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ON THE CONSISTENCY OF AN IMPREDICATIVE 
SUBSYSTEM OF QUINE'S NF 

MARCEL CRABBE 

Introduction. NFP is the predicative fragment of NF. In this system we do not 
allow a set to exist if it cannot be defined without using quantifiers ranging over 
its type or parameters of a higher type. NFI is a less restrictive fragment located 
between NFP and NF. 

We show that NFP is really weaker than NFI; similarly, NFI is weaker than 
NF. This result will be obtained in the following manner: on the one hand, we 
will show that NFP can be proved consistent in elementary arithmetic and that 
second order arithmetic is interpretable in NFI; on the other hand, we will prove 
the consistency of NFI in third order arithmetic, which is contained in NF.1 

The paper is divided in four sections. In ? 1, we define the concepts needed and 
collect a few results together in such a way that they will be ready for later use. In 
?2, we will present a model-theoretic (quick) proof of the consistency of NFI (and 
thus of NFP). The proof will be chosen (it is not the quickest!) so as to motivate 
in a natural manner the details of the proof-theoretical version of it that will be 
presented in ?3. ?4 will be devoted to the axiom of infinity in NFP and NFI. 

?1. Definitions, notations and preliminary results. 
1. NF is the theory in the language of ZF whose axioms are extensionality and 

the instances of the comprehension schema: 3y Vx(x E y o p), where so is a strati- 
fiable formula and y is not free in so. NFP and NFI are subsystems of NF obtained 
by restricting the comprehension axioms. In NFP there must be a stratification 
such that the indices associated to the bound variables in sp do not exceed the type 
of x and the indices of the free variables in so do not exceed the type of y. In NFI 
the indices associated to the variables bound or free in so do not exceed the index 
attributed to y. So NFP is a part of NFI. 

For any stratifiable sp, we can prove in NFP that 3yVz(z e y +- 3x(z = 

... {x} ... } A so)), provided the singleton operation is sufficiently iterated. There- 
fore, if U is the axiom of union: 3yVx (x e y - 3 v(v E z A x E v)) we obtain 

LEMMA 1.2 NFP + U = NFI + U = NF. 
If n > 1, NFP, and NFI, are the fragments of NFP and NFI, respectively, 

Received December 10, 1979. 
'An introduction to NF and type theories can be found in [11] and [7]. Some useful and 

recent results about these systems are presented and much simplified in [2]. 
IU can be restricted to the assertion that the union of a set of unit sets always exists: Vx(x c 

USC(V) -. 3y(x = USC(y)). 
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obtained by keeping as comprehension axioms only those that are stratifiable 
with the first n indices: 1, . . ., n. E' is the axiom of NFP4 asserting the existence of 
the set of sets whose intersection is not empty: 3yVx(x E y ?-* 3tVz(z E x -? t E z)). 

The next theorem is essentially due to Grishin [9] and can be checked easily 
from his proof: 

FIRST REDUCTION THEOREM.3 NFP = NFP3 + E'; NFI = NF13 + E'. 
2. Let TP and TI be the theories of types corresponding to NFP and NFI, 

respectively.4 In the following, Twill be either TP or TI. If n 2 1, Tn is the fragment 
of T built on the first n types: 1, . . ., n. Tn' is the theory of the infinite models of 

T", that is, Tn plus, for each m, the standard axiom expressing that there are at 
least m objects of type 1. 

If so is a formula of the language of T, then (p+ will be obtained from sp by 
raising all type indices by 1. T43) is the fragment of T4 whose comprehension axioms 
are those of T13 and those of the form (p+ whenever (p is an axiom of T3. E is the 
axiom of TP4 resulting from E' by putting the type indices 1, 2, 3 and 4 at the right 
places. Amb (for "ambiguity") is the set of all the sentences (i.e. closed formulas) 
of the form so - sp+ formulated in the language of T4 (thus so is in the language 
of T3). 

SECOND REDUCTION THEOREM. NFP (resp. NFI) is consistent iff TP(3) (resp. TI13)) 
+ E + Amb is consistent. 

The proof follows from [13] and the first reduction theorem. 
3. A model of a set of sentences of the language of Tn is a structure <M1, 

Mn; <1, ... <n-l> satisfying these sentences (in the appropriate sense), where 
the Mi's (1 < i < n) are pairwise disjoint sets and for each i (1 < i < n - 1), < 
is a relation included in the artesian product Mi x Mi+,. 

A model <M1, M2, < 1> of T2 is called countably saturated if: 
M2 is countably infinite, 
for every object a of M2 such that {x e M1lx < 1 a} is infinite there is a b in M2 

such that {xe M1I x <1 b and x <1 a} and {xe M21 x -1c1 b and x <1 a} are both 
infinite. 

LEMMA 2. (1) Two countably saturated models of T2 are isomorphic. 
(2) Every countable model & (& = <Ml, . . ., Mm, <1, ..., < -l>) of T, has an 

elementary extension such that, for each i (1 < i < n - 1), <Mi, Mi+1, <i> is 
countably saturated. 

The first part is proved in [8]. The second is obtained by taking a recursively 
saturated extension of 4 (see [10] for refinements). 

?2. The model-theoretical consistency proof. Let rpl, ... . 5Dr (r > 0) be a sequence 
of sentences of the language of T3. We consider the 2r conjunctions (p-'A ... A 
(qrr where qli is (pi or 'qi according to whether ei is 0 or 1. Let 01, .. . /k be all the 

conjunctions of this sort that are consistent with T3-. Amb(pl, ..., q(r) is the sen- 
tence ((pi +--o (+) A ... A (Pr (+) We show that T(3) + E + Amb(p1, ..., (Pr) 
is consistent. From this and the second reduction theorem we may then con- 
clude by compactness that NFP and NFI are consistent. 

3For alternative reductions see [1] and [5]. 
'These systems are studied in [5]. 
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From now on we fix r, k, (P, .* P, 019, ... D Ok as described. A simple applica- 
tion of Lemma 2 gives 

LEMMA 3. If <M2, M3, <2> is a countably saturated model of T2, then for each i 
(1 < i < k) there is a set M1i and a relation < li such that <M1i, M2, M3, <li, <2> 
is a model of T3+ Oib L 

Let <M2, M3, <2> be a countably saturated model of T2 and choose M1l, .... 
Mlk, < 11 ... . < lk as indicated in Lemma 3. If 1 < i < k, let E be the set of the 
objects a of M3 such that 

<Mli, M2, M3, <li, <2 > 3zlvV2(v2 E a -zl (E V2). 

We then have 
LEMMA 4. There is a model <M2, M3, M4, <2, <3> of T3 such that: 
M4 is a collection of subsets of M3 and < 3 is the standard e-relation; 
each Ei (1 < i < k) belongs to M4. 
PROOF. M4 may be taken as the power set of M3, i.e. the collection of all subsets 

of M3. 

This works in the two cases. But, when T3 is the predicative theory one can 
proceed in a more economical way, since M4 may then be taken as the collection 
of the subsets definable from parameters belonging to M2 U M3 U {E1, ..., Ekj. 

LEMMA 5. T13) + E + Amb(ql, . . ., (or) is consistent. 
PROOF. Let 4 = <M2, M3, M4, <2' <3> be as in Lemma 4. There is exactly 

one e such that por A ... A (r is true in X. But since 4 is a model of T- there 
is a unique i (1 < i < k) such that this sentence is 0j. So, the structure ' (4'= 

<Mli ,M2, M3, M4, <li, <2' <3>) is a model of T43) satisfying Oi and Ot. Moreover, 
Ej belongs to M4. X' is thus a model of T43) + E + Amb(ql, .. .,r) 

?3. The proof-theoretical version. We show here how to transform the consistency 
proof given above into one which uses proof-theoretical means only. Besides its 
own interest, such a demonstration will provide information about the relative 
powers of the considered systems. 

1. More definitions. If i is a natural number and (p a formula of T", then (pi will 
be the expression resulting from (p by replacing in it the type index 1 by 1 i and T,??i 
will be the theory differing inessentially from Tn in that the type 1 is denoted in it 
by li. T,* is the union of the theories Tn i in the sense that the nonlogical axioms of 
T* are just those (pi 's that are nonlogical axioms of the Tn i 'S.5 In this section, n 
will always be 3 or 4, and r, k, (pig . ., ,r 019 . . . 5k are fixed as in ?2. ? is 0b1 A 
*. A * \k, which is a sentence in the language of T3 . Note that the consistency of 
T- and that k > 1 are elementary provable. 

2. LEMMA 6. It is elementary provable, from the definition of T, that T* + T is 
consistent. 

PROOF. Using the elementary proof of the quantifier elimination theorem for 
the theory of atomic boolean algebras (extended by some extra predicates), one 

5The type 1 is thus split into k parts. More precisely, the language of T* has variables for the 
"types" 11, 1k, 2, . n; equality symbols := .. =k, =2. . =n; relation symbols: 
e * * * E 1k, E 2. * * E n-, Formulas are built as usual from atomic ones of the kind 

ii = li y i 2Y x e mYt X 1j) ,X E1iyX e mym etc. 
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proves in arithmetic that TP-' = TI2?j is a complete theory [3], [5]. On the other 
hand, Robinson's consistency theorem is elementary provable [15]. These proofs 
can be transfered to the typed theories. 

LEMMA 7. T4 is a conservative extension of T3*. This is provable in first order 
arithmetic in the predicative case and in third order arithmetic when T* is TI . 

PROOF. T* can be presented in Gentzen's style as a "second order" sequent 
calculus. If T and J are finite sequences of formulas of the language of T*, we 
let T H1 A mean that the sequent T H A is provable in the sequent calculus 
(without comprehension or equality rules) adapted to the language of T* . We 
introduce then a metalinguistic abstract {X3 I p} for each formula 4 of T, if T4 
is TI*; and for each sp containing no bound variables of type 4 if T* is TP4 . We let 
F H-2 A mean that 1H A is provable in the corresponding "second order" 
calculus (without equality or extensionality rules). 

From the cut elimination theorem for the predicative second order logic (which 
is provable in first order arithmetic [15]) and the cut elimination for full (impredica- 
tive) second order logic (provable in third order arithmetic [14]), it is clear that 
if the formulas of T and J are in T*, then F H-2 A entails F H1 A. 

Let Eq1 be the axiom 

Vx3Vy3(X3 = y3 -+ Vz4(X3 E Z4 y3 E Z4)) 

and Eq2 the conjunction of the axioms for equality and extensionality for 4-typed 
objects. If (p is a formula of T*, then T F- (p implies that F, Eq1, Eq2 H-2 (p for 
a finite sequence F of axioms of T*. If we replace, in a proof of such a sequent, 
X4 = y4 by VZ3(Z3 e X4 + + Z3 e y4), and if we then relativise the X4'S to the unary 
relation R(X4) defined by 

VX3Vy3(x3 = y3 A x3 e X4 -+ y3 e X4 

we obtain that F H 2 (q (see [15] for details). But then F 1 p, that is, T* F qx6 
LEMMA 8. T4 + Amb((pl, .. . Dr) is consistent. 
PROOF. A will abreviate Amb(Q1, . 0.., q). First, for every i (1 < i < k), T* + 

lf F- sbJ~ Ai. But, if T4 F A, then T* F-Ai, for every i (1 < i < k). Thus, 
if the lemma is not true, it follows that T* + F A ... A * - . By the 
definition of the sequence 0b1, ..., 5 we have that T- F- b1 V * V . Hence, 
T* F 0b V ... V 0+. So, T* + f would be inconsistent. This is clearly impossible 
in view of Lemmas 6 and 7. LI 

If m is a positive natural number, we let PAm be the system of mth order arith- 
metic (PA is PA1). CON(S) is the canonical sentence of PA expressing the con- 
sistency of S. 

THEOREM 1. PA F- CON(NFP) and PA3 F- CON(NFI). 
PROOF. Lemmas 6, 7 and 8 show that PA F- CON(TP4 + Amb) and PA3 

6This proof can be adapted in order to give a proof-theoretical proof of the fact that ML 

(Quine's Mathematical Logic) is a conservative extension of NF. 
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F CON(Th4 + Amb). PA F- CON(TP4 + Amb) -- CON(NFP4) and PA F 

CON(TI4 + Amb) -- CON(NFI4) follow from [4] and [6], where a finitary proof 
of Specker's result can be found. PA F- CON(NFP4) -~ CON(NFP) and PA F 
CON (NFL4) -+ CON(NFI) is clear from [9]. 

?4. The axiom of infinity. In NFP, we can define the notion of natural number 
as usual: 

Nn(x) =def Vy(Ind(y) -x xE y), 

where 

Ind(y) def {A}ey AVX(XEy- X + I Ey) 

and 

X + 1 -def {zI 3t (t E z A z\{t} E x}. 

The axiom of infinity says that V, the set of all sets, is not an element of a natural 
number or, alternatively, that A, the empty set, is not a natural number. 

THEOREM 2. NFP F- 'Nn(A); NFP F- Vx (Nn(x) -+ V 0 x). 
PROOF. If the axiom of union holds, then, by Lemma 1, Specker's famous proof 

of the axiom of infinity for NF [12] goes through.7 
Suppose now that Uis false and let Xbe {x I A # x A Vy(y E x -+ Vz(z c y 

Uz exists))}. X is predicatively defined when " Uz exists" abbreviates xyVx(x e y 
3v(v C z A x es v)). Note that 'U is equivalent to --Vz(z c V -+ Uz exists). The 
theorem will be proved if we can establish that NFP F- Ind(X). 

It is easy to see that {A} e X. Assume then that x E X. This implies x o A and 
V 0 x (if not, U would hold). Also, x + 1 #I A because if y' e x and t f y', then 
y' U {t}e x + 1. Let y, z, t be such that y E x + 1, z c y, t E y and y\{t} E x. It 
remains to show that Uz exists. Two cases are possible. (1) If t 0 z, z c y\{t}, 
y\{t} e x, and Uz exists. (2) If t E z, z\{t} c y\{t}, y\{t} e x, U(z\{t}) exists 
and, because finite union is predicatively definable, U(z\{t}) U t = Uz exists. D 

Although the axiom of infinity is a theorem of NFP, it cannot be proved in this 
system that the set Nn (Nn = {x I Nn(x)}) of natural numbers exists. This would 
in fact entail that PA could be interpreted in NFP and thus that the consistency of 
NFP could be proved in NFP. 

Despite this, the axiom of infinity, being provable, ensures that nontrivial weak 
fragments of arithmetic are interpretable in NFP. 

The situation is much different for NFI, since there the set of natural numbers 
exists. This fact permits us to interpret not only PA but also classical analysis. If we 
remark, moreover, that PA3 is interpretable in NF, then, from Theorem 1 follows 

THEOREM 3. NFI F- CON(NFP) and NF F- CON(NFI). 

7Specker's argument needs U, in the restricted form of footnote 2, for showing that 
USC(SC(x)) and SC(USC(x)) are equipollent. 
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