User menu

Directedness in Ordered Normed Spaces and Operators

Bibliographic reference Ng, KF. ; Duhoux, Michel. Directedness in Ordered Normed Spaces and Operators. In: Mathematische Annalen, Vol. 256, no. 2, p. 281-287 (1981)
Permanent URL http://hdl.handle.net/2078.1/58132
  1. Asimow, L., Ellis, A.J.: Convexity theory and its applications in functional analysis. New York: Academic Press 1980
  2. Dixmier, J.:C *-algebras (A translation of: LesC *-algèbres et leurs représentations). Amsterdam: North Holland 1977
  3. Duhoux, M., Ng, K.F.: Decomposition of precompact operators in ordered locally convex spaces. J. London Math. Soc.13, 387?392 (1976)
  4. Ellis, A.J.: Linear operators in partially ordered normed vector spaces. J. London Math. Soc.41, 323?332 (1966)
  5. Lacey, H.E.: The isometric theory of classical Banach spaces. In: Grundlehren der mathematischen Wissenschaften, Band 208. Berlin, Heidelberg, New York: Springer 1974
  6. Ng, K.F., Duhoux, M.: The duality of partially ordered locally convex spaces. J. London Math. Soc.8, 201?208 (1973)
  7. Rogalski, M.: Cônes engendrés par un compact étoilé ou convexe, applications à l'étude des espaces de Banach ordonnés. Proceedings of NATO, Conference in Swansea on ?Facial structure of compact convex sets and applications?, pp. 83?87 (1972)
  8. Wickstead, A.W.: Spaces of linear operators between partially ordered Banach spaces. Proc. London Math. Soc.23, 141?158 (1974)
  9. Wickstead, A. W.: Compact subsets of partially ordered Banach spaces. Math. Ann.212, 271?284 (1975)
  10. Wong, Y.C., Ng, K.F.: Partially ordered topological vector spaces. Oxford: Clarendon Press 1973