User menu

Area and time trade-offs for iterative modular division over GF(2(m)): novel algorithm and implementations on FPGA

Bibliographic reference De Dormale, G. Meurice ; Quisquater, Jean-Jacques. Area and time trade-offs for iterative modular division over GF(2(m)): novel algorithm and implementations on FPGA.2nd International Workshop on Applied Reconfigurable Computing (Delf(Netherlands), Mar 01-03, 2006). In: International Journal of Electronics, Vol. 94, no. 5, p. 515-529 (2007)
Permanent URL http://hdl.handle.net/2078.1/59599
  1. Aigner H, CHES'04, 107 (2004)
  2. Ansari B, “High performance architecture of elliptic curve scalar multiplication” (2006)
  3. Blake IF, London Mathematical Society, Lecture Notes Series 265 (1999)
  4. Brunner H., Curiger A., Hofstetter M., On computing multiplicative inverses in GF(2/sup m/), 10.1109/12.238496
  5. Brent Richard P., Kung H. T., Systolic VLSI Arrays for Polynomial GCD Computation, 10.1109/tc.1984.5009358
  6. Cohen H, ASIACRYPT 1998, 51 (1998)
  7. Daneshbeh A.K., Hasan M.A., A class of unidirectional bit serial systolic architectures for multiplicative inversion and division over GF(2/sup m/), 10.1109/tc.2005.35
  8. Guo, J-H and Wang, C-L. 1998.“Novel digit-serial systolic array implementation of Euclid's algorithm for division in GF(2m)”478–481. ISCAS'98
  9. Gura, N, Shantz, SC, Eberle, H, Gupta, S, Gupta, V, Finchelstein, D, Gonpy, E and Stebila, D. 2002.“An end-to-end systems approach to elliptic curve cryptography”, 349–365. LNCS 2523: Springer-Verlag. CHES'02
  10. Gutub A.A.-A., “New hardware algorithms and designs for montgomery modular inverse computation in galois fields GF(p) and GF(2 n )” (2002)
  11. Hankerson D, Guide to Elliptic Curve Cryptography (2004)
  12. Hasan M.A., Bhargava V.K., Bit-serial systolic divider and multiplier for finite fields GF(2/sup m/), 10.1109/12.156540
  13. Itoh Toshiya, Tsujii Shigeo, A fast algorithm for computing multiplicative inverses in GF(2m) using normal bases, 10.1016/0890-5401(88)90024-7
  14. Kim CH, ICCSA'03, 855 (2003)
  15. Koblitz Neal, Elliptic curve cryptosystems, 10.1090/s0025-5718-1987-0866109-5
  16. Meurice de Dormale G, ARC'06, 370 (2006)
  17. Meurice de Dormale, G, Ambroise, R, Bol, D, Quisquater, J-J and Legat, J-D. 2006.“Low-cost elliptic curve digital signature coprocessor”, 347–353. IEEE computer society. ASAP'06
  18. Miller, V. 1986.“Uses of elliptic curves in cryptography”, 417–426. LNCS 218: Springer. CRYPTO'85
  19. Okeya K, CHES'02, 564 (2002)
  20. Song Leilei, Parhi Keshab K., 10.1023/a:1008013818413
  21. Stein J, Computational problems associated with Racah algebra, 10.1016/0021-9991(67)90047-2
  22. Wu J., Dai F., A generic distributed broadcast scheme in ad hoc wireless networks, 10.1109/tc.2004.69