problem, Preprint, 2005.
  26. Huygens, SIAM J Discrete Math, 18, 287 (2004)
  27. ILOG, S.A., ILOG Cplex 8.11: User's Manual and Reference Manuals, 2003. http://www.ilog.com/.
  28. Kerivin, Networks, 46, 1 (2005)
  29. , Reliable link topology/capacity and routing in backbone telecommunication networks, Working paper 90-08, Owen Graduate School of Management, Vanderbilt University, Nashville, TN, 1990.
  30. Leblanc, INFORMS J Comput, 11, 188 (1999)
  31. Lougee-Heimer, IBM J Res Dev, 47, 57 (2003)
  32. Pirkul, Eur J Oper Res, 148, 126 (2003)
  33. “ Polyhedral combinatorics,” Optimization, Handbooks Oper Res Management Sci 1, , (Editors), North-Holland, Amsterdam, 1989, pp. 371–446.
  34. Combinatorial optimization: Polyhedra and efficiency, Volume B, Matroids, trees, stable sets, Chapters 39–69, Springer, Berlin, 2003.