User menu

Geodesic-flow On So(4) and Abelian Surfaces

Bibliographic reference Haine, Luc. Geodesic-flow On So(4) and Abelian Surfaces. In: Mathematische Annalen, Vol. 263, no. 4, p. 435-472 (1983)
Permanent URL http://hdl.handle.net/2078.1/56630
  1. Adler, M., van Moerbeke, P.: Completely integrable systems. Euclidean Lie algebras and curves. Adv. Math.38, 267?317 (1980)
  2. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation theory. Adv. Math.38, 318?379 (1980)
  3. Adler, M., van Moerbeke, P.: Kowalewski's asymptotic method. Kac-Moody Lie algebras and regularization. Commun. Math. Phys.83, 83?106 (1982)
  4. Adler, M., van Moerbeke, P.: The algebraic integrability of geodesic flow on SO(4). Invent. Math.67, 297?331 (1982)
  5. Mumford, D.: Appendix to [4]
  6. Dikii, L.A.: Hamiltonian systems connected with the rotation group. Funct. Anal. Appl.6, 83?84 (1972)
  7. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley-Interscience 1978
  8. Knörrer, H.: Geodesics on the ellipsoid. Invent. Math.59, 119?144 (1980)
  9. Kowalewski, S.: Sur le problème de la rotation d'un corps solide autour d'un point fixe. Acta Math.12, 177?232 (1889)
  10. Kowalewski, S.: Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe. Acta Math.14, 81?83 (1889)
  11. Manakov, S.V.: Remarks on the integrals of the Euler equations of then-dimensional heavy top. Funct. Anal. Appl.10, 93?94 (1976)
  12. Mischenko, A.S., Fomenko, A.T.: Luler's equation on finite dimensional Lie groups. Math. USSR Izv.12, 371?389 (1978)
  13. Moser J., Geometry of Quadrics and Spectral Theory, The Chern Symposium 1979 (1980) ISBN:9781461381112 p.147-188, 10.1007/978-1-4613-8109-9_7
  14. Mumford, D.: Abelian varieties. Bombay. Oxford: Oxford University Press 1974
  15. Ratiu, T.: The motion of the freen-dimensional rigid body. Indiana Univ. Math. J.29, 609?629 (1980)
  16. Reid, M.: The complete intersection of two or more quadrics. Thesis. Cambridge Univ. 1972