User menu

Numerical and experimental analysis of a wire medium collimator for magnetic resonance imaging

Bibliographic reference Radu, Xavier ; Lapeyronnie, A. ; Craeye, Christophe. Numerical and experimental analysis of a wire medium collimator for magnetic resonance imaging.1st International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (Metamaterials 2007) (Univ Roma Tre, Rome(Italy), Oct 22-26, 2007). In: Electromagnetics, Vol. 28, no. 7, p. 531-543 (2008)
Permanent URL
  1. Belov P., Phys. Rev. B, 73, 033108-1 (2006)
  2. Belov P. A., Marqués R., Maslovski S. I., Nefedov I. S., Silveirinha M., Simovski C. R., Tretyakov S. A., Strong spatial dispersion in wire media in the very large wavelength limit, 10.1103/physrevb.67.113103
  3. Belov Pavel, Silveirinha Mario, Resolution of subwavelength transmission devices formed by a wire medium, 10.1103/physreve.73.056607
  4. Belov P., Int. Workshop Antenna Technol., 21, 459 (2007)
  5. Shlivinski A., Heyman E., Boag A., A pulsed beam summation formulation for short pulse radiation based on windowed Radon transform (WRT) frames, 10.1109/tap.2005.854550
  6. Craeye C., Parvais B., Dardenne X., MoM Simulation of Signal-to-Noise Patterns in Infinite and Finite Receiving Antenna Arrays, 10.1109/tap.2004.836416
  7. Craeye C., Smolders A.B., Schaubert D.H., Tijhuis A.G., An efficient computation scheme for the free space Green's function of a two-dimensional semiinfinite phased array, 10.1109/tap.2003.811056
  8. Dardenne X., IEEE Antennas Propagat. Symp., 1, 692 (2005)
  9. Dardenne, X., Nefedov, I. and Craeye, C. Numerical analysis of effective wire length in wire media for image canalization with sub-wavelenght resolution. Loughborough Antennas and Propagation Conference. April, Loughborough, UK.
  10. Hornak J., The basics of MRI (2007)
  11. Ikonen Pekka, Simovski Constantin, Tretyakov Sergei, Belov Pavel, Hao Yang, Magnification of subwavelength field distributions at microwave frequencies using a wire medium slab operating in the canalization regime, 10.1063/1.2767996
  12. Kastler B., Comprendre l'IRM. Manuel d'auto-apprentissage, (2003)
  13. Munk B., Burrell G., Plane-wave expansion for arrays of arbitrarily oriented piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space, 10.1109/tap.1979.1142089
  14. Nefedov I. S., Dardenne X., Craeye C., Tretyakov S. A., Backward waves in a waveguide, filled with wire media, 10.1002/mop.21999
  15. Pendry J. B., Negative Refraction Makes a Perfect Lens, 10.1103/physrevlett.85.3966
  16. Puddephat M., Principles of magnetic resonance imaging (2002)
  17. Radu X., Metamorphose 2008 (2008)
  18. Radu, X., Dardenne, X. and Craeye, C. Experimental results and discussion of imaging with a wire medium for MRI imaging applications. IEEE Antennas Propagation Symposium. June, Honolulu, HI. pp.5499–5502.
  19. Rao S., Wilton D., Glisson A., Electromagnetic scattering by surfaces of arbitrary shape, 10.1109/tap.1982.1142818
  20. Schnell W., Renz W., Vester M., Ermert H., Ultimate signal-to-noise-ratio of surface and body antennas for magnetic resonance imaging, 10.1109/8.841903
  21. Shvets G., Trendafilov S., Pendry J. B., Sarychev A., Guiding, Focusing, and Sensing on the Subwavelength Scale Using Metallic Wire Arrays, 10.1103/physrevlett.99.053903
  22. Veselago Viktor G, THE ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF $\epsilon$ AND μ, 10.1070/pu1968v010n04abeh003699
  23. Wiltshire M. C. K., Microstructured Magnetic Materials for RF Flux Guides in Magnetic Resonance Imaging, 10.1126/science.291.5505.849
  24. Yla-Oijala P., Taskinen M., Well-conditioned Muller formulation for electromagnetic scattering by dielectric objects, 10.1109/tap.2005.856313
  25. Zhao, Y., Belov, P. and Hao, Y. Amplification of evanescent spatial harmonics and subwavlength imaging inside of a wire medium slab. Proceeding of Metamaterials 2007. October, Rome, Italy.