User menu

An Elementary Survey of General Duality-theory in Mathematical-programming

Bibliographic reference Tind, J. ; Wolsey, Laurence. An Elementary Survey of General Duality-theory in Mathematical-programming. In: Mathematical Programming, Vol. 21, no. 3, p. 241-261 (1981)
Permanent URL http://hdl.handle.net/2078.1/57977
  1. E.J. Balder, “An extension of duality-stability relations to nonconvex optimization problems”,SIAM Journal on Control and Optimization 15 (1977) 329–343.
  2. J.F. Benders, “Partitioning procedures for solving mixed variables programming problems”,Numerische Mathematik 4 (1962) 238–252.
  3. C.E. Blair and R.G. Jeroslow, “The value function of a mixed integer program: I”,Discrete Mathematics 19 (1977), 121–138.
  4. C.A. Burdet and E.L. Johnson, “A subadditive approach to solve linear integer programs”,Annals of Discrete Mathematics 1 (1977) 117–144.
  5. S. Dolecki, “Semicontinuity in constrained optimization. Part I.1. metric spaces”,Control and Cybernetics 7 (1978) 5–16.
  6. S. Dolecki, “Abstract study of optimality conditions”, Institute of Mathematics, Warsaw. Undated, received May 1979.
  7. S. Dolecki, “Abstract optimality theory”, MRC Technical Report 2006, University of Wisconsin (October 1979).
  8. S. Dolecki and S. Kurcyusz, “OnÆ-convexity in extremal problems”,SIAM Journal on Control and Optimization 16 (1978) 277–300.
  9. Elster Karl-Heinz, Nehse Reinhard, Zur theorie der polarfunktionale, 10.1080/02331887408801144
  10. J.P. Evans, F.J. Gould and S.M. Howe, “A note on extended GLM”,Operations Research 19 (1971) 1079–1080.
  11. H. Everett, “Generalized Lagrange multiplier method for solving problems of optimum allocation of resources”,Operations Research 11 (1963) 399–417.
  12. Fenchel W., On conjugate convex functions , 10.4153/cjm-1949-007-x
  13. A.M. Geoffrion, “Duality in nonlinear programming: A simplified applications-oriented development”,SIAM Review 13 (1971) 1–37.
  14. Fisher M. L., Northup W. D., Shapiro J. F., Using duality to solve discrete optimization problems: Theory and computational experience, Nondifferentiable Optimization (1975) ISBN:9783642007637 p.56-94, 10.1007/bfb0120699
  15. F.J. Gould, “Extensions of Lagrange multipliers in nonlinear programming”,SIAM Journal on Applied Mathematics 17 (1969) 1280–1297.
  16. F.J. Gould, “Nonlinear duality theorems”,Cahiers du Centre d'Etudes de Recherche Opérationnelle 14 (1972) 196–212.
  17. H.J. Greenberg and W.P. Pierskalla, “Surrogate mathematical programming”,Operations Research 18 (1970) 924–939.
  18. R.G. Jeroslow, “Cutting plane theory: Algebraic methods”,Discrete Mathematics 23 (1978) 121–150.
  19. R.G. Jeroslow, “Minimal inequalities”,Mathematical Programming 17 (1979) 1–15.
  20. E.L. Johnson, “Cyclic groups, cutting planes and shortest paths”, in: T.C. Hu and S. Robinson, eds.,Mathematical Programming (Academic Press, New York, 1973).
  21. E.L. Johnson, “Faces of polyhedra of mixed integer programming problems”, Istituto Nazionale di alta Matematica XIX (1976) 289–299.
  22. E.L. Johnson, “On the group problem and a subadditive approach to integer programming”,Annals of Discrete Mathematics 5 (1979) 97–112.
  23. T.C. Koopmans, “Concepts of optimality and their uses”, Nobel Memorial Lecture, December 1975, in:Mathematical Programming 11 (1976) 212–228.
  24. Rockafellar Ralph Tyrell, Convex Analysis : , ISBN:9781400873173, 10.1515/9781400873173
  25. R.T. Rockafellar, “Augmented Lagrange multiplier functions and duality in nonconvex programming”,SIAM Journal on Control 12 (1974) 268–283.
  26. Stoer Josef, Witzgall Christoph, Convexity and Optimization in Finite Dimensions I, ISBN:9783642462184, 10.1007/978-3-642-46216-0
  27. L.A. Wolsey, “Integer programming duality: Price functions and sensitivity analysis”,Mathematical Programming 20 (1981) 173–195.
  28. Wolsey Laurence A., Heuristic analysis, linear programming and branch and bound, Mathematical Programming Studies (1980) ISBN:9783642008030 p.121-134, 10.1007/bfb0120913
  29. Wolsey Laurence A., A resource decomposition algorithm for general mathematical programs, Mathematical Programming Studies (1981) ISBN:9783642008054 p.244-257, 10.1007/bfb0120932